MapReduce is a programming model for processing large data sets, and the name of an implementation of the model by Google. MapReduce is typically used to do distributed computing on clusters of computers. The model is inspired by the “map” and “reduce” functions commonly used in functional programming, although their purpose in the Map Reduce framework is not the same.

Technically, Map Reduce is a framework for processing parallelizable problems across huge datasets using a large number of computers (nodes), collectively referred to as a cluster (if all nodes are on the same local network and use similar hardware) or a grid (if the nodes are shared across geographically and administratively distributed systems, and use more heterogeneous hardware). Computational processing can occur on data stored either in a file system (unstructured) or in a database (structured). Map Reduce can take advantage of locality of data, processing data on or near the storage assets to decrease transmission of data.