
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE
DEPARTAMENTO DE INFORMÁTICA E MATEMÁTICA APLICADA

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

Plácido Antônio de Souza Neto

A Methodology for Building Reliable Service-Based
Applications

Natal-RN / Brasil

2012

Plácido Antônio de Souza Neto

A Methodology for Building Reliable Service-Based
Applications

Tese submetida ao Programa de Pós-Graduação
em Sistemas e Computação do Departamento
de Informática e Matemática Aplicada da Uni-
versidade Federal do Rio Grande do Norte
(UFRN), como requisito para a obtenção do
grau de Doutor em Ciência da Computação.

Advisor: Prof. Dr. Martin Alejandro Musicante (UFRN-Brazil)

Co-Advisor: Prof. Dra. Genoveva Vargas-Solar (CNRS-France)

Natal-RN / Brasil

2012

I dedicate this work to my beloved wife Ana

Flávia and to my son Lucas Kauai, my daily

sunshine.

Resumo

Esta tese apresenta πSOD-M (Policy-based Service Oriented Development Methodology),

uma metodologia para a modelagem de aplicações orientadas a serviços associandas a Políticas

de qualidade. O trabalho propõe um método orientado a modelo para desenvolvimento de apli-

cações confiáveis. πSOD-M consiste de: (i) um conjunto de meta-modelos para representação

de requisitos não-funcionais associados a serviços nos diferentes níveis de modelagem, a partir

de um modelo de caso de uso até um modelo de composição de serviço, (ii) um meta-modelo de

plataforma específica que representa a especificação das composiçoes e as políticas, (iii) regras

de transformação model-to-model e model-to-text para semi-automatizar a implementação de

composiçoes de serviços confiáveis, e (iv) um ambiente que implementa estes meta-modelos e

regras, representando assim aspectos transversais e limitações associadas a serviços, que devem

ser respeitados. Esta tese também apresenta uma classificação e nomenclatura de requisitos

não-funcionais para o desenvolvimento de aplicações orientadas a serviços. Nossa abordagem

visa agregar valor ao desenvolvimento de aplicações orientadas a serviços que têm necessidades

de garantias de requisitos de qualidade. Este trabalho utiliza conceitos das áreas de desenvolvi-

mento orientado a serviços, design de requisitos não-funcionais e desenvolvimento dirigido a

modelos para propor uma solução que minimiza o problema de modelagem de serviços web

confiáveis.

Área de Concentração: Engenharia de Software

Palavras-chave: serviços confiáveis, políticas, desenvolvimento dirigido a modelos, metodolo-

gia, πSOD-M.

Abstract

This thesis presents πSOD-M (Policy-based Service Oriented Development Methodology),

a methodology for modeling reliable service-based applications using policies. It proposes a

model driven method with: (i) a set of meta-models for representing non-functional constraints

associated to service-based applications, starting from an use case model until a service com-

position model; (ii) a platform providing guidelines for expressing the composition and the

policies; (iii) model-to-model and model-to-text transformation rules for semi-automatizing

the implementation of reliable service-based applications; and (iv) an environment that im-

plements these meta-models and rules, and enables the application of πSOD-M. This thesis

also presents a classification and nomenclature for non-functional requirements for developing

service-oriented applications. Our approach is intended to add value to the development of

service-oriented applications that have quality requirements needs. This work uses concepts

from the service-oriented development, non-functional requirements design and model-driven

delevopment areas to propose a solution that minimizes the problem of reliable service model-

ing. Some examples are developed as proof of concepts.

Area of Concentration: Software Engineering

Key words: reliable service, policy, model-driven development, methodology, πSOD-M.

Contents

List of Figures

List of Tables

1 Introduction p. 13

1.1 Motivation and Problem Statement . p. 14

1.2 Objectives and Main Results . p. 16

1.3 Document Organization . p. 17

2 State of the Art p. 19

2.1 Non-Functional Requirements for Service-Based Applications p. 21

2.1.1 Concepts and Works . p. 22

2.1.2 Analysis . p. 24

2.2 Methodologies for Service Oriented Development p. 28

2.2.1 Concepts and Works . p. 29

2.2.2 Analysis . p. 33

2.3 Classification of Non-Functional Requirements for Service-Based Applications p. 36

2.3.1 NFR Meta-Model . p. 36

2.3.2 NFR Classification . p. 37

2.4 Conclusions . p. 41

3 πSOD-M: A Methodology for Building Reliable Service Based Applications p. 43

3.1 πSOD-M . p. 44

3.1.1 General Overview . p. 44

3.1.2 Development Process . p. 45

3.1.3 Methodology Concepts . p. 47

3.1.4 Case Study . p. 50

3.2 Platform Independent Models . p. 52

3.2.1 π-UseCase Model . p. 53

3.2.1.1 π-UseCase Diagram, Terms and Concepts p. 54

3.2.1.2 Meta-model . p. 56

3.2.1.3 UML Concepts Representation p. 57

3.2.1.4 To Publish Music Use Case p. 61

3.2.2 π-ServiceProcess Model . p. 62

3.2.2.1 π-ServiceProcess Diagram, Terms and Concepts p. 63

3.2.2.2 Meta-model . p. 65

3.2.2.3 UML Concepts Representation p. 66

3.2.2.4 To Publish Music Process p. 69

3.2.3 π-ServiceComposition Model . p. 70

3.2.3.1 π-ServiceComposition Diagram, Terms and Concepts . . . p. 71

3.2.3.2 Meta-model . p. 72

3.2.3.3 UML Concepts Representation p. 75

3.2.3.4 Publish Music Service Composition p. 75

3.3 π-PEWS Platform Specific Models . p. 78

3.3.1 π-PEWS Specification, Terms and Concepts p. 78

3.3.2 Meta-model . p. 79

3.4 Model Transformations . p. 82

3.4.1 From π-UseCase to π-ServiceProcess p. 83

3.4.2 From π-ServiceProcess to π-ServiceComposition p. 88

3.4.3 From π-ServiceComposition to π-PEWS p. 91

3.5 Conclusions . p. 93

4 πSOD-M Environment p. 94

4.1 General Architecture . p. 95

4.1.1 Ecore Meta-models (Models Plugin Module) p. 96

4.1.2 Model Transformation (Mapping Plugin Module) p. 97

4.1.2.1 π-UseCase2πServiceProcess Transformation Rules p. 99

4.1.2.2 π-ServiceComposition2π-PEWS Transformation Rules . . p. 101

4.1.3 Code Generation (Code Generation Module) p. 101

4.2 Defining Reliable Service Based Applications p. 105

4.2.1 π-UseCase Model . p. 106

4.2.2 π-ServiceProcess Models . p. 108

4.2.3 π-ServiceComposition Models . p. 111

4.2.4 π-PEWS Models . p. 112

4.3 Extending the Environment . p. 113

4.4 Conclusion . p. 114

5 Validation p. 115

5.1 Case Study 1: To Publish Music . p. 116

5.1.1 π-UseCase Model . p. 116

5.1.2 π-ServiceProcess Model . p. 119

5.1.3 π-ServiceComposition Model . p. 120

5.2 Case Study 2: Crime Map . p. 121

5.2.1 π-UseCase Model . p. 122

5.2.2 π-ServiceProcess Model . p. 126

5.2.3 π-ServiceComposition Model . p. 128

5.3 Case Study 3: GesIMED Application . p. 132

5.3.1 π-UseCase Model . p. 135

5.3.2 π-ServiceProcess Model . p. 136

5.3.3 π-ServiceComposition Model . p. 136

5.4 Lessons Learned . p. 137

5.4.1 Case Study 1: To Publish Music . p. 137

5.4.2 Case Study 2: Crime Map . p. 138

5.4.3 Case Study 3: GesIMED . p. 139

5.5 Conclusions . p. 141

6 Conclusions p. 143

6.1 Main Contributions . p. 143

6.2 Future Work . p. 144

References p. 146

Appendix A -- Source Selection and Analysis Method: Non-Functional Require-

ments for Service-Based Applications p. 153

Appendix B -- Service-Based Non-Functional Requirement Concepts p. 156

Appendix C -- π-PEWS Language p. 158

Appendix D -- To Publish Music Case Study Diagrams p. 161

List of Figures

1 Service-Based Non-Functional Requirement Model. p. 37

2 Relationship of the NFR Concepts. p. 41

3 Related Works Analysis. p. 42

4 SOD-M and πSOD-M Extension Models. p. 45

5 πSOD-M Development Process and Models. p. 46

6 πSOD-M Concepts. p. 48

7 Use Case Model “To Publish Music” - Spotify Music Service. p. 51

8 Service Process Model “To Publish Music” p. 52

9 Traditional UML Concepts. p. 53

10 π-UseCase model Example. p. 54

11 Constraint Representation. p. 55

12 Non-functional Requirement Representation. p. 55

13 Non-functional Attribute Representation. p. 55

14 π-UseCase Concepts (Meta-model). p. 56

15 Business Collaborator / Package Representation. p. 57

16 π-UseCase Concepts Represented as UML Elements. p. 58

17 π-UseCase Model Representation . p. 59

18 π-UseCase Model Representation (2) . p. 60

19 Use Case Model With Constraint Definition - Scenario Example Refined. . . p. 63

20 Assertion Representation. p. 64

21 Contract Representation. p. 64

22 Node, Activity Edge and Contract Representation. p. 65

23 π-ServiceProcess Concepts (Meta-model). p. 66

24 π-ServiceProcess Model Representation . p. 67

25 π-ServiceProcess Model Representation (2) p. 68

26 Service Process Model with Contract Definition - Complete Example. p. 70

27 Business Collaborator Representation. p. 72

28 Policy Representation. p. 73

29 π-ServiceComposition Concepts (Meta-model. p. 74

30 π-ServiceComposition Representation Models p. 76

31 Service Composition Model with Policy Definition - Spotify Music Service. . p. 77

32 π-PEWS Specification Representation. p. 79

33 π-PEWS Contract Representation. p. 80

34 π-PEWS Meta-model. p. 81

35 Entities’ Model Transformation Rules . p. 83

36 π-UseCase2π-ServiceProcess Model Transformation Rules p. 86

37 π-UseCase2π-ServiceProcess Model Transformation Rules (2) p. 87

38 Extended Transformation Examples . p. 88

39 Include Transformation Example . p. 88

40 π-ServiceProcess2π-ServiceComposition Model Transformation Rules p. 90

41 πSOD-M Development Environment. p. 95

42 Environment Components . p. 96

43 ATL Model to Model Transformation in πSOD-M. p. 98

44 Acceleo Model to Text Transformation in πSOD-M. p. 98

45 ATL Configuration for πSOD-M Transformation. p. 99

46 Acceleo Specification for π-PEWS Code Generation. p. 102

47 Model Transformation Process. p. 104

48 πSOD-M Eclipse Plugin Environment. p. 106

49 π-UseCase Model Definition in πSOD-M Eclipse Plugin. p. 107

50 π-UseCase Properties in πSOD-M Eclipse Plugin. p. 108

51 π-ServiceProcess Model Definition in πSOD-M Eclipse Plugin. p. 109

52 π-ServiceProcess Properties in πSOD-M Eclipse Plugin. p. 110

53 π-ServiceComposition Model Definition in πSOD-M Eclipse Plugin. p. 112

54 π-PEWS Model Definition in πSOD-M Eclipse Plugin. p. 113

55 π-PEWS Model Properties in πSOD-M Eclipse Plugin. p. 114

56 To Publish Music π-UseCase. p. 117

57 To Publish Music π-UseCase Environment Detail. p. 118

58 To Publish Musicπ-UseCase Environment Detail. p. 118

59 To Publish Music Services. p. 119

60 To Publish Music π-ServiceProcess. p. 120

61 To Publish Music π-ServiceComposition Model. p. 121

62 Crime Map π-UseCase. p. 123

63 Search crime π-UseCase Detail. p. 124

64 See crime information π-UseCase Detail. p. 125

65 Crime Map Services. p. 126

66 Crime information π-ServiceProcess. p. 126

67 Crime information π-ServiceProcess Environment. p. 127

68 See crime statistic and share information π-ServiceProcess Detail. p. 128

69 Crime statistic and share information π-ServiceComposition Environment. . p. 129

70 Crime information π-ServiceComposition. p. 130

71 Crime information π-ServiceComposition Environment. p. 131

72 Crime statistic and share information π-ServiceComposition. p. 132

73 See crime statistic and share information π-ServiceComposition Environ-

ment Detail. p. 133

74 π-UseCase: Perform Image Processing. p. 135

75 π-ServiceProcess: Perform Image Processing. p. 136

76 π-ServiceComposition: Perform Image Processing. p. 137

77 Use Case Model [36]. p. 140

78 Extended Use Case Model [36]. p. 140

79 Image Processing - Service Process Diagram [36]. p. 140

80 Image Processing - Service Composition Diagram [36]. p. 141

81 Publications per year. p. 155

82 π-ServiceProcess - To Publish Music. p. 161

83 π-UseCase - To Publish Music. p. 162

84 π-ServiceComposition - To Publish Music. p. 163

List of Tables

1 Research question results - RQ1, RQ2, RQ3, RQ4. p. 26

2 Research question results - RQ5, RQ6, RQ7. p. 27

3 Methodologies’ Analysis . p. 34

4 Non-Functional Requirements Classification. p. 38

5 Transformation Rules: From π-UseCase to π-ServiceProcess p. 85

6 Transformation Rules: From π-ServiceProcess to π-ServiceComposition . . . p. 90

7 Transformation Rules: From π-ServiceComposition to π-PEWS p. 92

8 Summary of the studies selected at each step. p. 154

13

1 Introduction

“The greatest enemy of knowledge is not

ignorance, it is the illusion of

knowledge.”

Stephen Hawking

A web service is a logically atomic component that provides operations through a standard-

ized interface and is accessible on the Internet. The most important features of a web services

platform is the use of the Internet high-level protocols for making software components interact

among each other. Web services use three major standard technologies, namely: a communica-

tion protocol (SOAP - Simple Object Access Protocol) [23]), an interface description language

for describing services (WSDL - Web Service Definition Language [30]) and a specification

for publishing and finding services (UDDI - Universal Description, Discovery and Integration

[54]). These technologies are organized within a reference architecture that defines how they are

used for using services as components that can exchange messages for implementing specific

application logics.

Furthermore, it is possible to create new services (i.e., composite services) by composing

existing ones. Service composition is defined by a process consisting of activities implemented

by other Web services.

Some composition processes require to define more complex interactions among services.

For this, it is necessary an adequate description of the interface that can describe composite

services. Since WSDL descriptions specify only static aspects, some proposals extend WSDL

adding behavioral characteristics, such as PEWS [27], BPEL4WS [9], XLANG [87], WSCI [10]

e OWL-S [17].

Current standards in service composition implement functional, non-functional constraints

and communication aspects by combining different languages and protocols. For example, to

add a transactional behaviour to a service composition requires the implementation of code us-

1.1 Motivation and Problem Statement 14

ing the WS-Coordination, WS-Transaction, WS-BussinessActivity and WS-AtomicTransaction

standards. The selection of the adequate protocols for adding a specific non-functional con-

straint to a service composition (e.g., security, transactional behaviour and adaptability) is com-

pletely left to the programmer. As a consequence, the development of an application based on

a service composition is a complex and a time-consuming task. This is opposed to the philoso-

phy of service-based software engineering that aims at facilitating the integration of distributed

applications.

In general, software engineering techniques have been conceived for supporting the de-

velopment of applications, and service-based applications should not be the exception. The

evolution of the software engineering field has led to the proposal of the MDA (Model Driven

Architecture) approach. MDA [67] is an important approach for the alignment between high-

level information modelling, non-functional requirements and service-based development, be-

cause it provides a conceptual structure that extends from the models used by system analysts

to different models used by software developers.

MDA allows the specification of a system as an abstract model, which may be realized as

a concrete implementation (program) for a particular service platform (e.g. WSDL, BPEL or

PEWS). Using a MDA specification it is possible to generate the source code for implementing

the software system from an abstract model. The MDA methods provide a skeleton of the

program source code, implemented as a source code template where predefined tokens are then

replaced with code. MDA methods separate design from architecture. The design addresses

the functional requirements while architecture provides the non-functional requirements like

scalability, reliability and performance are realized.

1.1 Motivation and Problem Statement

Software construction is moving towards the use of methodologies for controlling the soft-

ware development process and facilitating the specification of functional and non-functional

requirements (NFRs), and its maintenance and evolution for integrating new functionalities.

There exist several methodologies, methods and new approaches [37, 77, 85, 46, 20, 66] for

software engineering, improving software development and modeling non-functional require-

ments. These methods can help to ensure the coherence between functional and non-functional

properties necessary to the system, particularly when information systems include complex

business processes calling web services or legacy applications exported as services. The chal-

lenge is to ensure reliability properties for the complete application. There are still a number

1.1 Motivation and Problem Statement 15

of problems to be solved in the development of systems, specially for service-based develop-

ment, e.g., automatic composition, NFRs specification and modelling, or specific development

methodologies for service-based applications.

Service oriented computing is at the origin of an evolution in the field of software devel-

opment. An important challenge of service oriented development is to ensure the alignment

between IT systems and the business logic. Thus, organizations are exploring new mechanisms

to bridge the gap between the developed systems and business needs [19]. The literature stresses

the need for methodologies and techniques for service oriented analysis and design, claiming

that they are the cornerstone in the development of meaningful service-based applications [74].

In this context, some authors argue that the convergence of model-driven software development,

service orientation and better techniques for documenting and improving business processes are

the key to make real the idea of rapid, accurate development of software that serves, rather than

dictates, software users’ goals [94].

Service oriented development methodologies providing models, best practices, and ref-

erence architectures to build service based applications mainly address functional aspects

[3, 4, 38, 77]. Non-functional aspects concerning service and application’s “semantics”, of-

ten expressed as requirements and constraints in general purpose methodologies, are not fully

considered or they are added once the application has been implemented in order to ensure

some level of reliability (e.g., data privacy, exception handling, atomicity, data persistence).

This leads to service based applications that are partially specified and that are thereby partially

compliant with application requirements.

The use of many different platforms and APIs for the development of Web applications

raises the need for an infrastructure that allows an organized execution of the analysis activities,

design and implementation, enabling the design, implementation and development of reliable

applications.

As services are independent components, ensuring non-functional properties is a challenge.

Different studies [14, 7, 29, 50, 95, 56, 90] try to associate non-functional requirements to

services using different approaches. Associating non-functional requirements to services com-

positions can help to ensure that the resulting application is compliant to the user requirements

and also with the characteristics of the services it uses.

Our approach combines service-based development, non-functional aspects and model

driven architecture (MDA) so that reliable service-based systems may be developed by reducing

time delays and increasing results, such as compliance and quality.

1.2 Objectives and Main Results 16

1.2 Objectives and Main Results

The main goal of this thesis is to provide a methodology for developing reliable web ser-

vice applications. Addressing the (i) modelling of functional requirements that can be imple-

mented by service compositions and (ii) non-functional requirements expressed as constraints

associated to services and policies to ensure the enforcement of business rules that define the

semantics of the application.

Our work proposes the MDA based methodology πSOD-M (Policy based Software Ori-

ented Development Methodology) that (i) extends the SOD-M [38] method with the notion of

Policy [55] for representing non-functional constraints associated to service based applications;

(ii) defines the π-PEWS meta-model [80] providing guidelines for expressing the composition

and the Policies; and finally, (iii) defines model to model transformation rules for generating the

π-PEWS model of a reliable service composition starting from the extended service composition

model; and, model to text transformations for generating the corresponding implementation.

This work proposes also an environment that provides tools for using the methodology and

implementing reliable services based applications. By defining the πSOD-M model a program-

mer can design and implement cross-cutting aspects (e.g., exception handling for describing

what to do when a service is not available, recovery, persistence aspects) and constraints asso-

ciated to services, that must be respected for using them (e.g., the fact that a service requires an

authentication protocol for executing a method).

The main contributions of our work are:

• Classification of non-functional requirements for web services: This classification is

based on an analysis of the key features in the development of service-based applica-

tions. Associating non-functional requirements to a service composition partially ensures

that the resulting application will comply to the user requirements as well as with the

characteristics of services user for implementing it.

• The definition of non-functional requirements meta-models: πSOD-M defines non-

functional requirements meta-models for representing concepts associated to services

properties and constraints, and business rules and thereby providing a framework for

modelling reliable service-based applications.

• MDA based methodology for modelling and implementing reliable service-based ap-

plications: πSOD-M defines a set of concepts organized according to three points of

1.3 Document Organization 17

view: (i) policy view, focusing on the non-functional requirements expressed by poli-

cies, (ii) business view, focusing on the features and the requirements of the business,

and (iii) the system view, concentrating on the functionalities and processes that need to

be implemented in order to satisfy the business requirements. The modelling process of

πSOD-M includes models that are in correspondence with the three different abstraction

levels considered by MDA (CIM, PIM and PSM).

• πSOD-M environment: We the πSOD-M environment implemented as Eclipse plugins

that enables the use of the proposed methodology for specifying functional and non-

functional requirements of a reliable service-based application and for semi-automatizing

the transformation processes from CIM to PIM and PIM to PSM levels, and then gener-

ating executable code.

1.3 Document Organization

The remainder of this document is organized as follows:

• Chapter 2 presents a systematic review of approaches associating non-functional proper-

ties to services and service-based applications. It introduces the main concepts used for

describing and modeling non-functional requirements in the different phases of service-

based methodologies;

• Chapter 3 introduces the πSOD-M methodology proposed in this thesis, used for build-

ing reliable service-based applications. The chapter describes the main phases of the

methodology which is based on an MDA approach, and the meta-models associated to

the CIM, PIM and PSM levels. Developing a service-based system consists ins instantiat-

ing such meta-models and transforming them along the different levels. This chapter also

describes the transformation rules among the meta-models of the πSOD-M methodology,

that includes model-to-model and model-to-text transformations.

• Chapter 4 describes the πSOD-M environment for developing service-based systems us-

ing this methodology. The chapter describes the architecture of the environment, its main

components and functions and the tools for implementing it;

• Chapter 5 describes the experimental scenarios that we conducted for validate the πSOD-

M methodology. The chapter introduces three scenarios with different levels of complex-

ity, some focusing on complex application logics and few non-functional requirements,

1.3 Document Organization 18

and others having in contrast simple application logics, but complex non-functional re-

quirements. The πSOD-M methodology is systematically used for developing the case

studies. Then, a discussion is conducted for presenting lessons learned and for comparing

this methodology with a methodology of reference.

• Chapter 6 concludes this document. It enumerates the main results of this work underlin-

ing the main contributions and then it discusses future perspectives.

• Some details about our work are described in the appendices:

– Appendix A describes the method used for source selection and analysis of related

works with non-functional requirements for service-based applications;

– Appendix B presents a list of service-based non-functional requirement concepts

and definitions proposed in this thesis;

– Appendix C presents the π-PEWS language used in this work.

19

2 State of the Art

“Computer science is no more about

computers than astronomy is about

telescopes.”

Edsger W. Dijkstra

Service oriented development methodologies providing models, best practices, and refer-

ence architectures to build service-based applications mainly address functional aspects [85].

Non-functional aspects concerning services and applications semantics are often expressed as

requirements and constraints. It is common that these aspects are not fully considered during

the development of applications. In many cases, they are considered once the application has

been implemented, in order to ensure some level of reliability (e.g., data privacy, exception han-

dling, atomicity, data persistence). This situation leads to service-based applications that are

partially specified and that are partially compliant with initial application requirements.

In systems and requirements engineering, a non-functional requirement (NFR) specifies cri-

teria about the behaviour of a system. These criteria may be not related to the results produced

by the system, but to other conditions of its performance and execution. Non-functional require-

ments are often called qualities of a system. They are also referred as “constraints”, “quality

attributes”, “quality goals”, “quality of service requirements” and “non-behavioural require-

ments” [86]. In the case of service-based applications, non-functional requirements concern the

application itself as well as its component services.

In the case of service-based applications, non-functional requirements concern the applica-

tion itself, as well as constraints imposed by the services. Associating non-functional require-

ments to services composition can help to ensure that the resulting application is compliant to

the user requirements and also with the characteristics of the services it uses. As services are

independent components, ensuring non-functional properties is a challenge.

Programming non-functional properties is not an easy task and different studies [14, 7,

29, 50, 95, 56, 90, 59] associate non-functional requirements and services using different ap-

2 State of the Art 20

proaches. Although they are used as synonyms in most NFR approaches [59], we distinguish

the concepts of non-functional requirements and non-functional attributes. NFRs are defined

as a group of semantically correlated non-functional attributes (NFA). For example, security is

an non-functional requirement that comprises attributes such as confidentiality and integrity. A

non-functional attribute describes the characteristics of a functional requirement.

This chapter (i) presents the state of the art of web service based methodologies and non-

functional requirements for web service based applications, and (ii) analyses the principal

methodological concepts for web service development. The bibliography will be analyzed in

order to present the different existing concepts, proposals, problems and solutions related with

each area.

The analysis will be conducted through a systematic review1 [57]. The result of this review

can be useful to summarize the existing evidence concerning a treatment or technology, to iden-

tify gaps in current research in order to suggest areas for further investigation, and to provide a

background for new research activities.

We present an analysis organized in 2 parts to facilitate the understanding of the areas and

related works and what their importance in the context of service-based development. Our goal

is to identify a common nomenclature for existing NFR and web service based methodologies

and propose a specification of these concepts in the context of reliable web services develop-

ment.

Since the focus of this work is the development of reliable service-based applications, we

analyze what,where and how non-functional requirements are modeled in the development of

this type of application. Allied to this, we analyze which methodologies address development

of service-based applications and if they model non-functional aspects.

This chapter is organized as follows. Section 2.1 presents the main concepts and works

related with non-functional requirements for web service application. Section 2.2 presents the

main concepts and works related with methodologies for web service development. Section 2.3

present a non-functional requirements model for service-based development and a classification

of the main terms used, divided into levels. Section 2.4 concludes for this chapter.

1A systematic review provides means of identifying, evaluating, and interpreting the literature relevant to a
particular research question or topic area [57].

2.1 Non-Functional Requirements for Service-Based Applications 21

2.1 Non-Functional Requirements for Service-Based Appli-
cations

This section presents a systematic review of the non-functional requirements and properties

used in the context of service-oriented development. The purpose of our analysis is:

• to identify the concepts, properties and notations used in the service-based systems de-

velopment;

• to find if there is any pattern or relationship between non-functional requirement concepts

in different modelling levels.

The functional and non-functional requirements are refined in each phase of the develop-

ment. As a result, the granularity of the requirement becomes tiner and more precise.

We propose 7 research questions (RQ1 to RQ7) to guide our analysis of the bibliography

about non-functional requirements. For each question we define a set of possible answers in

order to guide the analysis. These possible answers are defined from our knowledge on each

topic. The questions are closely related to service-oriented development with a NFR focus.

They are:

• RQ1: How are NFR modelled by existing methodologies for developing reliable Web

services?

– Answer is specific to each proposal

• RQ2: Which are the NFR that are more frequently used by methodologies developing

web services?

– Possible answers: security / availability / portability / . . . / reliability / performance

• RQ3: What is the software development approach used in the work?

– Possible answers: Model driven approach (*MDD) / Ontology (*Ont) / Formal

method (*FM) / Artificial intelligence (*AI) / Business Process Modeling (*BP) Tra-

ditional (*TDT)

• RQ4: What is the discipline (application domain) of the “non-functional requirements”

/ “non-functional properties” used in the work?

2.1 Non-Functional Requirements for Service-Based Applications 22

– Possible answers: Software architecture / QoS model / Language definition /

Methodology / etc

• RQ5: Does the paper propose a (meta)model describing and analyzing NFR? Is there

any relationship between the proposed non-functional requirements (meta)model and

business services?

– Possible answers: yes / no – yes / no

• RQ6: Are the non-functional aspects treated in an independent way?

– Possible answers: single / composition

• RQ7: Which is the publication year of the paper?

– Possible answers: Year of publication

The research questions identify characteristics of the service-oriented application devel-

opment, especially the modelling of non-functional requirements/properties, how they are ad-

dressed and if they are classified.

2.1.1 Concepts and Works

In order to classify the available works using the research questions, we proceed with a

systematic selection of the published papers in our field of interest.

We used the approach described in Appendix A for searching, collecting and selecting some

works related with non-functional requirements for developing service-based applications. This

approach selects published articles from known sources to be considered for inclusion in our

study. Based on these data we analyzed concepts used in each work for the description of NFRs

and the differences between them. The notation used to refer non-functional requirements will

be highlighted in italic, including the set of values that can be associated to each concept. For

example, a notation used by a work can be quality property or non-functional concern, and the

values associated with its notation are security, reliability, transaction, etc. Thus, considering

each research question, we analyze a set of works in order to identify any pattern or divergence

between the analyzed literature.

Babamir et al.[14] ranks services quality properties in three categories (business level, ser-

vice level, system level). Quality properties are associated with quality constraints, that are

2.1 Non-Functional Requirements for Service-Based Applications 23

defined as assertions or propositional logic formulas. Non-functional attributes, composition

model entity and model entity are the notations used by Xiao et al. [95] for classifying the

different concepts for non-functional requirements modeling. Non-functional attributes (NFAs)

describe the non-function aspects in the abstract process models. The framework to model

NFRs proposes to annotate composition models with NFAs.

D’Ambrogio [34] uses the term quality characteristics to group similar characteristics into

quality categories. Each quality characteristic is quantified by quality dimensions. Quality

characteristic is a quantified QoS aspect, for example latency, throughput, reliability, availabil-

ity, etc. Quality characteristics of a common subject are grouped into abstract quality cate-

gories, for example performance (for latency and throughput characteristics) and dependability

(for reliability and availability characteristics).

The terms category, sub-category and property are used by Yeom et al.[96] to classify non-

functional requirements. Business, service and system are the possible values to be associated

with the proposed terms, and a sub-category can be security, value, interoperability, etc. The

work in [96] defines a web services quality model, which considers non-functional properties

in several aspects. In this model, web services qualities are classified in categories and sub-

categories. Chollet et al.[29] uses only two terms to classify and relate quality properties with

services, they are: activity and quality property. Each activity represents a functional property

that can be divided in sub-activities, depending on its granularity. For non-functional require-

ments, the work in [29] describes the possibility of creating different meta-models for each

quality property, and then relate them with activities.

Schmeling et al.[84] uses the non-functional concerns (NFC) notation to describe NFRs.

This term encompasses two aspects: the specification of NFCs and their realization. [84] de-

fines that a functional concern (FC) is a consistent piece of functionality that is part of a soft-

ware system. Non-functional concern (NFC) is a general term describing a matter of interest

or importance that does correspond to a non-functional requirement of a system, for exam-

ple, security, reliability, transactional behavior, etc. A non-functional action represents some

behavior that results in a non-functional attribute. An example of non-functional action is en-

cryption, which realizes the non-functional attribute, confidentiality. A non-functional activity

is also used as a term, which means to encapsulate the control flow of non-functional action that

apply to the same subject. The term is used in analogy to activity and action in UML2.

Ceri et al.[26] uses the terms policy, rule, condition and action model to specify NFRs, and

in a similar way, Agarwal et al.[7] also uses the concept of service policy associated with the

concept of service. Each service is also associated with a service property, which may have

2.1 Non-Functional Requirements for Service-Based Applications 24

a specific value (security, reliability, and so on). Each service is also associated with a unit

function, that represents one or more requirements.

Ovaska et al.[73] uses quality attribute, category, conceptual layer and importance to orga-

nize and classify the NFRs, Pastrana et al.[78] uses the term contract to describe non-functional

requirements. In a contract it is possible to define pre-conditions, post-conditions and invari-

ants. A web service can have many contracts, that defines many assertions and are associated

with quality properties.

Some related papers do not have any nomenclature to classify non-functional requirements.

However, some of them uses the attribute notation [97, 16, 56], other use properties [43], factors

[69, 50], characteristics [41], quality level [68] or values [88, 16].

2.1.2 Analysis

Although there exist many different types of notation used for classifying non-functional

requirements, in general, the values associated to them are the same, i.e. security, performance,

reliability, usability, availability, etc. What distinguishes the different approaches is the adop-

tion of different NFR hierarchies in order to prioritize or classify the quality requirements. An-

other interesting factor is that each work uses different approaches to model these requirements.

Thus, there are different kinds of notations for non-functional requirements.

A number of approaches use [34, 29, 84, 16, 43, 73] MDD (Model Driven Development)

for designing and developing systems. Fabra et al. [43] presents a complete methodology that

does not focus on non-functional requirements. Fabra et al. [43] describes the importance of the

use of MDD in the development of service-oriented applications. [88, 97] use formal methods

to define a development process based on NFR for web services, [7, 78] use ontologies for

the definitions and modeling of non-functional requirements and [95, 50] use Business Process

Modeling (BPM) for system specification, including NFR. Most works focus on composition

service modeling while others define requirements models for representing the properties they

use.

In [14, 96] non-functional properties for web services are classified into three views such

as service level, system level and business level. In the business level the quality properties

are: service charge, compensation rate, penalty rate and reputation; at the service level the

quality properties are: performance and stability; and at the system level the quality properties

are classified into: manageability, interoperability, business processing and security.

In the method defined in [95], each task in the process model is annotated with the NFAs

2.1 Non-Functional Requirements for Service-Based Applications 25

(non-functional attributes). During the design phase, the service composition and the definition

of NFAs are separated. Then, each task in the process model is annotated with the corresponding

NFA. The attributes are related with tasks or data item. For data, the NFAs are: value and range;

and for tasks the NFAs are: cost, time, resources and expression.

D’Ambrogio [34] presents a WSDL extension for describing the QoS of web services. The

process is based on MDA. The work presents a catalog of QoS characteristics for the web ser-

vice domain and the Q-WSDL (Quality WSDL) meta-model for modeling QoS properties in

web services. The properties presented are: availability, reliability and access control. [29]

presents a security meta-model for web service composition. The non-functional requirements

considered are authentication, integrity and confidentiality. Each property is related with a ser-

vice activity. In [84], authors present an approach and a toolset for specifying and implementing

the composition of several non-functional properties of Web services. The non-functional at-

tributes described in [84] are: confidentiality, integrity (security concern) and response time

(performance concern).

The work presented in [88] describes steps to design a selection mechanism of services

identified as candidates for participating in a composition, considering their quality properties.

The steps are: (i) identification of relevant QoS information; (ii) identification of basic compo-

sition patterns and QoS aggregation rules for these patterns; and (iii) definition of a selection

mechanism of service candidates. As QoS properties considered in [88] are: performance, cost,

reliability and availability.

Among the properties presented we highlight security and performance. Users usually need

to access data securely and quickly. Most studies have both properties as the most important

non-functional requirements. Reliability is also an important non-functional requirement pre-

sented in some works and required by end users.

We can now relate the research questions presented in section 2.1, with the works described

above. Tables 1 and 2 show the results.

The vocabulary used for naming and characterizing NFR is not stable, 5 works out 360

(1.6%). 19 of the total of works chosen (26.31%) propose a classification of non-functional

requirements (see appendix A).

There are other works [32, 33, 31, 47, 85] that consider and propose non-functional re-

quirements classifications. A number of software attributes are defined as requirements in

[85, 32]. According to [32], the most common non-functional properties are: performance;

interface; operational; resource; verification; acceptance; maintainability; documentation; se-

2.1 Non-Functional Requirements for Service-Based Applications 26

Reference RQ1 : NFR concepts RQ2 : NFR values RQ3 : Approach RQ4 : Domain / Scope
Babamir et al. [14] property / responsiveness / availability TDT Software architecture

category / performance / sla properties
constraint

Yeom et al. [96] category / business value / performance / TDT QoS model
sub-category / stability /manageability /
property security / business processing

interoperability
Xiao et al. [95] NF attribute time / cost / resource BP Business processes

modeling
D’Ambrogio [34] characteristics / availability / reliability / MDD WSDL

category / access control extension
dimension

Chollet et al. [29] activity / security MDD Orchestration Framework
NF attribute

Schmeling et al. [84] NF concern / security MDD Web service
NF attribute / composition process
NF action /
NF activity

Thißen et al. [88] NF value performance / reliability FM Software architecture
cost / availability

Zhang et al. [97] attribute / security FM Access control
predicate

Basin et al. [16] attribute security MDD System architecture
Ceri et al. [26] police / rule n.a. TDT Context-aware applications

condition / action
Fabra et al. [43] property storage / processing MDD Web service methodology

(*case study)
Modica et al. [68] quality level sla properties TDT Service oriented

architecture
Ovaska et al. [73] attribute security / reliability MDD Model development

category
Agarwa et al. [7] property / not explicitly defined Ont Policy language

policy /
function

operation cost /
performance / availability /

Jeong et al. [56] NF attribute accessibility / security / AI Service oriented
interoperability / usability /
user satisfaction architecture
performance / reliability /

NF property / scalability / capacity /
Pastrana et al. [78] contract / robustness / precision / Ont Web service methodology

assertion / accessibility / availability /
NF behaviour interoperability / security

Diamadopoulou et al. [41] NF characteristic user’ subjective TDT Web service selection
perception

Gutierrez et al. [50] NF factor Security BP Web service
NF sub-factor development process

Mohanty et al. [69] NF attribute or reliability / performance / Artificial intelligent /
NF factor integrity / usability AI Web services classification

response time / documentation

Table 1: Research question results - RQ1, RQ2, RQ3, RQ4.

curity; portability; quality; reliability; usability; and safety. We highlight those that are used in

most analyzed classifications. [32] proposes an NFR specification and a template for specifying

requirements, considering both, functional and non-functional properties.

The NFRs are classified in 4 main concepts by [33]. The classification uses quality proper-

ties. These properties are: performance; security; cost; and usability. Pastrana [78] describes

an ontology based methodology and uses a NFR classification based in some properties, most

already described in other works. However that work is the only one to use scalability, capac-

2.1 Non-Functional Requirements for Service-Based Applications 27

Reference RQ5 : Service model – Business services RQ6 : Service type RQ7 : Year of publication
Babamir et al. [14] no – yes composition 2010
Yeom et al. [96] yes – yes single 2006
Xiao et al. [95] no – no composition 2008
D’Ambrogio [34] yes – no composition 2006
Chollet et al. [29] yes – yes composition 2009
Schmeling et al. [84] no – no composition 2011
Thißen et al. [88] no – yes composition 2006
Zhang et al. [97] no – no single 2005
Basin et al. [16] yes – no single / composition 2006
Ceri et al. [26] no – no single 2007
Fabra et al. [43] yes – yes composition 2011
Modica et al. [68] no – no composition 2009
Ovaska et al. [73] yes – no single 2010
Agarwa et al. [7] yes – no single / composition 2009
Jeong et al. [56] no – no composition 2009
Pastrana et al. [78] yes – no composition 2011
Diamadopoulou et al. [41] no – no composition 2008
Gutierrez et al. [50] no – no single / composition 2010
Mohanty et al. [69] no – no single 2010

Table 2: Research question results - RQ5, RQ6, RQ7.

ity and precision properties. Considering web services development, these properties are not

very frequently used, however, considering data processing, these properties can be important

in cases of large data processing requests through services.

Sommerville [85] classifies requirements, either functional or non-functional, in three main

blocks: process, product and external. [85] also defines a sub-classification considering the

system domain. Software requirements are classified as: usability; reliability; safety; efficiency;

performance; and capacity.

Some requirements may determine the system design, for example, (i) keep certain func-

tions in separate modules; (ii) check data integrity for critical variables; and (iii) permit only

limited communication (requester / provider), are examples of restrictive requirements [32].

These examples are related with some NFR concepts as: security, reliability and availability.

In the service-based development there is a clear difference between the business, service

and system levels. Quality requirements are treated differently in each of these levels. Despite

the different nomenclatures, they can be described in general as non-functional concerns/re-

quirements and non-functional attributes.

Restrictions are usually related to use cases and functional requirements ([32] and [85]),

and in most cases, a service activity can be represented as an use case. This is the way in which

non-functional requirements are related with web services. They do not propose a specific way

for designing services constraints, they assume that a service is modeled as a use case, and it

has quality requirements.

At the service level, each service activity is related in some way with the concept of contract.

2.2 Methodologies for Service Oriented Development 28

Contracts can be grouped into policies and their rules. Policies are directly related to concepts

like quality, security, performance and availability; contracts are associated with non-functional

attributes.

Due to the variety of tools and new approaches for web service development, there is not

(yet) a consensus on a software process methodology for web services [77, 75, 63, 66, 44, 82,

45].

Works proposing methodologies can be classified into two types: (i) those that propose new

approaches for non-functional properties guarantees; and (ii) those proposing service-oriented

development methodologies for the whole development process.

[52] proposes Design by Contract for web services. It is possible to describe three levels

for specifying contracts: implementation level, XML level and model level. Design by Contract

applied to web services addresses the verification of web services through runtime checkers, be-

fore the deployment, such as jmlrac [58], by adding behavioral information to the specification

of services, using JML [58].

CDL (Contract Definition Language) [63] is a XML-based description language, for de-

scribing contracts for services. The development with CDL offers an architecture framework,

design standards and a methodology [65, 62, 64, 66], that can be easily understood and applied

to the development of applications. The greatest difficulty is that the language only represents

contracts for services. Its specification is generated by refining B [6] machines that describe the

services and their compositions.

2.2 Methodologies for Service Oriented Development

In this section, we present an analysis of methodologies for service-oriented development.

We defined 5 research questions to guide our analysis. The questions are closely related to

service-based systems. The criteria used for evaluation and comparison are:

• RQ8: What is the scope of the methodology?

– This item will review the major phases and the purpose of each particular phase in

the context of the project and service-oriented development.

• RQ9: How does the methodology define the development process according to the

adopted notation?

2.2 Methodologies for Service Oriented Development 29

– This item describes which notation is used by the methodology for designing its

models, e.g., MDA, UML, SysML, etc.

• RQ10: Does the methodology use a formalism? If so, What is the formalism used for

specifying services?

– The purpose of this item is to determine whether the methodology proposes the use

of a formalism for specifying the services, their compositions and iterations.

• RQ11: What is the approach for describing services?

– The purpose of this item is to determine the approach adopted by the methodology

for describing the development process.

• RQ12: Which models does the methodology propose?

– This item discusses the models proposed by methodologies for specifying the system

behavior and modeling high-level business requirements.

Along with the research questions, we also compared the MDA models proposed by differ-

ent methodologies.

In general, for service-based systems, there is no specific method to conduct the develop-

ment process. Our analysis, helped us to identify how these methodologies define activities and

models to design reliable services, as well as service-based applications.

2.2.1 Concepts and Works

Over the last few years, a number of approaches have been proposed for the development

of web services. These approaches range from the proposal of new languages for web service

descriptions [9, 71, 15, 60, 83] to techniques to support phases of the development cycle of

this kind of software [22, 21]. In general, the objective of these approaches is to solve specific

problems, like supporting transactions or QoS, in order to improve the security and reliabil-

ity service-based applications. Some proposals address service composition: workflow defini-

tion [92, 70] or semantic equivalence between services [13]. The proposed solutions come from

many communities, including those of Theoretical Computer Science [83, 93, 51, 35, 25], Soft-

ware Engineering [24, 92, 91, 12, 61], Programming Languages [71, 9] and Databases [79, 5].

However, in spite of the variety of tools, there is not (yet) a consensus on a software process

methodology for web services.

2.2 Methodologies for Service Oriented Development 30

There are methodologies that address the service-based development towards a standard

or a new way to develop reliable service-based applications. The methodologies analyzed in

this work are: SOD-M [36] and SOMF [20] representing the model based development for

web services; S-Cube [76] representing the business processes and service-based development;

SOMA [11] that is a methodology described by IBM for SOA solutions; Extended SOA [77]

merges RUP[1] and BPM[2] concepts for service modeling; DEVISE [40] is a methodology for

building service-based infrastructure for collaborative enterprises. Furthermore, there are other

proposals, such as the WIED model [89] that acts as a bridge between business modeling and

design models. Also, traditional approaches for software engineering [85] are being applied to

service development.

SOD-M: Service-Oriented Development Method [37] proposes a service-oriented approach

and model-based development for web systems. SOD-M proposes models and standards pri-

marily focusing on the development of the systems behavioral characteristics, setting standards

for the construction of business models at a high-level of abstraction. The approach describes

three meta-models organized according to the MDA (Model Driven Architecture) [67] archi-

tecture levels: CIM (Computational Independent Models), PIM (Platform Independent Models)

and PSM (Platform Specific Models).

At the CIM level, 2 models are defined: value model [48] and BPMN model; At the PIM and

PSM levels, DSL models for service. The PIM-level models are: use case, extended use case,

service process and service composition. The PSM level models are: web service interface,

extended composition service and business logic.

The methodology provides a framework for the development of service-oriented applica-

tions with models that can express the whole development process of services-based applica-

tions. However, SOD-M has no support for describing and modelling non-functional require-

ments.

The basis of SOD-M is a set of concepts guiding the whole development, including trans-

formations between models. The concepts are represented through a meta-model. This meta-

model describes concepts of both the business and system views.

In SOD-M, the PIM level models the entire structure of the application flow, while, the

PSM level provides transformations towards more specific platforms.

The methodology provides model transformations among: CIM-to-PIM, PIM-to-PIM and

PIM-to-PSM transformations. Given an abstract model at the CIM level, it is possible to apply

transformations for generating a model of the PSM level. In this context, it is necessary to follow

2.2 Methodologies for Service Oriented Development 31

the process activities described by the methodology. The model to model transformations are

defined using ATL [49].

SOD-M defines a set of concepts according to two points of view: (i) business, focusing on

the characteristics and requirements of the organization and (ii) system requirements, focusing

on features and processes to be implemented in order application requirements. In this way,

SOD-M aims to simplify the design of service-oriented applications, as well as its implementa-

tion using current technologies.

S-Cube: The S-Cube Framework [76] proposes an integrated structure for developing

service-based applications. S-Cube offers three areas: Business Process Management, Com-

position and Coordination of Services; and Infrastructure. These areas are the backbone of

the framework that are directly linked to three other areas for supporting systems development:

Engineering and Software Design; Monitoring; and Security and Software Quality.

The methodology aims to guide the development of applications and describes some essen-

tial activities, such as (i) description of business objectives, (ii) domain assumptions defining,

which are pre-conditions to be met for a particular application domain, (iii) description of do-

mains, and (iv) description of scenarios for each domain.

The S-Cube methodology does not provide an exhaustive list of rules for describing ser-

vices. The S-Cube framework provides activities in various service-oriented development ar-

eas, however, it is still required to apply its concepts in real case studies to give an idea of its

application, given the fact that its structure is very complex and multidisciplinary.

DEVISE: [40] identifies issues to be considered in service-based design, and gives generic

guidelines for addressing them. DEVISE helps the developer in the design of new applications

as a collection of web services, and provides means of porting existing applications to services-

based platforms.

SOMA: Service-Oriented Modeling and Architecture [11] is a methodology by IBM for

SOA solutions. SOMA defines a seven-phase development life-cycle: business modeling and

transformation; management solution, identification, specification, realization, implementa-

tion, and monitoring of implementation and management.

At each stage, different tasks are carefully defined, such as the definition of business archi-

tecture, development of service model, specification of services, etc.

The SOMA conceptual model is based on the SOA architectural style it defines an interac-

2.2 Methodologies for Service Oriented Development 32

tion model with three main parts: (i) the service provider (which publishes a service description

and provides the implementation for the service); (ii) consumer services (which can use the URI

for the service description directly or can find the service description in a service registry for

the call); and the (iii) service broker (which provides and maintains a record of services).

SOMA proposes the use of IBM Rational platform for SOA developing, and other different

IBM tools that are available to analysts, software architects and application developers.

SOMF: Service-Oriented Modeling Framework [20] is a model oriented methodology for

modeling software with the best practices of software project activities and different architec-

tural setting. SOMF can be used to describe enterprise architectures, service-oriented architec-

ture (SOA) and cloud computing. SOMF offers a variety of modeling practices and disciplines

that can contribute to developing a successful service-oriented applications. The main goals of

SOMF are [20]:

1. A methodology describes SOMF modeling activities and each model transformation;

2. The diagrams are created obeying some project patterns.

The methodology’s model transformations in SOMF aim to describe and refine aspects in

the system development process. The models are: discovery model, analysis model, design

model, architectural model, implementation model, quality model, operations model, business

model, governance model.

Extended-SOA: [77] adopts the lifecycle of web development services focussing on the

analysis, design and development phases, with approaches that are centered in functional re-

quirements. According to [77], a specific methodology for developing services-based is impor-

tant to specify, build, improve and customize business processes available on the Web.

Extended SOA has a hierarchical structure for the development of web services, where lay-

ers are defined as follows: Business (Service) Domain, Business Processes, Business Services,

Infrastructure Services, Component-based Service Realizations and Operational Systems.

The methodology is partly based on other successful models and related development, such

as the Rational Unified Process (RUP), Components-based development and Business Process

Modeling (BPM). The difference with those models is that Extended SOA life cycle focuses

specifically on service-oriented development.

Extended SOA is based on three principles for the design and development of services, they

are: Service coupling, Cohesion of service and Service granularity.

2.2 Methodologies for Service Oriented Development 33

Considering service-oriented projects, it is preferable to create high-level interfaces with

coarse granularity to implement a complete business process, since multiple calls of service

increases network traffic. As the services are in a cooperative environment, it is unfeasible to

create services with finer granularity. It is preferable to create functions with finer granularity in

a local environment. Thus, the methodology aim is to achieve services integration and interop-

erability. The Extended SOA phases are: Planning, Analysis, Design, Implementation, Testing,

Provisioning, Implementation, Execution and Monitor.

Traditional Software Engineering Approach: Sommerville [85] proposes a general ap-

proach for the development of applications that use web services. Its structure uses the activities

of design, development, construction and testing of web services and their compositions. The

proposal is based on the traditional concepts of software engineering, such as:

• Software reuse: standards-based web service that provides a mechanism for inter-

organizational computing;

• Use process engineering services to produce reusable web services;

• Perform composition of services to facilitate and improve the development of applica-

tions;

• Show how business process models can be used for the design of service-oriented sys-

tems.

Service engineering allows the development of reliable and reusable services. Thus the

entire development life cycle focusses on the reuse of independent services.

A service must be designed as a abstraction that can be reused by different systems. The

main activities for service engineering are: (i) Identification of candidate services; (ii) Service

design; and (iii) Service implementation.

2.2.2 Analysis

Our analysis is based on the research questions 8 to 12 described at the beginning of this

section. Table 3 summarizes of the main features of the methodologies described above, con-

sidering the research questions.

S-Cube and SOMF provide concepts for modeling non-functional requirements, however

they have specificities that hinder the development. SOMF proposes a notation for modeling

2.2 Methodologies for Service Oriented Development 34

Ta
bl

e
3:

M
et

ho
do

lo
gi

es
’A

na
ly

si
s

Se
rv

ic
e-

B
as

ed
D

ev
el

op
m

en
tM

et
ho

do
lo

gi
es

SO
D

-M
[3

6]
S-

C
ub

e
[7

6]
SO

M
A

[1
1]

SO
M

F
[2

0]
D

E
V

IS
E

[4
0]

E
xt

en
de

d
Tr

ad
iti

on
al

SO
A

[7
7]

M
et

ho
d

[8
5]

M
et

ho
do

lo
gy

’s
Sc

op
e

co
m

pl
et

e
co

m
pl

et
e

co
m

pl
et

e
an

al
ys

e,
co

m
pl

et
e

co
m

pl
et

e
an

al
ys

e,
de

si
gn

de
si

gn
im

pl
em

en
ta

tio
n

M
et

ho
do

lo
gy

M
od

el
s

e-
va

lu
e,

B
P

M
N

,
U

M
L

U
M

L
ow

n
U

M
L

B
P

E
L,

U
M

L
U

M
L

U
M

L
no

ta
tio

n
Fo

rm
al

is
m

U
se

d
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
Se

rv
ic

e
no

no
no

no
no

no
no

Sp
ec

ifi
ca

tio
n

Models

N
FR

no
ye

s
no

ye
s

no
no

no
B

us
in

es
s

ye
s

ye
s

no
ye

s
ye

s
ye

s
ye

s
U

se
C

as
e

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

Se
rv

ic
e

C
om

po
si

tio
n

ye
s

ye
s

ye
s

ye
s

no
ye

s
ye

s

MDA

A
bs

tr
ac

tL
ev

el
C

IM
,P

IM
,P

SM
N

/A
C

IM
,P

IM
N

/A
N

/A
C

IM
,P

IM
,P

SM
N

/A
M

od
el

ye
s

no
ye

s
no

no
ye

s
no

Tr
an

sf
or

m
at

io
n

2.2 Methodologies for Service Oriented Development 35

and does not have a environment to assist the development process, thus hindering the design

of models and their transformations.

The Extended-SOA methodology and the use of traditional methods for the development

of service applications seems promising, because the developer has a vision of the whole de-

velopment structure. The disadvantage of these methods is that they do not provide a way to

represent the service specification, such as WSDL or formalism. They also do not provide a

tool for development support. Another disadvantage of traditional methods, when applied to

service-based development, is the fact that these methods do not have the focus in the develop-

ment of services.

In the same way S-Cube, SOD-M and SOMA provide robust processes and concepts for

service-oriented development. Both methodologies have focused on model driven development.

However, these methods do not provide models for representing non-functional properties. S-

Cube uses UML to represent project models, covering the full development life-cycle, describ-

ing each service and their compositions. The S-Cube structure is quite extensive and complete,

however, S-Cube does not provide formalism for specifying service composition.

None of the analyzed methods uses a formalism for he description and specification of

services. Most of them use UML or some UML extension for model representation, and only

the SOMF approach does not address the full life-cycle of development, restricting the scope in

the analysis and design phases.

Considering the methodology analysis, we conclude that there are any approach that address

modeling non-functional aspects as the methodology basis. Several methods propose particular

features to improve the service-based development. Some proposals consider the whole life-

cycle, however, do not consider non-functional aspects that should be designed when developing

applications that provide and use web services.

Some development methodologies have worked with the MDA approach, defining models

for the different levels of abstraction of this architecture and in some cases, such as SOD-M,

DEVISE and SOMA, defining rules for automatic transformation between these models. SOD-

M is a method for service-based development using MDA, and thus define models at CIM, PIM

and PSM of the proposed architecture.

To conclude, based on our analysis of the data presented in table 3, an interesting

methodology for reliable service-based development needs to address: (i) the definition of a

service-oriented approach-oriented models for the development of applications, (ii) model non-

functional properties, using UML for this, (iii) integrate the proposed method in the context of

2.3 Classification of Non-Functional Requirements for Service-Based Applications 36

MDA, providing the representation of the various applications levels, CIM, PIM and PSM, and

(iv) provide transformation mechanism between models, focussing on quality requirements.

2.3 Classification of Non-Functional Requirements for
Service-Based Applications

According to the previous analysis, we define the main non-functional requirement concepts

that are associated with service-based development. We also present a synthesis of the concepts

common to the analyzed approaches used for modelling non-functional requirements of service-

based applications. The NFRs have been classified into three levels, business, services and

systems. According to each modeling level, non-functional requirements are being refined from

the business level to system level.

A classification of NFRs can be seen in [96]. However, in [96] NFRs are not applied on data,

but to functions and service performance. It is important to classify the requirements of business

and data (value) restrictions, because web services can be executed in different contexts.

In sections 2.3.1 and 2.3.2 we enumerate the concepts (NFR meta-model) and values (NFR

classification) that we consider important for modeling non-functional requirements for service

applications.

2.3.1 NFR Meta-Model

Figure 1 shows the relationship between the concepts2 we consider important for modelling

quality requirements used in service-based development.

A REQUIREMENT3, whether functional or non-functional, can be represented by one or

more use cases. A use case represents a Service Activity. For example, a paying pro-

cess can be modeled through the use cases that represent withdrawal and deposit transactions

and service provider accounts. A payment process also requires the guarantee of a complete

transaction and data security. Thus several use cases model a single requirement, and can be

implemented as services.

Each use case has business or value constraints. Business constraints are restrictions on

functions and how they may be implemented. The value constraints are restrictions on the

service interface, expressing the desired values for input and output data. Each constraint is

2The appendix B provides a description of each concept presented in figure 1.
3We use TYPEFACE to refer to the concepts of the model.

2.3 Classification of Non-Functional Requirements for Service-Based Applications 37

NF Requirements

Requirement

Policy
1 1..*

NF Attribute
1

1..*

Use Case
1

1..*

ContractConstraint

cType : Constraint Type

1

1..*

1..*

1

0..*

Exceptional Behavior

1

0..*

Constraint Type

BUSINESS : Integer
VALUE : Integer

0..* 1..*

Service Activity
1 1

1

1..*

Figure 1: Service-Based Non-Functional Requirement Model.

associated with NFAs.

A CONTRACT is a set of constraints for the same function. For example, a contract for

the payment operation. The constraints for payment are: (i) the value amount should not be

less than 10 euros and (ii) the user should always receive a purchase confirmation by phone

message. This restrictions are grouped into a single contract for payment verification.

An EXCEPTIONAL BEHAVIOR happens when a contract is not respected. When this hap-

pens a new function is called or the process is stopped. For example, if the bank does not

authorize the payment, the system offers alternative forms of payment such as PayPal.

Finally a POLICY groups similar contracts. For example, security contracts are grouped

into a security policy and performance contracts are grouped into a performance policy.

2.3.2 NFR Classification

Table 4 shows the NFR classification we propose, organized as follows (by column): (i) the

level of abstraction, (ii) the proper term for this kind of abstraction and (iii) possible values to

be used. The rows represent the abstraction level for modeling the NFR. The highest level is

the Business level, the intermediary is the Service level; and finally the System level.

At the business modeling level, non-functional requirements are classified into business

restrictions. We have adopted, business and value constraints to address the most abstract levels

2.3 Classification of Non-Functional Requirements for Service-Based Applications 38

Modeling Level Concept / Notation NFR / NFA
Business Level Constraint Business Constraint,

Value Constraint
Integrity, Transaction,
Accessibility, Encryption,
Cost, Time Constraint,

Service Level Contract Encryption, Platform,
Privacy, Authentication,
Resource, Capacity,
Privacy, Confidentiability
Security, Performance,
Interoperability, Scalability,

System Level Policy Reliability, Usability,
Transactional Behaviour,
Availability

Table 4: Non-Functional Requirements Classification.

of restrictions in business modeling.

• Business Constraint - Represents rules for system development in terms of resource

availability, interoperability, performance, dependencies, timescales. Thus, Business

Constraint represents restrictions over business activities.

• Value Constraint - Defines valid subsets of values of a variable of a given type. In the

context of services, value constraint are restrictions on the data on service calls (input

and output values), expressing which range of values is allowed. This can be applied to

authentication policies, access control, data integrity, cost of services, privacy, and other

factors.

The following items describe the non-functional properties of the service level. At the ser-

vice level, the non-functional properties will be guaranteed upon implementation of the service

requirements.

• Conformity - Represents the degree at which a Web service function fulfills an applica-

tion requirement.

• Time constraint - This property can be associated to the execution time of a particular

service. This property is related to services performance and availability.

• Capacity - Represents the degree at which a service can process a given volume of data

or requests.

2.3 Classification of Non-Functional Requirements for Service-Based Applications 39

• Cost - Represents the cost to run a service. It can be in time, bandwidth and money.

• Privacy - The challenge in data privacy is to share data while protecting personally iden-

tifiable information. Privacy of Web services is the ability of the service must have to

preserve the data and user information.

• Authentication - Represents the process of making sure that the person who is asking to

use the web service is really the person that they claim to be.

• Accessibility - Represents the quality aspect of a web service related with the degree to

which it is capable of serving a request.

• Access control - Refers to exerting control over who can interact with a resource, e.g.

computer-based information system, a service or a database.

• Confidentiability - Confidentiality ensures that information is not accessed by unautho-

rized people. The private data is accessed only by authorized users.

• Integrity - Represents the ability of the web service to maintain the correctness of the

interaction which is ensured by the proper execution of a web service transaction.

• Transaction - A transaction is a unit of work performed to maintain a data integrity in a

known and consistent state.

• Resource - A resource is any physical or virtual component of limited availability within

a computer or information management system. Computer resources include means for

receiving, processing, notifying, transmitting and storing data.

The quality properties at the system level represent a behaviour that is part of the workflow.

Following, the properties we considered important for this level are defined.

• Usability - ISO defines usability as “The extent to which a product can be used by spec-

ified users to achieve specified goals with effectiveness, efficiency, and satisfaction in a

specified context of use”. In the context of services, usability can mean how efficient and

easy to access a service is and whether it satisfies the needs of those who are invoking

this service.

• Interoperability - Is a property referring to the ability of diverse systems to work to-

gether. If two or more systems are capable of communicating and exchanging data, they

are exhibiting syntactic interoperability. According to ISO interoperability is defined as

2.3 Classification of Non-Functional Requirements for Service-Based Applications 40

“The capability to communicate, execute functions, or transfer data among various func-

tional units in a manner that requires the user to have little or no knowledge of the unique

characteristics of those units”. In the context of services, interoperability can mean that

the services have capacity to communicate with each other.

• Reliability - Is the ability of a service or component to perform its required functions

under stated conditions for a specified period of time. The concept of reliability has

different applications in different areas. Applied to web services, reliability is the ability

of the service to execute correctly the methods it exports. It is also important that the data

presented are consistent with the expected result.

• Availability - Is the proportion of time a service is in a functioning condition. This is

often described as a mission capable rate. Availability of web services, is the probability

of a service call to be successful, given a specific time.

• Performance - In the context of web services, performance is how fast the service can be

executed in accordance with the needs of the user.

• Security - Represents protecting information and information systems from unauthorized

access, use, disclosure, disruption, modification, perusal, inspection, recording or destruc-

tion.

The relationship between non-functional requirements and attributes help to identify groups

of restrictions and contracts to develop specific policies. The level of service shows non-

functional requirements, and system level presents a finer granularity, describing the non-

functional attributes. Thus, a set of contracts that are related to the same attribute form specific

policies for the system. The relationship between the concepts in business, service and system

levels are presented in figure 2.

In our work we adopt security, performance, availability, interoperability, usability and

reliability as NFRs, and we consider as NFAs access control, time constraint, privacy, accessi-

bility, etc. These terms and proposed values will be used in chapter 3. The methodology that

will be presented in the next chapter uses this nomenclature for modeling the non-functional

requirements in the development of service-oriented applications.

2.4 Conclusions 41

NFR

Business Value

Security Reliability
Usability Interoperability Availability Performance

ResourceIntegrity

Accessability Confidentiability

Access control

Platform Conformability
Capacity

Time
constraint

Transaction Privacy

Cost
Authentication

Confidentiability

NFR Concepts
in Business Level

NFR Concepts
in System Level

NFR Concepts
in Service Level

Figure 2: Relationship of the NFR Concepts.

2.4 Conclusions

This chapter presented a review of related approaches for the service-oriented develop-

ment of applications. We consider two important topics in our analysis: (i) non-functional

requirements and (ii) methodologies for service-based development. The revised methods were

grouped according to their characteristics, and analyzed their context of application.

We reviewed existing methodologies for service-based development. We analyze other

general aspects of these methodologies as their development paradigm, use of the UML and

formalism, and whether the method considered an MDA-based development or not. In this

case we have studied the main techniques and methods proposed for modelling non-functional

requirements, business process and web service composition.

To the best of our knowledge, there are no proposals that define a service-oriented approach

for the whole development of systems, considering non-functional requirements. Although

many efforts have been made to support the new technological proposals for the Web such

as web services, in general, these methodologies focus their processes on traditional software

engineering approaches, with emphasis on the functional aspects of the application.

The comparative study of such methodological approaches for service development is the

basis for the design decisions of the method we propose in this work.

2.4 Conclusions 42

Methodology for
Service-Based
Development

Model-Driven Engineering Non-Functional
Requirements

our approach

[14]

[93]

[92]

[34]

[29]
[82][86]

[94]

[16]

[26]

[42]
[66]

[71]

[7]

[55]

[76]

[40]

[49]

[67]

[36]

[74]

[11]

[20][75]

[39]

[83]

[38]

[...]

[...]

Figure 3: Related Works Analysis.

Figure 3 presents an overview of related work and their specific areas. The analysis helped

us identify a gap for improving the development of service-based applications. Our approach

uses the characteristics of the 3 areas4 for proposing a methodology for developing service-

based applications considering non-functional aspects.

Our work addresses the development of reliable service-based applications that uses ser-

vices and non-functional aspects.

In the following chapters we describe a service-based methodology that we propose and

that focusses on non-functional aspects description and modeling. For this, we use model-

based development (MDD) and the classification of non-functional requirements described in

this chapter, as well as the meta-model with NFR notation.

4(i) Non-Functional Requirements; (ii) Methodology for Service-Based Development; and (iii) Model-Driven
Engineering

43

3 πSOD-M: A Methodology for
Building Reliable Service Based
Applications

“There are two ways of constructing a

software design: One way is to make it so

simple that there are obviously no

deficiencies, and the other way is to make

it so complicated that there are no

obvious deficiencies. The first method is

far more difficult.”

C.A.R. Hoare

This chapter presents πSOD-M (Policy-based Service Oriented Development Methodol-

ogy), a methodology for modeling and developing reliable web service based applications us-

ing a MDA approach. We propose guidelines for building service compositions that include

non-functional requirements (NFRs). The methodology focuses on the development of service-

based system, considering non-functional aspects of the software being developed. These as-

pects are implemented as policies for the application services. The design of this aspects inte-

grates both functional and non-functional requirements.

This chapter is organized as follows. Section 3.1 introduces the concepts, general structure

and motivations to define a specific methodology for policy-based web service development.

We use a motivational example for illustrating the concepts and principle of πSOD-M. Sections

3.2, 3.3 and 3.4 describe the development models and transformations of our methodology.

They also how to apply the methodology for building concrete applications. Section 3.5 con-

cludes the chapter.

3.1 πSOD-M 44

3.1 πSOD-M

πSOD-M is a MDA (Model Driven Architecture) based methodology. It provides a frame-

work for building service compositions considering their non-functional requirements. πSOD-

M extends the SOD-M [36] method by adding the concept of Policy [42, 55] for representing

NFR associated to service-based applications. πSOD-M also proposes the generation of a set

of models at different abstraction levels, as well as transformations between these models.

πSOD-M’s models represent both the cross-cutting aspects of the application being mod-

elled, as well as the constraints associated to services. The systems cross-cutting concerns affect

functional concerns, such as availability; recovery; and persistence aspects. Constraints are re-

strictions that must be respected during the execution of the application, for example the fact

that a service requires an authentication for executing system functions.

πSOD-M defines a service oriented approach providing a set of guidelines to build service

based information systems (SIS) and proposes to use services as first-class objects for the whole

system development process. πSOD-M extends the SOD-M models to include capabilities

to model NFRs. The SOD-M models that are being extended are: use case model, extended

use case model, service process model and service composition model. πSOD-M provides

a conceptual structure to: (i) capture the system requirements and specification in high-level

abstraction models (computation independent models, CIMs); (ii) obtain the PIMs from such

models (specification documents). The platform independent models (PIMs) are designed to

specify the system details; (iii) transform such models into platform specific models (PSMs)

that bundles the specification of the system with the details of the targeted platform; and (iv)

serialize such model into the working-code that implements the system.

3.1.1 General Overview

Figure 4 presents the SOD-M models in the context of MDA architecture, and defines which

models are extended by our approach. The π-UseCase model describes services requirements,

constraints and quality requirements. The π-ServiceProcess model defines the concept of ser-

vice contract for representing the service input and output data restrictions, as well as function

restrictions. In this model we propose the definition of service contracts. The π-ServiceProcess

model groups the constraints described in the π-UseCase model into contracts that are associ-

ated with services. The π-ServiceComposition model provides the concept of Policy that groups

contracts with similar non-functional requirements. For example, security restrictions, such as

contracts for authentication, privacy data access or transactions are grouped into a security pol-

3.1 πSOD-M 45

icy.

BEHAVIOURHYPERTEXTCONTENT

Domain
Modeling

Computation
Independent
Model (CIM)

Platform
Independent
Model (PIM)

Platform
Specific Model

(PSM)

Use Case Model

Extended Use Case
Model

SOD‐M

Service Process
Model

Business
Modeling Value Model

Code

π‐Service
Composition Model

Service Composition
Model

extends

π‐PEWSModel

PEWS
Codeπ‐SOD‐M

π‐Service
Process Model

π‐Use
Case Model

extends

extends

extends

Figure 4: SOD-M and πSOD-M Extension Models.

In the π-UseCase model, use cases restrictions are designed as constraints. In the π-

ServiceProcess, the constraints are grouped into service contracts, and use cases are refined

to services or functions. Then, contracts are grouped into policies.

The πSOD-M methodology proposes the π-PEWS model as platform specific model. An

instance of the π-PEWS model is generated from the π-ServiceComposition model, and it is

a representation of a π-PEWS specification [27, 80]. From a π-PEWS model it is possible to

generate a service composition code.

πSOD-M also defines model-to-model transformation rules (starting from the π-UseCase

model) to π-ServiceComposition model; and uses model-to-text transformations to generate the

corresponding implementation code in the π-PEWS language.

3.1.2 Development Process

πSOD-M uses the concept of MDA viewpoint, used as a technique of abstraction to focus on

a particular aspect of the issue or proposed system. MDA defines, specifically, three viewpoints

(figure 5):

• Computation Independent Viewpoint: This level focusses the environment of the sys-

tem, as well as on its business and requirements specifications. At this moment of the de-

velopment, the structure and system processing details are still unknown or undetermined.

In πSOD-M, this level is represented as a list of business services from a requirements

and business specification document.

3.1 πSOD-M 46

• Platform Independent Viewpoint: This level focusses the system functionality, hiding

the details of any particular platform. This specification defines those parts of the system

that do not change from one platform to another. In πSOD-M, this level is modelled by

the system use case, service process and service composition models.

• Platform Specific Viewpoint: This level focusses the functionality, without hiding the

details of a particular platform, combining the platform independent view with the spe-

cific aspects of the platform to implement the system. In πSOD-M, the result of this level

is the πPEWS specification [80] which represents as a platform specific model.

Computa(on	
Independent	

Model	

Pla1orm	
Independent	

Model	

Pla1orm	
Specific	
Model	

Business	
Perspec(ve	

System	
Perspec(ve	

Requirements	
Specifica(on	

Business	 Process	
Specifica(on	

π-‐UseCase	 	
Model	

π-‐ServiceProcess	
Model	

π-‐ServiceComposi(on	
Model	

π-‐PEWS	 	
Model	

WSDL	
Model	

BPEL	
Model	

Business	 services	 list	

<<
	 P
IM

-‐t
o-‐
PI
M
	 M

ap
pi
ng
	 >
>	 <<
	 C
IM

-‐t
o-‐
PI
M
	 	

M
ap
pi
ng
	 >
>	

<<
	 P
IM

-‐t
o-‐
PS
M
	 	

M
ap
pi
ng
	 >
>	

Figure 5: πSOD-M Development Process and Models.

Computation Independent Models (CIM) aim to represent the business view, while Platform

Independent Models (PIM) and Platform Specific Models (PSM) aim to represent the informa-

tion system view and detail the information system to be implemented to fulfill the requirements

of a business environment.

Figure 5 presents the πSOD-M development process, which defines a service oriented ap-

proach providing the guidelines for building service-based information systems (SIS), that was

the result of the SOD-M extension described in figure 4.

Next section presents the concepts that lead to modeling applications in πSOD-M. These

concepts form the basis of our methodology for modeling the reliable service-based applica-

tions.

3.1 πSOD-M 47

3.1.3 Methodology Concepts

The concepts presented in figure 6 represent the main elements of the methodology used for

system application modeling. The πSOD-M’s meta-model1 concepts are used in all methodol-

ogy meta-models. They describe the key concepts that must be modelled in a service-oriented

application. The πSOD-M meta-model consists of the set of concepts for modelling and devel-

opment applications that use MDA. These concepts represent the reliable service-based system

development, and are present in the modelling any application.

Notice that the three πSOD-M methodology views (Business, System and Policy) are dif-

ferent to those levels proposed by the traditional MDA literature: CIM, PIM and PSM. In the

πSOD-M meta-model, at different MDA levels, there are elements from the πSOD-M concepts.

All the proposed concepts and models for business modeling (CIM level), and for infor-

mation system and policy modeling at PIM and PSM levels comprise the backbone for the

πSOD-M based applications design. These concepts are important to identify the system re-

quirements and properties throughout the development. Thus, the purpose of this section is to

present a description of each concept, so that when applied and used, it can be seen in their

proper modeling context.

The methodology relies on a set of concepts (represented as a meta-model) for modeling

reliable applications. These concepts are structured in three views: Business, System and Policy

views (figure 6):

• Business view: focuses on the business features that are the basis of an information

system. The concepts that correspond to the Business View describe business elements.

There are some concepts which correspond to both views (Business and System Views)

and will be analyzed from both perspectives.

• System View: focuses on the main features and processes for the information system

development. The System View concepts are used to describe the functionality and pro-

cessing system.

• Policy View: focuses on non-functional requirements and business constraints of the in-

formation system. The concepts that correspond to the Policy View describe the NFRs

and constraints related to the system functionalities. πSOD-M’s main goal is to model

1Meta-model is the construction of a collection of “concepts” (things, terms, etc.) within a certain domain.
A model is an abstraction of phenomena in the real world; a meta-model is yet another abstraction, highlighting
properties of the model itself. A model conforms to its meta-model in the way that a computer program conforms
to the grammar of the programming language in which it is written.

3.1 πSOD-M 48

NF Requirements

Requirement

Policy1 1..*

NF Attribute

1

1..*

Use Case

1

1..*

Composite Use Case
1

2..*

Contract

1

1..*

Business ServiceBusiness Task End Costumer Business Colaborator

Business Process

Service Composite Process

Service Activity Action

1..*

1..*

1

1

1..*
1..*

needs1..* 1..*

hasAssociated

1

1

invokes

0..*

1..*

1..*

represents

1

1

1..*

performs1

0..*

1

0..*

performs1..*
1..*

1

0..*

Exceptional Behaviour

1

0..*

0..*

1

0..*

1..*

Assertion

1

0..*

Variable

Rule11..*

1..*

Constraint

1
1..*

1

0..*

Constraint Type

BUSINESS : Integer
VALUE : Integer

Business View System View Policy View1 2 3

1

2

3

Figure 6: πSOD-M Concepts.

non-functional requirements considering the models proposed by the SOD-M methodol-

ogy.

The πSOD-M concepts2 are:

• Business view:

– BUSINESS PROCESS - Represents the aggregation of logically related tasks that are

carried out to achieve a given business result.

– END CONSUMER˚ - Represents an entity that needs and consumes business services.

End consumers are those who pay (either with money or using any other kind of

value) to obtain a service that they use themselves.
2The concepts marked with ˚ are also part of the System view

3.1 πSOD-M 49

– BUSINESS SERVICE˚ - Represents a result of a business process (or part of it) pro-

viding value for an end consumer.

– Business task˚ - Represents a business function performed by a business col-

laborator as a part of a business process.

– BUSINESS COLLABORATOR˚ - Represents an entity that collaborates in the business

processes of an organization, performing certain tasks needed to provide a business

service.

• System view:

– REQUIREMENT - Represents a super type for functional and non-functional require-

ments. Thus, the use cases can be related to both types of requirements.

– USE CASE - Represents a set of actions performed by the system to carry out part

of a business service.

– COMPOSITE USE CASE - Represents a set of actions performed by the system to

carry out part of a business service, which can be broken down into different use

cases, which may in turn be basic or composite.

– SERVICE COMPOSITE PROCESS - Represents a set of logically related activities

necessary for carrying out a business service.

– SERVICE ACTIVITY - Represents a behaviour (set of individual actions) forming

part of the execution flow of a business service.

– ACTION - Represents a fundamental behaviour unit that is part of a service activity

and describes some transformation or processing in the system being modelled.

• Policy view:

– NON-FUNCTIONAL (NF) ATTRIBUTE - An attribute that describes the quality or

characteristics of a functional requirement. For example confidentiality and privacy

is an example for a non-functional attribute for the functional requirement user reg-

istration.

– NON-FUNCTIONAL (NF) REQUIREMENT - A group of semantically correlated

non-functional attributes (NFA). For example, security is an NF Requirement that

comprises attributes such as confidentiality and integrity.

– CONSTRAINT - A constraint prevents the system from achieving more than its goal.

With the definition of constraints, the system can be more robust, and unexpected

3.1 πSOD-M 50

problems can be solved before they happen. For example, in a banking system, the

customer can only withdraw money if they have a positive balance in the account.

– CONSTRAINT TYPE - Represents the types of constraints, that may be on a system

function or values. This entity can have their property setted as a business and data

(*value) constraint (expressed as an attribute).

– CONTRACT - Is the formalization of obligations (requires) and benefits (ensures) of

a function, service activity or component. The following questions can be used to

define contracts: What does it expect? What does it guarantee? Contracts are crucial

to software correctness and therefore they should be part of the design process. An

interface is a kind of contract.

– ASSERTION - Represents a predicate or a state of the application before it runs (its

preconditions), or the state when it is finished running (post-conditions);

– EXCEPTIONAL BEHAVIOUR - Are alternative execution paths if any condition or

restriction is not respected. For example, if a user’s password is not correct after

three attempts, the user account is locked for security reasons.

– POLICY - A policy is a set of rules applied to a particular scope. This scope can be

defined as an action, an activity, a function or a workflow. A policy is a composition

of contracts applied to a non-functional application requirement. For example, a

security policy of a system constraint may include authentication, access and data

privacy properties.

– RULE - Represents information about an event, condition, and action where the

event part represents the moment in which a constraint can be evaluated according

to a condition represented by the condition part and the action to be executed for

reinforcing it represented by the action part.

– VARIABLE - Represents a symbolic name given to some known information. A

variable are related with a Policy. A Policy can have one or many variables. Each

Variable has a name and a type.

The following next sections will describe the example scenario to better explain the πSOD-

M meta-model and the methodology concepts.

3.1.4 Case Study

We use a case study in order to better describe specific details of the methodology proposed

in this work.

3.1 πSOD-M 51

Consider the following scenario: An organization wants to provide the service-based appli-

cation “To Publish Music” that monitors the music a person is listening during some periods of

time and sends the song title to this person’s Twitter or Facebook accounts. More specifically,

this social network user will have their status synchronized in both Twitter3 and Facebook4,

with the title of the music the user is listening in Spotify5. The user may also want to download

music. For this, the user needs to process the purchase of music they want to download. Pay-

ments will be processed via PayPal or credit card. All services are available via Spotify and our

application needs to interact with Spotify users, so they can listen music, publish on Facebook

and Twitter, and purchase music online. The corresponding use case model is illustrated in in

figure 7.

app

app.bank

pay by cardpay by paypal

pay

<<extend>>
<<extend>>

app.spotify

listen music

spotify

receivePaimentdownload music

buy music

<<include>>

<<include>>

app.twitter

publish twitter
publish music

<<extend>>

user

app.facebook

publish facebook

<<extend>>

To update a song,
the user must log in to social
networking. The user must provide id,
password, and pass the song data.

The User must be
logged in and the
connection should
be secure

- The minimum payment
value is 2 euros;
- It needs the card or paypal
user data so that the
payment is made.

seaarch musicselect music

Figure 7: Use Case Model “To Publish Music” - Spotify Music Service.

Figure 8 shows the activity model for our scenario. It starts by contacting the music service

Spotify for retrieving the user’s musical status. If the user wishes to download a particular song,

they can download the song to purchase (activities Buy Music and Download Music). Finally

3Twitter is an online social networking service and micro-blogging service that enables its users to send and
read text-based posts of up to 140 characters, known as “tweets”.

4Facebook is a social networking service and website. Users may join common-interest user groups, organized
by workplace, school or college, or other characteristics, and categorize their friends into lists

5Spotify is a music streaming service offering digitally restricted streaming of selected music from a range
of major and independent record labels. Spotify allows registered users to integrate their account with existing
Facebook and Twitter accounts.

3.2 Platform Independent Models 52

listen music publish music

buy music download music

search music select music

buy? yes

buy? no

Figure 8: Service Process Model “To Publish Music”

the user can publish the music. The activity publish music can also be modelled as a parallel

workflow for updating different social networks, as follows: Twitter and Facebook services can

be contacted in parallel for updating the user’s status with the corresponding song title.

The execution flow is described as follows. Each action from the activity diagram represents

one or more functions in the application. Each function or service has an interface, consisting of

its input and output, and the specification of how to call this function/service. An activity must

be executed according to the rules identified in the use case model. For example, the “publish

music” action (figure 8), can be refined into two flows: (i) a flow to publish on Twitter and (ii)

another to update the Facebook, since each service has different rules for update and login.

Given a set of services with their exported methods (known in advance or provided by

a service provider), building service-based applications is a task that implies expressing an

application logic as a service composition together with some restrictions.

Both models presented in figures 7 and 8 use the traditional UML to design requirements

in use case diagram and workflow actions in the activity diagram. Figure 9 presents some of

the main UML concepts that are used to model system diagrams. The structure of each πSOD-

M model will be detailed in accordance with their respective meta-model and transformations

necessary for achieving the aim of modeling reliable applications.

3.2 Platform Independent Models

The Platform Independent Models (PIM) are used for modeling the system functionality,

abstracting technological details.

The models proposed at πSOD-M’s PIM level are (figure 5): π-UseCase, π-ServiceProcess

and π-ServiceComposition. They provide concepts for expressing the design of: (i) system

requirements and constraints; (ii) external services and their compositions; (iii) execution flow;

(iv) input and output service restrictions; (v) service contracts and actions; and (vi) policies for

the implementation of business services. We use these models to provide a representation of the

system and to specify its restrictions.

3.2 Platform Independent Models 53

app

app.spotify

listen music

spotify

download music

buy music

<<include>>

user

The User must be
logged in and the
connection should
be secureseaarch musicselect music

comments

use case

package

dependence relationship

actor

actor

final node

fork node

initial node

action

listen music

buy music download music

search music select music

buy? yes

buy? no

publish music

Figure 9: Traditional UML Concepts.

3.2.1 π-UseCase Model

The π-UseCase (figure 14) is used to describe the functionalities (services and other func-

tionalities) of the system. The services are represented in this model as use cases. We design

this model by using the UML use cases, with a small extension for considering constraints.

Application constraints are represented by stereotyped use cases and comments related to them.

Each constraint describes what will be checked for a particular application function be executed.

3.2 Platform Independent Models 54

Figure 10 shows6 an example of how to describe constraints on use cases in πSOD-M. We use

part of our case study to present them. Each use case may have multiple constraints. In this

example the publish music use case has an authentication constraint (user must authenticate).

For a song to be published on any social network it is necessary to provide data privacy. The

constraint type concerns the authentication values and the constraint has an non-functional at-

tributes. The use case is also related with requirement, a business service and a non-functional

requirement properties.

app

app.twitter

publish twitter
publish music

<<extend>>

user

app.facebook

publish facebook

<<extend>>

user must authenticate

<<constraint>>
<<value>>

!authentication! - the user must proceed
with login.
DESCRIPTION - To update a @song,
the user must log in to social
networking. The user must provide @id,
@password, and pass the @song data.

$publish music$ - The user can publish
the song in a social network;

#security# - The system must to provide
security of data for publish the music;

%publish music%

constraint definition

constraint type

use case extend relationshipactor

requirement

non-functional
requirement

business
service

non-functional
attribute

constraint
description

constraint name

Figure 10: π-UseCase model Example.

3.2.1.1 π-UseCase Diagram, Terms and Concepts

The π-UseCase model describes the functional aspects of the application being developed

and the restrictions that applies to each of them. These restrictions are modeled using the

concepts: (i) constraint type and (ii) non-functional requirement with its specific attribute.

A π-UseCase model is a way to represent features of an application, services, constraints,

and consumers of application functionality.

All constraints are described by stereotyped use cases. Every relationship between an use

case and a constraint is done through a dependency relationship (from UML). All use cases that

are related with constraint must be represented such as described in figure 11. A constraint is

defined by a stereotype, containing its type and name. The CONSTRAINTS are represented by a

stereotyped use case («constraint»).

Each use case is related with one or more system requirements. Moreover, these use cases

are related to non-functional requirements necessary for the proper execution of the application
6The annotation in this figure are not part of the model. They are included for didactic explanation only. The

same applies for the other figures in this section which present the same type of annotation.

3.2 Platform Independent Models 55

publish music

user must authenticate

<<constraint>>
<<value>>

constraint definition

constraint type

constraint name

dependence relationship

Figure 11: Constraint Representation.

publish music

$publish music$ - The user can publish
the song in a social network;

#security# - The system must to provide
security of data for publish the music;

%publish music%

use case
actor

requirement

non-functional
requirement

business
service

user

Figure 12: Non-functional Requirement Representation.

function. Similarly, the function described by an case of use can be part of a business service

(in the case of service remote calls). These information to a specific use case may be described

through comments as described in figure 12. All these information must be associated with the

use case and its constraints.

user must authenticate

<<constraint>>
<<value>>

!authentication! - the user must proceed
with login.
DESCRIPTION - To update a @song,
the user must log in to social
networking. The user must provide @id,
@password, and pass the @song data.

constraint definition

constraint type

non-functional
attribute

constraint
description

constraint name

Figure 13: Non-functional Attribute Representation.

The constraints are always related to non-functional requirements. More specifically, each

constraint describes a non-functional attribute, e.g. authentication (presented in figure 13). A

constraint consists of the constraint description and the identification of variables be verified (by

an @, for example @song), the identification of the non-functional attribute and its description.

These concepts that are described in the πSOD-M meta-model and used in π-UseCase

3.2 Platform Independent Models 56

represent the concepts we identified necessary for reliable service-based modeling.

3.2.1.2 Meta-model

The concepts modelled in the π-UseCase meta-model are: BUSINESS SERVICE, END

CONSUMER, REQUIREMENT, USE CASE, COMPOSITE USE CASE, NON-FUNCTIONAL RE-

QUIREMENT, NON-FUNCTIONAL ATTRIBUTE and CONSTRAINT. Figure 14 presents the π-

UseCase meta-model and the relationship between each concept. We highlight the elements

that represent the policy view.

In the π-UseCase an END CONSUMER is represented by an ACTOR (figure 14). An ACTOR

is related to USE CASES (from the original UML definition), while a COMPOSITE USE CASE

is a set of actions performed by the system which can be broken into different USE CASES.

BUSINESS SERVICE aggregates several USE CASES (figure 14), simply put, a service can

be expressed by one or more use cases. Notice that not always an use case will be part of a

business service. However, using our approach, we can identify in the early stages of modeling,

which use cases are related to business services.

Use Case

Extend Include

1
extension

0..*

1

addition

0..*include
0..*

1

includingCase

0..*

1

Directed Relationship

<<Kernel>>Extended Constraint

<<Kernel>>

1

1

condition

Composite Use Case

Extension Point

10..*

Redefinable Element

<<Kernel>>

Behaviored Classifier

<<BasicBehaviour>>Business Service Classifier Actor

1

1..*

Requirement

nome : String
description : String

represents

1

1..*

End Consumer

1..*

1..*

Constraint

cType : Constraint Type
description : String
name : String

Non-Functional Attibute

name : String
description : String

Non-Functional Requirement

1..*

0..* 1..*

Constraint Type

BUSINESS : Integer
VALUE : Integer
EXCEPTIONALBEHAVIOUR : Integer

1

0..*

Package
0..*

1..*

1
1

1

0..*

1 1..*

1..*

Policy View Concepts

Figure 14: π-UseCase Concepts (Meta-model).

The BUSINESS COLLABORATORS concept are represented in the π-UseCase model

through PACKAGES. A BUSINESS COLLABORATOR represents an external service or a sys-

3.2 Platform Independent Models 57

tem that interact with the application that are being modelled. Each BUSINESS COLLABORA-

TORS combines the features described in each PACKAGE. Thus, the services functions can be

specified being grouped into packages (figure 15).

app.twitter

publish twitter
publish music

<<extend>>

user

app.facebook

publish facebook

<<extend>>

business collaborator/
package

service function

Figure 15: Business Collaborator / Package Representation.

The NON-FUNCTIONAL REQUIREMENT and NON-FUNCTIONAL ATTRIBUTE concepts

are represented as part of description of USE CASES and CONSTRAINTS. For model this con-

cepts the designer will use special tags to represent them (figures 12 ans 13).

An USE CASE may have several CONSTRAINTS. Each CONSTRAINT has its name, de-

scription, and which ones should be checked during the execution of the application. Each

CONSTRAINT is represented as a stereotyped («constraint») use case. A restriction may

be a restriction on data (VALUE CONSTRAINT), represented as the stereotype «value» (figure

11); or on business rules (Business Constraint), represented as the stereotype «business»;

and EXCEPTIONAL BEHAVIOUR constraints, which represents constraint violation for the use

case execution, represented as the stereotype «exceptional_behaviour».

The π-UseCase meta-model also represents the use of include and extend relations among

the different use cases identified. The semantics are the same as in the traditional UML use case

model. An include relation specifies the existence of a flow of events in which the base use case

includes the behaviour of the other use case and an extend relation specifies that the behaviour

of a base use case can be optionally extended by the behaviour of another use case.

3.2.1.3 UML Concepts Representation

Once described the meaning of each π-UseCase concept in the meta-model, it is important

to know how specific models can be created from this general representation. Every π-UseCase

model created to describe application features must follow the meta-model concepts. The π-

UseCase meta-model describes what can be specified in each model.

3.2 Platform Independent Models 58

use_case
Use Case

Actor

actor

Meta-model Concept UML Representation

End Consumer

constraint name

<<constratint>>

and

Package
package

Constraint

! non-functional-attribute ! - DESCRIPTION

Non-Functional Attribute

Constraint Type

constraint name

<<constratint>>
<<constraint_type>>

% business _service % - DESCRIPTION

Business Service

$ requirement $ - DESCRIPTION

Requirement

non-functional_requirement # -
DESCRIPTION

Non-Functional Requirement

Figure 16: π-UseCase Concepts Represented as UML Elements.

The π-UseCase concepts are modelled as described in figure 16 and the relationship be-

tween these concepts is also applied to the UML elements. Figures 17 and 18 detail how to

represent the relationship between the meta-model concepts in a π-UseCase model.

The loop arrow symbol (í) is used in figures 17 and 18 to relate the concepts of the meta-

model and the UML elements used in the representation of the concepts.

means how the π-UseCase meta-model concepts (left side) can be modelled as an UML

model (right side).

An ACTOR is an abstraction of the END COSTUMER concept, presented in πSOD-M meta-

model. Thus, it is possible to associate several ACTORS with an USE CASE and many USE

3.2 Platform Independent Models 59

use_case

actor

Classifier Actor

Use Case
End Consumer

1

1..* 1

1..*

(a) Use Case and Actor Model

use_case

use_case B

<<extend>>

use_case C

<<extend>>

Use Case

Extend

0..*

1 1

0..*

(b) Extended Use Case Model

Use Case

Include

0..*

1 1

0..*

use_case

use_case B use_case C

<<include>> <<include>>

(c) Include Use Case Model

Figure 17: π-UseCase Model Representation

CASES with an ACTOR (END COSTUMER). The original use case meta-model defines that

CLASSIFIER is a superclass of ACTOR. A CLASSIFIER is a category of UML elements that have

some common features, such as attributes or methods. The relationship between these entities is

many to many (figure 17a). An USE CASE can also be related with an EXTENDS or an INCLUDE

entity in the π-UseCase model, and this model preserve the original UML standard semantic.

3.2 Platform Independent Models 60

package

use_case

actor

Classifier

ActorUse Case

1

1..* 1

1..*

Package

1 0..*

1

1..*

1

0..*

(a) Package Model

use_case

$requirement$ - ...

#non-functional_requerement# - ...

%business_service% - ...

Use Case Requirement

Non-Functional Requirement

1..* 1

Business Service

1

1..*

(b) Use Case, Requirement and Non-Functional Requirement Model

Use Case Constraint

Non-Functional AttributeConstraint Type

0..*

1..*

1 0..*

constraint

<<constraint>>
<<constraint_type>>

!non-functional-attribute! - ...

DESCRIPTION- ... @value ... @login ...
... @password

(c) Constraint Model

Figure 18: π-UseCase Model Representation (2)

EXTENDS and INCLUDE are types of stereotyped dependence relationships («extend» and

«include» in figures 17b and 17c, respectively). The EXTENDS relationship can modify the

behaviour of the base use case. Suppose someone wants to close a bank account, however still

have some money there. Before closing the account, there should be a withdrawal or transfer of

money in this account, so that the balance is zero. This process is modelled with a EXTENDS

3.2 Platform Independent Models 61

dependence between the close account use case and the withdrawal money and transfer money

use cases. The INCLUDE relationship includes the steps from one use case into another.

A PACKAGE clause and its relationship with USE CASE and ACTOR can be modelled in

π-UseCase model. The original semantics was preserved and it is possible have different levels

of packages, due to PACKAGE entity auto reference, one to many. Each package can have many

use cases and actors (18a).

The REQUIREMENTS, NON-FUNCTIONAL REQUIREMENTS and BUSINESS SERVICES

must be associated with a specific USE CASE. At this level of modelling, these information

are represented as comment tags, they are: $. . . $ for REQUIREMENTS, # . . . # for NON-

FUNCTIONAL REQUIREMENTS, and % . . . % for BUSINESS SERVICE. A BUSINESS SERVICE

is a aggregation of USE CASE, and each USE CASE must be related with a system requirement

REQUIREMENTS. Figure 18b presents the relationship of this concepts, and how represent this

information in UML.

All USE CASES may also be associated with a set of CONSTRAINTS. A CONSTRAINT is

a stereotyped use case that describes the CONSTRAINT TYPE and its restriction. Additional

information is given by comment tags, ! . . . ! for NON-FUNCTIONAL ATTRIBUTE, and @

. . . @ for candidate variables or values that must be checked during the system execution, as

presented in figure 18c. The relationship between USE CASES and CONSTRAINT is made by a

non-stereotyped dependence arrow.

3.2.1.4 To Publish Music Use Case

Considering the example scenario, the “publish music” use case can update the Facebook

or Twitter user status. Therefore, it is necessary to perform a social network authentication with

the user’s data. Each social network uses different services and different forms of authentica-

tion. The “authentication” constraint is required to update a music status. The restriction is

stereotyped as a «value» constraint, because the user’s id and password are verified. The

NON-FUNCTIONAL REQUIREMENT that is being modelled for this use case is Security, be-

cause, considering table 4, “authentication” is a NON-FUNCTIONAL ATTRIBUTE of Security.

These information will be refined and detailed in the following phases.

Figure 19 shows the model represented in figure 7 for the buy music, download music, listen

music and pay use cases. The model was designed considering the meta-model representation

detailed in figures 17 and 18, and also the π-UseCase meta-model. Notice that from π-UseCase

concepts is possible to describe the actors, use cases, constraints, non-functional requirements

3.2 Platform Independent Models 62

and their attributes. For example, the pay use case (figure 19), there are extended use cases,

constraints, packages, non-functional requirements and non-functional attributes related to this

function. The modeling was based on the described representation of the π-UseCase meta-

model. The extended use case representation presented in figure 17b is used in the model

to expressed the pay by PayPal and pay by card extended use cases. The include use case

representation presented in figure 17c is used in the model to express the included relation of

buy music and pay use cases. The package representation presented in figure 18a is expressed

in the example by the app.bank package and the pay use case relation. The representation

described in figures 18b and 18c is expressed by the pay use case properties’ description. The

combination of a π-UseCase meta-model’s entities means that all entities presented in figures

10 and 19 can be modelled to express the quality requirements.

The use cases that have restrictions are “buy music” and “pay”. The process of buying

a song requires the user’s private data for a Spotify account, and also a secure connection,

represented as «value» and «business» constraint, respectively. For payment, the user

must provide the data of payment card or PayPal account login and password, represented as

«value» stereotype . Other restriction is that the minimum payment value is 2 euros. The

NON-FUNCTIONAL REQUIREMENT that are being modelled for this use cases are Security and

Reliability. The specific NON-FUNCTIONAL ATTRIBUTES for this restriction is Transaction

and Confidentiality (see figure 19).

After modeling the system services and features, and its restrictions, it is necessary to

model the services process and its execution restrictions. For this, the methodology uses a

service process diagram to describe the services execution and contracts. Next we present the

π-ServiceProcess model. This model refines the application constraints through the workflow

model.

3.2.2 π-ServiceProcess Model

A Service Process is a collection of related, structured activities that produce a specific

service or product for a particular customer. It can be visualized with a flowchart as a sequence

of activities with interleaving decision points. A set of linked activities that take an input and

transform it to create an output. Ideally, the transformation that occurs in the process should

add value to the input and create an output that is more useful and effective. To represent these

properties our methodology proposes the π-ServiceProcess model.

The non-functional requirements are specified in this model using the concepts of contracts

3.2 Platform Independent Models 63

app

app.bank

pay by cardpay by paypal

pay

<<extend>>
<<extend>>

app.spotify

listen music

spotify

receivePaiment

download music

buy music

<<include>> <<include>>user

have/create a Spotify account

<<constraint>>
<<value>>

!privacy and confidentiability! - the user may
have the privacy informations preserved.

DESCRIPTION - The user must provide
a Spotivy @login and @password.

security http

<<constraint>>
<<business>>

security transaction

<<constraint>>
<<value>>

!transaction! - the payment must be in a
security transaction;

DESCRIPTION - The minimum
@payment_value is 2 euros. It needs the
@card or @paypal @user_data, so that the
payment is made.

$buy music$ - The user have to pay before
download the music;

#security# - The system must to provide
security connection for payment;

%payment%

!connection! - For buy a music, the
system must provide a security connection;

DESCRIPTION - It is necessary send a
notification to the user if something
wrong happened, after the execution;

$listen music$ - The user can listen a
music if he wants;

#performance# - The system
must to provide a good performance;

%listen music%

$buy music$ - The user have to buy the music
before download it;

#reliability and security# - The system must to
provide reliability and user privacy data;

%payment%

$download$ - The user can download a
music if he wants;

#reliability and security# - The system
must to provide reliability and user privacy
data;

%download%

Figure 19: Use Case Model With Constraint Definition - Scenario Example Refined.

and assertions over functions. These contracts may represent the control of privacy information,

performance, reliability, and so on.

3.2.2.1 π-ServiceProcess Diagram, Terms and Concepts

Systems that use third party services add value to the application because the services are

already available and validated. If the services do not offer any quality warranty, these quality

requirements are the responsibility of the application designer. Thus, the contracts of services

will be modeled as a wrapper which describes restrictions on input and output information on

particular functions or a set of them.

πSOD-M proposes modeling Service Process diagram (π-ServiceProcess model), that is

defined considering the functional and non-functional requirements designed in a π-UseCase

3.2 Platform Independent Models 64

model.

The π-ServiceProcess model represents the service processes and its contracts. It models

the set of system activities and describe contracts for each activity or the process as a whole.

Each service identified in the previous model (π-UseCase) is mapped to an action.

<<assertion>>
verify user data

<<assertion>>
verify payment data

and value
buy music

$pre-condition$

login == ?? &&
password == ?? #

$pre-condition$

bankBalance > ?payment_value &&
cardName != null &&
cardNumber != null &&
isValid(cardNumber) #

assertion
stereotype

assertion
name action

expression

assertion
property

Figure 20: Assertion Representation.

A π-ServiceProcess model represents the system process, actions, assertions and contracts.

This model describes the workflow for the modelled application behaviour. The behaviour is

represented by each action and the restrictions by the assertion description. All assertions are

described by stereotyped actions.

<<assertion>>
verify user data

<<assertion>>
verify payment data

and value
buy music

<<assertion>>
payment confirmation

<<assertion>>
authorization to download

$post-condition$

(paymentOk == true) ==>
numVaucher == ?? #

$ post-condition$
(authozationOk == true) ==>
messageUser == '???' #

buy music contract /
(set of assertion for an
action)

assertion
property

Figure 21: Contract Representation.

Figures 20 and 21 present the assertion and contract representation in this model. An As-

sertion is represented in UML, and a set of assertions forms a contract. Assertions describe

restrictions on a single action, but actions may have different restrictions. Figure 20 shows

how an assertion is modelled, with their property type, name and acceptable values (expressed

through expressions), while figure 21 shows how this set of assertions form a single action

contract.

3.2 Platform Independent Models 65

<<assertion>>
verify song data

format

<<assertion>>
check user and

password
publish twitter

<<assertion>>
check spotify

user data
publish facebook

<<assertion>>
send notification

publish? yes, twitter

publish? yes, facebook

$pre-condition$

#songFormat == ??#

$pre-condition$

name == ?? &&
password == ??#

$pre-condition$

spotifyLogin == facebookLogin &&
spotifyPassw == facebookPassw #

$post-condition$

notification == 'published'

Node /
Fork Node

Node /
Join Node

Node /
Final Node

Action

Action

Activity Edge /
Control Flow

Activity Edge /
Object Flowpublish twitter

Contract (2 assertions)

publish facebook
Contract (2 assertions)

Figure 22: Node, Activity Edge and Contract Representation.

Figure 22 shows the representation of the general concepts of this model, nodes, activity

edges, actions and contracts. This figure also refines the information for publish a song in a

social network.

3.2.2.2 Meta-model

Considering the πSOD-M concepts (figure 6), the π-ServiceProcess meta-model (figure

23) describes the system functionalities to be modelled in a contract based service process.

The πSOD-M concepts modelled in the π-ServiceProcess meta-model are: CONTRACT, AS-

SERTION, EXCEPTIONAL BEHAVIOUR, ACTIVITY, SERVICE ACTIVITY, ACTION and CON-

STRAINT.

Restrictions on activities and services are not described in the original SOD-M proposal.

The concepts of CONTRACT, ASSERTION and EXCEPTIONAL BEHAVIOUR make it possible

to model restrictions on services execution, ensuring greater reliability application. Entities

highlighted in π-ServiceProcess meta-model (figure 23) are the difference from the original

SOD-M service process model.

A specific π-ServiceProcess model shows the set of logically related activities that need

to be performed in a service-based system. So, the activities of this model represent a be-

haviour that is part of the system workflow. πSOD-M proposes representing this model using

3.2 Platform Independent Models 66

Service Activity

Action
Contract

name : String

Constraint

name : String
description : String
cType : ConstraintType

Assertion Property

PRECONDITION : Integer
POSTCONDITION : Integer
TIMERESTRICTION : Integer

Assertion

aProperty : Assertion Property
name : String
minValue : Object
maxValue : Object
description : String
type : Object

Exceptional Behaviour

call : Object
condition : String

1

0..*

1..*

1

1

0..1

1..*

1..*

0..*

Activity

Activity Node
0..*

1

0..1

1..*

Activity Edge1
souce

1..*
outcoming

1

1..*

Control Flow Object Flow

Executable Node Object Node Control Node

Initial NodeFinal Node Fork Node Join NodeActivity Final Node

1
target 1..*

incoming

Figure 23: π-ServiceProcess Concepts (Meta-model).

the UML activity diagram, with an extension for CONTRACT design, which encapsulates sev-

eral CONSTRAINTS modelled in π-UseCase model. In π-ServiceProcess, three main features

are represented: (i) service process, (ii) service activity and (iii) activity contract. The service

process is represented by the model itself. A service activity represents a behaviour that is

part of the execution flow, and is identified in this model as an ACTION. A activity contract

represents the NON-FUNCTIONAL REQUIREMENT behaviour that is also part of the execution

flow of a service, and is identified in this model as an stereotyped activity («assertion»).

All ASSERTION related with an ACTION compose a CONTRACT. From the CONTRACT and

ASSERTION concepts is possible to define the interface specifications for each activity service,

such as pre-conditions and post-conditions.

3.2.2.3 UML Concepts Representation

To formalize the concept of CONTRACT by rules, we use the definition of ASSERTION

(figure 24a). An ASSERTION is represented by a stereotyped action («assertion»), and

ASSERTION PROPERTIES through comments. An ASSERTION may be a pre-condition, post-

condition or a time restriction over the service execution (ASSERTION PROPERTY). These

information are represented as the comment tags $. . . $. The assertion predicate is modelled as

. . . # tag. Figure 24a shows how these concepts are represented in UML.

3.2 Platform Independent Models 67

Assertion

Assertion Property

<<assertion>>
name

$assertion property$

... predicate ...#

DESCRIPTION - ...

(a) Assertion Model

Contract

<<assertion>>
name

<<assertion>>
name

<<assertion>>
name

<<assertion>>
name

action

(b) Contract Model

Exceptional Behaviour

<<exceptional behaviour>>
name

!action!

(not) condition

DESCRIPTION -

(c) Exceptional Behaviour Model

Action
action

(d) Action Model

Service Activity action action

action

(e) Service Activity Model

Figure 24: π-ServiceProcess Model Representation

A set of ASSERTION composes a service CONTRACT related with an ACTION (figure 24b).

An Assertion describes a value (value constraint from π-UseCase model) restriction, setting

maximum and minimum limits, or business restrictions, setting conditions for function calls

((business constraint from π-UseCase model)). The business restrictions are defined over ser-

vice functions. Every service contract may have an exception behaviour, if a constraint is not

obeyed. For example, if the user card information are incorrect, the service is called again until

the limit of 3 calls, otherwise, execution continues normally. In this case, the exception is the

new call to the same service. For this, we also use the concept of EXCEPTIONAL BEHAVIOUR

(figure 24c). A EXCEPTIONAL BEHAVIOUR is also a stereotyped action («exceptional

behaviour») and its properties are modelled through comment tags. The condition to be

verified is modelled as # . . . # tag. Figure 24a shows how these concepts are represented in

UML. If the condition is false, the predicate becomes true, because of the expression negation

3.2 Platform Independent Models 68

Control Node

Initial Node Final Node Fork Node Join Node

Activity Node

Final Node
Initial Node

Fork Node

Join Node

(a) Control Nodes Model

Activity Edge

Control Flow

Activity Node

1

0..*

1 1..*

1 1..*

Control Flow

Control Flow

Control Flow

Control Flow

Control Flow

action

action

action

action

action

(b) Activity Edge - Control Flow Model

Activity Edge

Object Flow

Activity Node

1

0..*

1 1..*

1 1..*

Object Flow

action A

action B

(c) Activity Edge - Control Object Model

Figure 25: π-ServiceProcess Model Representation (2)

(not). Thus the action is performed. The action to be performed is modelled as ! . . . ! tag.

The ACTION concept is modelled in UML as the action component (figure 24d), and a SER-

VICE ACTIVITY represents a set of ACTION (figure 24e). We highlight the models in figures

24a, 24b and 24c, because they present how an assertion action, a contract, and a exceptional

behaviour can be designed.

Figure25 shows the UML representation of the CONTROL NODES and ACTIVITY EDGES

concepts in π-ServiceProcess meta-model. This representation follows the original UML spec-

3.2 Platform Independent Models 69

ification. Figure 25a presents the CONTROL NODES and how its can be applied in a real mod-

elling, and finally figures 25b and 25c show the ACTIVITY EDGES and its application.

3.2.2.4 To Publish Music Process

Considering the example scenario, the contract based process of activities execution is

shown in figure 26. The activities flow in figure 8 presents any restriction. Thus, it is nec-

essary to represent each CONSTRAINT modelled in a more representative CONTRACT based

service activity diagram.

Based on the concepts described and its representation in UML, we describe how to model

a service process using the assertions as restrictions for each action. The difference of the

model shown in figure 8 and the figure 26 is that restrictions are added on the actions in order

to describe quality requirements.

Each USE CASE modelled in the use case diagram are refined into ACTIONS in the ser-

vice process diagram. The set of CONSTRAINTS are transformed into ASSERTIONS and CON-

TRACTS. The buy music and publish music services (update Twitter and Facebook) has pre- and

post-conditions assertions that are composed into a contract for each service. The buy music

pre-conditions are: (i) verify if the User data are correct; (ii) if the User is already logged in

Spotify; (iii) if bank account information are correct and; (iv) if there is enough money to make

the payment. As post-condition, it ensures the complete transaction and verify if a notification

were sent to the user and Spotify, about the payment authorization. There are four assertions

for the buy music action, and each assertion has been detailed with the assertion property and

predicate that must be verified. To update services, depending of each service, there may be

different restrictions. As an example, a new verification of user data and message format is

appropriate (maximum 140 characters), in case of Twitter. In the case of Facebook, it is re-

quired that the user is already logged on Spotify and these data are the same as Facebook. As

post-condition, it ensures that the Facebook service send a notification of success. To update

Twitter a pre-condition is required, while to update Facebook is necessary a pre-condition and a

confirmation notice is modelled as post-condition. As a pre-condition for “twitter update” it is

necessary that (i) the music format be correct and (ii) the twitter login and password be correct

for the update.

After modeling of service process, its features, and the service contracts, it is necessary to

model the service composition process and its policies. πSOD-M uses a service composition

diagram to describe the third party services and each policy allied to each composition. In the

3.2 Platform Independent Models 70

listen music

buy music

download music

search music select music

buy? no

<<assertion>>
verify user data

<<assertion>>
verify payment data

and check value

<<assertion>>
payment confirmation

<<assertion>>
authorization to

download

$pre-condition$

nameSpotify == ?? &&
passwordSpotify == ?? #

$pre-condition$
(bankBalance > ?value) &&
cardName == ?? &&
cardNumber == ?? &&
cardValid >= ??#

$post-condition$
(paymentOk == true) ==>
numVaucher == ?? #

$ post-condition$
(authozationOk == true) ==>
messageUser == 'download ok' #

buy? yes

<<assertion>>
verify song data

format

<<assertion>>
check user and

password
publish twitter

<<assertion>>
check spotify

user data
publish facebook

<<assertion>>
send notification

publish? yes, twitter

publish? yes, facebook

$pre-condition$

#songFormat == ??#

$pre-condition$

name == ?? &&
password == ??#

$pre-condition$

spotifyLogin == facebookLogin &&
spotifyPassw == facebookPassw #

$post-condition$

notification == 'published'

Figure 26: Service Process Model with Contract Definition - Complete Example.

next section we present this model and their respective policy concept.

3.2.3 π-ServiceComposition Model

The service composition model represents the workflow needed to execute a service or a

set of them, but in a more detailed way, i.e., identifying those entities that collaborate with the

service process workflow, performing services that are necessary to execute the actions (in the

business collaborators). Considering the workflow described in the π-ServiceProcess diagram,

this model identifies the services and functions that correspond to each action in the business

process.

Each action describes a fundamental behaviour unit that is part of a service activity and

3.2 Platform Independent Models 71

represents some behaviour in the system being modelled. The π-ServiceComposition model

refines the concepts described in the π-ServiceProcess model, grouping contracts into policy

(figure 23).

3.2.3.1 π-ServiceComposition Diagram, Terms and Concepts

A π-ServiceComposition model represents service compositions and their related business

collaborators (external services), policies, rules associated with a policy and the whole applica-

tion process and functionalities.

This model is essential for the organization and modeling of services and their location. We

refine the representation of packages described in the π-UseCase model into business collabo-

rator. The set of use cases described in a package (π-UseCase model) will be represented by an

external service functions.

Figure 27 shows how to relate the actions described in the π-ServiceProcess model with

services of a specific business collaborator. A service is represented by an stereotyped action

(«service»), and their connection is made by an edge (Object Flow). Thus each action described

in the application workflow may be replaced by a service or a composition of them. If there

is no relationship between the actions described in the application workflow (External false

business collaborator) with external services, means that function is native to the application

being developed.

The main properties described in the π-ServiceComposition model for the “to publish mu-

sic” example are: (i) description of workflow application (External false), where the business

collaborator Application points out that it is not an external workflow, (ii) the external services

(business collaborators) and (iii) the application policies. Figures 27 and 28 presents how to

model the π-ServiceComposition concepts (figure 29).

Figure 27 shows how each action is connected to an external service (through Activity Edge

- Object Flow), and how to define the description of each business process, while Figure 28

shows each policy property and how it should be presented in the model.

Each business collaborator encompasses a set of services that can be performed by the

application. These external services are used by the application must be described in this model,

and not in the π-ServiceProcess model. The contracts described for each action are refined into

policies, considering the non-functional requirement of each contract.

3.2 Platform Independent Models 72

listen music

buy music

search music select music

buy? yes

buy? no

<<assertion>>
verify user data

<<assertion>>
verify payment data

and check value

<<External false>>
Application

<<External true>>
Bank <<service>>

pay
<<service>>

send confirmation

Business Collaborator

Service
Function

Original ProcessisExternal attribute

Activity Edge /
Object Flow

Figure 27: Business Collaborator Representation.

3.2.3.2 Meta-model

Considering the πSOD-M concepts (figure 6), the π-ServiceComposition meta-model (fig-

ure 29) describes the service compositions to be modelled and the policies related with each ser-

vice composition. The πSOD-M concepts modelled in the π-ServiceComposition meta-model

are: POLICY, RULE, VARIABLE, EXCEPTIONAL BEHAVIOUR, SERVICE ACTIVITY, ACTION,

BUSINESS COLLABORATOR and NON-FUNCTIONAL REQUIREMENT.

πSOD-M proposes representing this model using the a extension of UML activity diagram

technique. This extension describes the relationship of each ACTION for the respective SER-

VICE ACTIVITIES. Thus, as shown in figure 29, the meta-model includes typical modeling ele-

ments of the activity diagram such as ACTIVITY NODES, INITIAL NODES and FINAL NODES,

DECISION NODES, etc., along with new elements defined by πSOD-M such as BUSINESS

COLLABORATOR, SERVICE ACTIVITY and ACTION (see figures 29 and 31).

All π-ServiceComposition models describe the set of services and its relation with the ser-

vice process and its activities that need to be performed. So, the external services are represented

3.2 Platform Independent Models 73

<<External true>>
Bank <<service>>

pay
<<service>>

send confirmation

<<Policy>>
$trasactionPolicy$
% Security %

Rule R1{
@PRE@

event.activityName == scope.name AND
userName == ?? AND passW == ?? AND
valuePayment < userBalance#

! Scope.httpRequest.Credentials =
newNetworkCredential(username,
password) AND
Scope.httpRequest.Payment =
newNetworkPay(cardName, cardNumber, value)!
} Rule R2{
@POST@

! sendNotification('payment ok') AND
sendNotification('download authorized')!
}

Business Collaborator
Service
Function

Policy
definition

Policy stereotype

Rule

Policy name
attribute

Non-Functional
Requirement

Event Type
attribute

Condition
attribute

Action
attribute

Figure 28: Policy Representation.

by the BUSINESS COLLABORATOR concept. All service composition may specify a POLICY

as restriction. A POLICY is the set of CONTRACTS related with the service process expressed

in the previous model (π-ServiceProcess).

Policy over service activities and business collaborators are not described in the original

SOD-M method. The rule concept grouped into policy and exceptional behaviour make possible

to model restrictions on service composition. Entities highlighted in the π-ServiceComposition

(figure 29) meta-model are the difference from the original SOD-M service composition model.

A BUSINESS COLLABORATOR element represents those entities that collaborate in the

business processes by performing some of the required actions. They are graphically presented

as a partition in the activity diagram. A collaborator can be either internal or external to the

system being modelled. When the collaborator of the business is external to the system, the

attribute IsExternal of the collaborator is set to true.

ACTION, a kind of EXECUTABLE NODE, are represented in the model as an activity. Each

action identified in the model describes a fundamental behaviour unit which represents some

type of transformation or processing in the system being modelled. There are two types of

actions: i) a Web Service (attribute Type is WS); and ii) a simple operation that is not supported

by a Web Service, called an ACTIVITY OPERATION (attribute Type is AOP).

3.2 Platform Independent Models 74

Service Activity

Action

1..*

Policy

name : String

Non-Functional Requirement

name : String
description : String

Event Type

PRE : Integer
POST : Integer
TIME : Integer

Rule

name : String
condition : String
action : Action
event : Event Type

Variable

name : String
type : String

1
0..*

1..*

0..*1..*

Activity Activity Node0..*

1

0..1

1..*

Activity Edge
1
souce

1..*
outcoming

1

1..*

Control Flow Object Flow

Executable Node Object Node Control Node

Initial Node Final Node Fork Node Join Node

Activity Final Node

1
target 1..*

incoming

Action Type

WS : Integer
AOP : Integer

hasAssociated

1

0..*

Action Partition Redifined Element

1

1..*

1

1..* 0..*

1..*

from Kernel
(stereotype)

Business Colaborator

performs

1

0..*

Figure 29: π-ServiceComposition Concepts (Meta-model.

The SERVICE ACTIVITY element is a composed activity that must be carried out as part of

a business service and is composed of one or more executable nodes.

The policy based service composition model refines the concept contract of service process

model. A policy assemble a set of contracts and can be applied to more than one activity. The

restriction on service composition model is marked with the stereotype «policy».

An Policy groups a set of rules. It describes global variables and operations that can be

shared by the rules and that can be used for expressing their Event and Condition parts. An

Policy is associated to the elements BUSINESS COLLABORATOR, SERVICE ACTIVITY and,

ACTION of the π-ServiceComposition meta-model (see figure 29) .

Instead of programming different protocols within the application logic, we propose to

include the modeling of non-functional requirements like transactional behaviour, security and

adaptability at the early stages of the services’ composition engineering process.

3.2 Platform Independent Models 75

3.2.3.3 UML Concepts Representation

The representation described in figure 30 presents how the user of the methodology’s user

apply the concepts described in the π-ServiceComposition meta-model. In the specific case

of π-ServiceComposition meta-model, those concepts will be used to describe how BUSINESS

COLLABORATOR, ACTION, SERVICE ACTIVITY, POLICY AND RULES can be specified. Fig-

ure 30 also describes how the proposed concepts can be modelled in real system development

cases. All π-ServiceComposition based models (presented in figure 30) must follow the meta-

model description and its constraints.

Figure 30a presents the representation for the relation between ACTION and BUSINESS

COLLABORATOR. As a SERVICE ACTIVITY are modelled as a set of ACTIONS (service func-

tions), they are represented as «External true» BUSINESS COLLABORATOR. It means that

an external service is invoked by the application’s function. Each BUSINESS COLLABORA-

TOR can represents an external service. Figure 30b presents the representation for the relation

between ACTION, POLICY and RULE. Figure 30c presents the representation of the original

Service Process associated to the «External false» BUSINESS COLLABORATOR and figure 30d

presents how to associate the Service Process’ ACTION with real services.

Notice that all πServiceComposition meta-model concepts can be represented in the real

application model, as we illustrate next using the scenario example.

3.2.3.4 Publish Music Service Composition

To illustrate the use of the π-ServiceComposition model we used it for defining the policy

based composition model of the example scenario (see figure 31). There are four external

BUSINESS COLLABORATORS, they are: Bank, Spotify, Twitter and Facebook. The model also

shows the business process of the application that consists of six SERVICE ACTIVITIES (see

figure 8): search music, select music, buy music, download music, listen music and publish

music. Note that the action publish music of the application calls the actions of two service

collaborators namely Facebook and Twitter, and the action buy music of the application calls

two actions of the service collaborator Bank.

The Facebook and Twitter services require authentication protocols in order to execute

methods that will read and update the users’ space. A call to such services must be part of

the authentication protocol required by these services. In this example we associate two au-

thentication policies, one for the open authentication protocol, represented by the class Twitter

AuthPolicy that will be associated to the activity UpdateTwitter (see figure 31). In the same way,

3.2 Platform Independent Models 76

<<External true>>
service_name

<<service>>
method_name

Service ActivityBusiness Colaborator

Action

1..*
performs

1

1

(a) Service Activity and Business Collaborator Model

<<service>>
method_name

<<Policy>>
$ policy_name $
% non-functional requirement %

Rule R_1 {
@ eventType @
condition#
! action !
}

Rule R_n {
@ eventType @
condition#
! action !
}

Policy

name : String

Rule

name : String
condition : String
action : Action
event : Event Type

1..*

Variable

name : String
type : String

1..*

0..*

Service Activity
hasAssociated

1

0..*

(b) Policy and Rule Model

<<External false>>
name

action_a

action_b

action_c

Service Activity

Business Colaborator Action

1..*performs

1 1..*

Action Partition
1

1..*

Activity

(c) Business Collaborator - External false Model

<<External false>>
name

action_a

action_b

action_c

<<External true>>
service_name

<<service>>
method_name

<<service>>
method_name

Service Activity

Business Colaborator

Action
1..*

performs

1

1..*

Activity Node

0..*

1

Executable Node

(d) Business Collaborator - External true Model

Figure 30: π-ServiceComposition Representation Models

the class Facebook HTTPAuthPolicy, for the http authentication protocol will be associated to

the activity UpdateFacebook. OAuth implements the open authentication protocol. As shown

in figure 31, the Policy has a variable Token that will be used to store the authentication token

provided by the service. This variable is imported through the library Auth.Token. The Policy

defines two rules, both can be triggered by events of type ActivityPrepared: (i) if no token has

been associated to the variable token, stated in by the condition of rule R1, then a token is ob-

3.2 Platform Independent Models 77

Figure 31: Service Composition Model with Policy Definition - Spotify Music Service.

tained (action part of R1); (ii) if the token has expired, stated in the condition of rule R2, then

it is renewed (action part of R2). Note that the code in the actions profits from the imported

Auth.Token for transparently obtaining or renewing a token from a third party.

HTTP-Auth implements the HTTP-Auth protocol. As shown in figure 31, the Policy im-

ports an http protocol library and it has two variables username and password. The event of

type ActivityPrepared is the triggering event of the rule R1. On the notification of an event of

that type, a credential is obtained using the username and password values. The object storing

the credential is associated to the scope, i.e., the activity that will then use it for executing the

method call.

Thanks to rules and policies it is possible to model and associate non-functional properties

to services’ compositions and then generate the code. For example, the atomic integration of

information retrieved from different social network services, automatic generation of an inte-

grated view of the operations executed in different social networks or for providing security in

the communication channel when the payment service is called.

Back to the definition process of a SIS, once the Policy based services’ composition model

has been defined, then it can be transformed into a model (i.e., π-PEWS model, Section 3.3)

that can support then executable code generation.

3.3 π-PEWS Platform Specific Models 78

3.3 π-PEWS Platform Specific Models

Platform specific models (PSMs) are used to combine the specifications in the PIM with

the details of the chosen implementation platform. PSM models are used to implement the

system (generating code automatically), and they must provide all information needed to build

the system and its components. A PSM model can also run as a model to be used for further

refinements by others PSM models.

πSOD-M platform model proposed at PSM level combines specific details of the service-

based platforms. We use a π-PEWS language meta-model for representing the specification of

a service composition on the language. A model can be then used to generate the corresponding

code. π-PEWS [80] is a extension of the PEWS language that provides constructs for specifying

policies for services through contracts clauses (see Appendix C).

3.3.1 π-PEWS Specification, Terms and Concepts

A π-PEWS model represents the system specification. This model is essential for the sys-

tem specification, detailing the services, compositions and system’s constraints. A π-PEWS

specification describes the behavioural aspects of the system.

We extended the PEWS language [80] to support the notion policy through contracts def-

initions (see figure 33 and appendix C). The extension does not modify the syntax of existing

PEWS programs, but complements it by specifying (non-functional) restrictions in a separate

block. This feature is intended to enhance reusability and allows the programmer to adequate

a program to specific requirements of the application being developed. This means that the

program developer can reuse the control part of the program and add application-specific re-

quirements as contract or time constraints.

Behavioural web service interface languages describe not only the input/output interface of

a web service but also the expected behaviour of its components. This behaviour can be speci-

fied as a workflow, defining the order in which the components of a service will be executed, so

that the workflow specifies the functional behaviour of the compound web service (figures 32

and 33).

Additionally, we can specify non-functional behaviour for a service; i.e, to impose some

additional restrictions which are separated from the application’s workflow. This can be done by

using the notion of contract to be added to each particular instantiation of the PEWS program.

The result of this is to allow a given service (workflow) to have different restrictions in different

3.3 π-PEWS Platform Specific Models 79

// ----- pews specification - publish_music.pews ------

ns bank = "http:\\http://aws.amazon.com/fps/"
ns spotify = "http://ws.spotify.com/"
ns twitter = "https://dev.twitter.com/docs/api/"
ns facebook = "https://api.facebook.com/method/"

alias searchMusic = portType/search/1/track in spotify
alias selectMusic = portType/lookup/1/trackdetail in spotify
alias downloadMusic = portType/lookup/1/downloadtrack in spotify
alias listenMusic = portType/lookup/1/executetrack in spotify
alias pay = portType/proceedPayment in bank
alias sendConfirmation = portType/confirmation in bank
alias publishTwitter = portType/oauth/authenticate in twitter
alias publishFacebook = portType/lookup/1/downloadtrack in facebook

def buyToken = ?
def publishToken = ?

service buyMusic = pay . sendConfirmation

searchMusic . selectMusic .
 ([buyToken=1](buyMusic . downloadMusic . listenMusic) +
 [buyToken=0]listenMusic) .
 ([publishToken='twitter']publishTwitter +
 [publishToken='facebook']publishFacebook)

namespace

operation

pi-pews
 specification

variable
composite operation

path

path/
main process

Figure 32: π-PEWS Specification Representation.

contexts.

The policy model proposed here follows the main ideas presented in [42, 81], where con-

tracts are added to a given composition, as a separate concern. The properties defined by a

contract should be verified at runtime. Recovery actions, defined by the contract, are to be

performed in case of failure of the contract’s conditions. Recovery actions are defined by the

contract itself.

3.3.2 Meta-model

The idea of the π-PEWS meta-model is based on the services’ composition approach pro-

vided by the language PEWS [28, 80] (Path Expressions for Web Services). Figure 34 presents

the π-PEWS meta-model consisting of classes representing:

3.3 π-PEWS Platform Specific Models 80

searchMusic . selectMusic .
 ([buyToken=1](buyMusic . downloadMusic . listenMusic) +
 [buyToken=0]listenMusic) .
 ([publishToken='twitter']publishTwitter +
 [publishToken='facebook']publishFacebook)

def contract buyMusicContract{
 isAppliedTo: buyMusic;
 requires: name == ?? && password = ?? &&
 cardName == ? && cardNumber = ??;
 (onFailureDo: call(buyMusic));
 ensures : notification == 'payment ok -
 download authorized';
 paymentStatus == true;
 timeConstraint : meet(pay,sendConfirmation);

path

contract definition

pre-condition

post-condition

time constraint

Figure 33: π-PEWS Contract Representation.

• A services’ composition: NAMESPACE representing the interface exported by a service,

OPERATION that represents a call to a service method, COMPOSITE OPERATION, and

OPERATOR for representing a services’ composition and PATH representing a services’

composition. A PATH can be an OPERATION or a COMPOSITE OPERATION denoted

by an identifier. A COMPOSITE OPERATION is defined using an OPERATOR that can be

represent sequential (.) and parallel (}) composition of services, choice (`) among ser-

vices, the sequential (˚) and parallel (t. . . u) repetition of an operation or the conditional

execution of an operation (rCsS).

• Policies that can be associated to a services’ composition: A-POLICY, RULE, EVENT,

CONDITION, ACTION, STATE, and SCOPE.

As shown in the diagram an POLICY is applied to a SCOPE that can be either an OPERATION

(e.g., an authentication protocol associated to a method exported by a service), an OPERATOR

(e.g., a temporal constraint associated to a sequence of operators, the authorized delay between

reading a song title in Spotify and updating the walls must be less then 30 seconds), and a PATH

(e.g., executing the walls’ update under a strict atomicity protocol – all or noting). It groups a

set of ECA rules, each rule having a classic semantics, i.e, when an event of type E occurs if

condition C is verified then execute the action A. Thus, an Policy represents a set of reactions to

be possibly executed if one or several triggering events of its rules are notified.

3.3 π-PEWS Platform Specific Models 81

Path Operator

nameOperator : Operator Type

PEWSpec

name : String

Namespace

name : String
WSDLAddress : String

Operation

alias : String

Type Operation

Operator Type

<<enumeration>>

SEQUENCE : Integer
PARALLEL : Integer
CHOICE : Integer
LOOP : Integer

Variable

name : String
value : Object

Composite Operation

State Type

<<enumeration>>

REQ : Integer
ACT : Integer
TERM : Integer

APolicy

name : String

Action

act : String
Scope

Event Type

<<enumeration>>

ActivityPrepered : Integer
TermActivity : Integer
Activity : Integer

Rule
Event

type : Event Type

State

type : State Type

Condition

expression : StringPre-condition Post-condition Time Restriction

1 1..*

1

1..*

1

1..*

1

0..*

1

0..*

1

0..*

leftOp

1

0..1

rightOp

1

0..11

1..*

0..*

1

0..1

1

Figure 34: π-PEWS Meta-model.

• The class SCOPE represents any element of a services’ composition (i.e., operation, oper-

ator, path).

• The class POLICY represents a recovery strategy implemented by ECA rules of the form

EVENT - CONDITION - ACTION. A Policy has variables that represent the view of the

execution state of its associated scope, that is required for executing the rules. The value

of a variable is represented using the type VARIABLE. The class POLICY is specialized

for defining specific constraints, for instance authentication Policies.

3.4 Model Transformations 82

Given a π-ServiceComposition model of a specific service-based application (expressed ac-

cording to the π-ServiceComposition meta-model), it is possible to generate its corresponding

π-PEWS model by using transformation rules. The following Section describes the transforma-

tion rules between the π-ServiceComposition and π-PEWS meta-models of our method.

The π-PEWS language (extension of PEWS) is described in the Appendix C. The generated

code by πSOD-M, as end product, is based on the meta-model shown in figure 29 and the

language syntax.

3.4 Model Transformations

A model transformation usually specifies which models are acceptable as input, and if ap-

propriate what models it may produce as output, by specifying the meta-model to which model

must conform. Model transformations can be seen as processes that take models as input and

produces models as output. There is a wide variety of kinds of model transformation and uses

of them, which differ in their inputs and outputs and also in the way they are expressed [67].

A model transformation is also a way of ensuring that a family of models is consistent, in a

precise sense which the software engineer can define. The aim of using a model transformation

is to save effort and reduce errors by automating the building and modification of models where

possible [49].

The πSOD-M model transformations occur in the two levels, PIM and PSM, we defined:

PIM-to-PIM and PIM-to-PSM transformations. Transformations in the same level are consid-

ered “horizontal transformations”. Transformations between different levels are called “verti-

cal transformations”. There are 3 model transformations defined in πSOD-M: π-UseCase to

π-ServiceProcess; π-ServiceProcess to π-ServiceComposition; and π-ServiceComposition to

π-PEWS.

All πSOD-M transformation rules are described in natural language. These transformations

ensure consistency between the concepts being refined and processed at different levels. Figure

35 presents the set of rules we defined to apply for each type of transformation. The entities

of the left-hand side represent the source model, and those on the right-hand side represent the

target model. Figure 35a shows the transformation rule in which a single source entity is trans-

formed in a target model entity. Figure 35b describes a many to many entity transformation:

a set of objects from the source model is transformed into a set of objects in the target model.

Figure 35c presents a many to one transformation rule: many objects in the source model it will

be transformed into a single object element in the target model. The next 3 rules are advanced

3.4 Model Transformations 83

A B

(a) From one A to one B

A B

(b) From many A to many B

A B

(c) From many A to one B

A B

C

(d) From one A to one B, and one C

A B

C

(e) From many A to many B, and one
C

A B

C

(f) From many A to many B, and one
C

Figure 35: Entities’ Model Transformation Rules

rules, which transform single element in the source model into a set of different elements in the

target model. In figure 35d, a source element is transformed in two different ones, e.g. from

a “A” element, it generates a “B” and a “C” element in the target model. In figure 35e, a set

of source elements is transformed into a set of elements “B” and one “C” element in the tar-

get model. Finally, figure 35f presents the rule which transforms source elements into a set of

elements “B” and one element “C” in the target model.

3.4.1 From π-UseCase to π-ServiceProcess

The PIM to PIM transformation process between π-UseCase and π-ServiceProcess (Table

5) models defines how the application requirements are represented as a service process. At this

level, services and general functions are represented as simple or composite use cases.

Every USE CASE is transformed into an ACTION in the π-ServiceProcess model, and every

EXTEND association identified in the π-UseCase model is transformed into a FORK NODE.

If the extend association has only one USE CASE, the fork will present the ACTION as an

alternative flow, and later, both flows will meet. If the extend association has several source

USE CASE, the fork will present different ACTIONS as mutual alternatives flows, and later, all

these flows will meet. A ACTIVITY SERVICES (from π-ServiceProcess meta-model) consists

of a composition of one or more ACTIONS. ACTION can be viewed as a method of the system

application. Thus, services are represented as a set of functions in the π-ServiceProcess meta-

3.4 Model Transformations 84

model, because CONTRACTS modelled are associated to functions (ACTIONS).

All CONSTRAINTS in the source model (π-UseCase model) are transformed into a CON-

TRACT. A CONTRACT is represented as a set of CONSTRAINTS. Each constrain description

is directly transformed into ASSERTION. A set of CONSTRAINT of a USE CASE or a COM-

POSITE USE CASE is transformed into a set of ASSERTION used to define a CONTRACT. All

USE CASES are associated to a NON-FUNCTIONAL REQUIREMENT and all CONSTRAINTS

are associated with a NON-FUNCTIONAL ATTRIBUTE. Thus, CONSTRAINT representing the

same USE CASE is transformed into a CONTRACT. A CONTRACT can have exceptional cases.

The negation of the CONSTRAINT predicate are treated as EXCEPTIONAL BEHAVIOUR. In this

particular case, a EXCEPTIONAL BEHAVIOUR will be generated in the target model.

The CONSTRAINT TYPE can have different transformations, depending of the following

values:

• If the value of CONSTRAINT TYPE is BUSINESS, it will be transformed into none AS-

SERTION;

• If the value of CONSTRAINT TYPE is VALUE with the ASSERTION isExceptionalBe-

haviour attribute setted to false, it will be transformed into one ASSERTION;

• If the value of CONSTRAINT TYPE is VALUE with the ASSERTION isExceptionalBe-

haviour attribute setted to true, it will be transformed into a EXCEPTIONAL BEHAVIOUR;

Given the π-UseCase model, to all CONSTRAINT entity related with a USE CASE, there is

a CONTRACT that compounds a set of ASSERTIONS entity (figure 36a) and the USE CASE is

refined in a service ACTION.

Example: Considering the scenario example presented in Section 3.1.4, the transformation of

the “listen music” USE CASE is transformed into a service ACTION. This action is a Spo-

tify service function that can be invoked to play the music. For “publish music” USE CASE,

all CONSTRAINS are transformed in a set of ASSERTIONS that are grouped in a CONTRACT

(“publishMusicContract”). The “publishMusicContract” is related with the “publishMusic”

ACTION. l

A CONSTRAIN transformation means that from CONSTRAINT and CONSTRAINT TYPE

entities are generated detailed CONTRACT information, that are refined into EXCEPTIONAL

BEHAVIOURS and ASSERTIONS entities (figure 36b). CONSTRAINT is related with a CON-

STRAINT TYPE, and there are different cases for the transformation of this concept. A Business

3.4 Model Transformations 85

Table 5: Transformation Rules: From π-UseCase to π-ServiceProcess

Source Mapping Rules Target

π-UseCase meta-model π-ServiceProcess meta-model

Constraint - All Constraints in the source model will be transformed into a Assertion in the target model. Assertion, Contract,

All Use Cases are associated to a Non-Functional Requirement and all Constraints Exceptional Behaviour

are associated with a Non-Functional Attribute. Thus, Constraint representing the same Use Case,

is transformed in a Contract.
- A Contract can also have a exceptional cases. The negation of the Constraint predicate are treated

as the type EXCEPTIONALBEHAVIOUR. Thus, all the Assertions related to this Constraint,
in this particular case, will be transformed in a Exceptional Behaviour.

- The set of ASSERTIONS of a USE CASE are associated with a CONTRACT

- The CONTRACT name is formed by “<useCaseName>” + “Contract” token.

Constraint Type - The Constraint Type in source model can have the following transformation: Assertion

‚ BUSINESS type is transformed into none Assertion; Exceptional Behaviour

‚ VALUE with the Assertion isExceptionalBehaviour attribute setted to false is transformed into

a Assertion in the target model;

‚ EXCEPTIONALBERAVIOR with the Assertion isExceptionalBehaviour attribute setted

to true is transformed into a Exceptional Behaviour in the target model.

- Both, the value and exceptional restriction are based on in accordance with the values

of Assertions
- Constraint Type defines the type of restriction on a Use Case.

Non-Functional Every Non-Functional Attribute associated to an element (Constraint and Non-Functional Non-Functional

Attribute Requirements) in the source model becomes a Non-Functional Attribute associated to the Attribute

corresponding element (Contract) in the target model.

Use Case For every Use Case there will be a Action in the service delivery process model Action

describing the Business Service

Extend (Use Case) - Every Extend association identified in the π-UseCase model will be represented in the target model Control Node,

by a Fork Node. Fork Node,

- The Service Activity corresponding to the source Use Case of the extend association must be Service Activity

previous to the Service Activity corresponding to the target Use Case of the extend association.

- If the extend association has only one source Use Case, the fork will present the Service
Activity as an alternative to another flow with no Service Activity. Later, both flows will meet;

- If the extend association has several source Use Case, the fork will present the different Service
Activities as mutual alternatives to another flow with no Service Activity. Later, all these flows will

meet;

Include (Use Case) - An Include association is found in the π-UseCase model, the Service Activity corresponding to the Service Activity

source must be subsequent to the Service Activity corresponding to the target Use Case of the

include association;

- If the include association has several targets, the designer must decide the appropriate sequence

for the different Service Activities corresponding to the target Use Case (which will obviously

be previous to the Service Activity corresponding to the source Use Case).

Requirement - A Requirement in the source model is transformed into Service Activity of the target model. Service Activity

- The rules for a Requirement to be transformed into a

service activity is analyzed after the transformations of included and extended use cases.

- A Requirement associated with only one Use Case in the source model is transformed in a.

Service Activity and an Action, respectively.

- All Use Cases must be associated with a Requirement.

type are transformed into an ASSERTION that does not consider value attributes information

like maxValue and minValue (see figure 14). These ASSERTION information attributes are con-

sidered if the CONSTRAINT TYPE is a Value type. This is semi-automatic, because there is not

enough information in a π-UseCase model to run a complete automatic transformation. If the

CONSTRAINT TYPE is a Value type, the designer must specify the variable information, and its

boundary values after the transformation. For this, the designer must consider the CONSTRAINT

and USE CASE descriptions. By default, value constraints are transformed into pre-conditions

and business constraints are transformed into post-conditions. This rule may be adjusted by the

designer at the time of transformation.

A SERVICE ACTIVITY and the ACTIONS are generated from two different elements in the

source model (π-UseCase), from a REQUIREMENT or a COMPOSITE USE CASE. Figures 36c

3.4 Model Transformations 86

Use Case

Constraint

1

0..*

Action

Constract

1

0..1

Assertion

1

1..*

 + usecase: A
 - const: a1
 - const: a2
 + usecase: B
 - const: b1
 - const: b2

 + action: A
 + ctract: A_c
 - assrt: a1
 - assrt: a2
 + action: B
 + ctract: B_c
 - assrt: b1
 - assrt: b2

(a) From Use Case and Constraint to Action and Contract

Constraint

Constraint Type

Exceptional Behaviour

Contract

Assertion

Assertion Property

1

1..*

1

0..*
 + const: a
 - EXCEPTIONALBEHARIVOR
 + const: b
 - BUSINESS
 + const: c
 - VALUE

 + ctract: A_c
 + assert: b
 - getY() == true;
 + assert: a
 - x>= ???
 - excptbehaviour: call(a)

(b) From Constraint to Contract (2)

Composite Use Case

Use Case

1

2..*

Service Activity

Action

 + comp_usecase: a
 - usecase: a1
 - usecase: a2
 + comp_usecase: b
 - usecase: b1
 - usecase: b2

 + servAct: a
 - action: a1
 - action: a2
 + servAct: b
 - action: b1
 - action: b2

(c) From Composite Use Case to Service Activity

Requirement

Use Case

1

1..*

Service Activity

Action

 + reqmt: a
 - usecase: a1
 - usecase: a2
+ reqmt: b
 - usecase: b1
 - usecase: b2

 + servAct: a
 - action: a1
 - action: a2
+ servAct: b
 - action: b1
 - action: b2

(d) From Requirements to Service Activity

Figure 36: π-UseCase2π-ServiceProcess Model Transformation Rules

and 36d present the transformation schema for REQUIREMENT and COMPOSITE USE CASE

concepts. Both elements are related with many USE CASES that are transformed in many

ACTIONS. A USE CASE are related with, either, a REQUIREMENT and a COMPOSITE USE

CASE. ACTIONS are related with a SERVICE ACTIVITY.

Example: For the execution of the “download music” use case is necessary process with the

payment process. Thus, the set of USE CASES that include the “download music” process are

transformed in ACTIONS, and a SERVICE ACTIVITY that aggregates all these ACTIONS is also

generated. l

The transformations for EXTEND and INCLUDE dependence elements are not as simple as

the previous transformations (figures 37a. The workflow generated for each «extends» relation-

ship with just two use cases (figure 38a) is described by figure 38c. The generated workflow

contains: one FORK NODE, one JOIN NODE, and four CONTROL FLOW elements, and also two

ACTION elements, one for each USE CASE, if there are less than 2 extended USE CASE. When

there is more than one «extends» relationship among different use cases (figures 38b and 38d),

the transformation is proceed as: adding two more CONTROL FLOW for each new USE CASE,

and one ACTION for each new extended USE CASE.

3.4 Model Transformations 87

Use Case

Extend

0..*

1
1

0..*

Action

Executable Node

Activity Edge

Activity Node

outcoming

1

1..*

incoming

1

1..*

Control Flow

Control Node

Fork Node

Join Node

 + usecase: a
 + usecase: b
 - extend: b' (a --> b)

 + servAct: AB'
 - action: a
 - action: b
 - forknode: fn1
 - joinnode: jn1
 - cntflow: cf1 (b - fn1)
 - cntflow: cf2 (fn1 - jn1)
 - cntflow: cf3 (fn1 - a)
 - cntflow: cf4 (a - jn1)

(a) From Extend to Fork/Join Flow

Use Case

Include

0..*

1 1

0..*

Action

Executable Node

Activity Node

Activity Edge

outcoming

1

1..*

incoming

1

1..*

Control Flow

 + usecase: a
 - include: b' (a --> b)
+ usecase: b

 + servAct: A
 - action: a
 - action: b
 - cntflow: cf1 (a - b)

(b) From Include to Activity Node Flow

Figure 37: π-UseCase2π-ServiceProcess Model Transformation Rules (2)

Example: Considering the scenario example, it is possible to apply the same rule for the “pub-

lish music” use case, which has two extended use cases, “public twitter” and “public Facebook”,

applying the illustration expressed in figures 38b and 38d. l

For the INCLUDE use case elements, the transformation is represented as a ACTION se-

quence, as shown in figure 37b. For each USE CASE element an ACTION element is generated.

For a set of n USE CASES we generate n-1 OBJECT FLOW elements. Each CONTROL FLOW

links two ACTIONS.

Example: Given the “download music” use case from the scenario example, it includes pay-

ment process to buy the music. It is represented as a include in the π-UseCase model and is

transformed in a sequence flow in the π-ServiceProcess model (as presented in figure 39). l

3.4 Model Transformations 88

A B

<<extend>>

(a) Extended Use Case Example

A B

<<extend>>

C

<<extend>>

(b) Extended Use Case Example
(2)

B

A

(c) Equivalent Service Process
Workflow

B

AC

(d) Equivalent Service Process
Workflow (2)

Figure 38: Extended Transformation Examples

All this transformation rules from π-UseCase model to π-ServiceProcess model were val-

idated with the scenario example. All transformations described in this section are completely

automatic, however information about values and its boundaries are inserted by the designer

after the transformation process.

action_A

action_C

action_B

use_case_A

use_case_C

<<include>>

use_case_B

<<include>>

Figure 39: Include Transformation Example

3.4.2 From π-ServiceProcess to π-ServiceComposition

The PIM to PIM transformation process from π-ServiceProcess to π-ServiceComposition

model will refine further the application design. The main goal of this transformation is to group

all CONTRACTS and ACTIONS in POLICIES and SERVICE ACTIVITIES, respectively.

3.4 Model Transformations 89

All ACTIONS entities in the source model will be transformed into an ACTION in the target

model, and every SERVICE ACTIVITY in the source model will be transformed into a SERVICE

ACTIVITY in the target model. This happens because π-ServiceComposition is an extension of

π-ServiceProcess.

For the non-functional specifications, the CONTRACT entity with the same NON-

FUNCTIONAL REQUIREMENT in the source model (π-ServiceProcess model) will be trans-

formed into a POLICY in the target model (π-ServiceComposition model). Each ASSERTION

will be transformed into a RULE:CONDITION attribute in the target model, but if the ASSER-

TION has a value type, the name and the attributes in the source model will be transformed into

a VARIABLE in the target model. The other ASSERTION PROPERTY values remains unchanged.

The ASSERTION:APROPERTY attribute can have different transformations, depending of

the following values:

• POST-CONDITIONS are transformed into POST in the π-ServiceComposition model;

• PRECONDITIONS are transformed into PRE in the π-ServiceComposition model;

• TIMERESTRICTIONS are transformed into TIME in the π-ServiceComposition model.

The EXCEPTIONAL BEHAVIOUR entities will be transformed into an ACTION in the π-

ServiceComposition model, and every NON-FUNCTIONAL ATTRIBUTE associated to an ele-

ment (CONTRACT and NON-FUNCTIONAL REQUIREMENT) in the π-ServiceProcess model

becomes a NON-FUNCTIONAL ATTRIBUTE associated to the corresponding element (POLICY)

in the π-ServiceComposition model.

Table 6 describes the transformations between π-ServiceProcess and π-ServiceComposition

meta-models.

Figure 40 presents the main transformation rules for this level. The main feature of this

transformation is the generation of a POLICY from of a set of CONTRACTS. But, what is the

adopted criterion for this transformation? The main criteria is that all CONTRACTS from the

same NON-FUNCTIONAL REQUIREMENT will be transformed in one POLICY. Thus, we can

have POLICIES on: Safety, Performance, Reliability, and so on.

Each ASSERTION of aCONTRACT (π-UseCase model) is transformed into a RULE in the

π-ServiceProcess model. The set of CONSTRACTS generates a POLICY composed by those

RULES. Thus, the set of RULES make up a single POLICY. It is important to highlight that only

the CONTRACTS of the same NON-FUNCTIONAL REQUIREMENT is transformed into the same

3.4 Model Transformations 90

Table 6: Transformation Rules: From π-ServiceProcess to π-ServiceComposition

Source Mapping Rules Target

π-ServiceProcess meta-model π-ServiceComposition

meta-model

Action All Actions in the source model will be transformed in a Action in the target model. Action

Service Activity - All Service Activity in the source model will be transformed in a Service Activity in the target model. Service Activity,

Contract, All Contract with the same Non-Functional Requirement, in the source model, will be transformed in Policy

Non-Functional Attribute a Policy in the target model.

Assertion Each Assertion will be transformed in a Rule:condition attribute in the target model. Rule:condition

Assertion:name, If the Assertion has the type equal to VALUE, the name and the type attribute in the source model will Variable

Assertion:type be transformed in a Variable in the target model.

Exceptional Behaviour An Exceptional Behaviour and its attributes in the source model will be transformed Rule:action

in a Rule:action in the target model.

Assertion:aProperty - Depending on the assertion Property type in the source model, it will be transformed in a Rule:event Rule:Event,

in the target model. The transformation rules are: Event Type

‚ PRECONDITION type is transformed into PRE in the target model;

‚ POST-CONDITION type is transformed into POST in the target model;

‚ TIMERESTRICTION type is transformed into TIME in the target model.

Non-Functional Every Non-Functional Attribute associated to an element (Contract and Non-Functional Non-Functional

Attribute Requirements) in the source model becomes a Non-Functional Attribute associated to the Attribute

corresponding element (Policy) in the target model.

Policy

Rule

Contract

Assertion

Event TypeAssertion Property

 + ctract: a
 - assert: a1
 + ctract: b
 - assert : b1
 + ctract: c
 - assert: c1

 + policy: abc
 - rule: a1
 - rule: b1
 - rule: c1

(a) From Contract and Assertion to Policy and Rule

Constract

Action

0..1

1

Policy

Service Activity

1

0..*
 + action: a
 - ctract: a1
 + action: b
 - ctract: b1
 + action: c
 - ctract:c1

 + servAct: ac'SA
 - action: a
 - action: c
 - policy: ac'P
 + servAct: b'SA
 - action: b
 - policy: b'P

(b) From Action to Service Activity (2)

Exceptional Behaviour

Contract Policy

1

0..*

Action

Service Activity

1
1..*

0..*

1
 +ctract: a
 - exptBehaviour: call(act1)
 +ctract: b
 - exptBehaviour: call(act2)

 +servAct: A
 +policy: ab
 + rule: a1
 - action : act1
 + rule: a2
 - action : act2

(c) From Exceptional Behaviour to Action

Figure 40: π-ServiceProcess2π-ServiceComposition Model Transformation Rules

POLICY. Different NFRs’ CONTRACTS, are transformed into different POLICIES. Figure 40a

show how this transformation is made.

Similar to the transformation between CONTRACT and POLICY, a set of ACTIONS is trans-

formed into a single SERVICE ACTIVITY entity. ACTIONS are related with BUSINESS COL-

LABORATOR, and all information related to a BUSINESS COLLABORATOR are transformed

from PACKAGES information (π-UseCase model). All PACKAGES are transformed into BUSI-

NESS COLLABORATOR. Figure 40b presents the transformation between ACTION and SER-

3.4 Model Transformations 91

VICE ACTIVITY elements.

An exceptional behaviour is triggered by a failure in the verification of the condition of a

rule. An EXCEPTIONAL BEHAVIOUR is performed to preserve the state of the application. Fig-

ure 40c presents how an EXCEPTIONAL BEHAVIOUR that can be transformed into an ACTION

call.

As the π-ServiceComposition model refines the π-ServiceProcess concepts at PIM level, a

service previously defined as actions (source model) is refined as composition of those actions

(target model) that are necessary to represent a business service, identifying who are the partners

involved in the realization (BUSINESS COLLABORATORS). In addition, πSOD-M defines a

platform specific model based on web services composition. This model is explicitly indicates

those actions which are (or will be, if not yet implemented) supported by web services.

Example: Considering the scenario example, the ACTION’s update music CONTRACT is trans-

formed is a POLICY with its RULES. All contract ASSERTIONS are transformed in RULE and

its attributes, e.g. the login and password verification. The “securityLoginPolicy” is all set of

RULES that were transformed from the ASSERTIONS in π-ServiceProcess model. The NON-

FUNCTIONAL REQUIREMENT information will be used to the POLICY generation comes from

the initial use case model. Also the BUSINESS COLLABORATOR Facebook and Spotify infor-

mation came from PACKAGE π-UseCase entity element. All CONTRACTS of the same NON-

FUNCTIONAL REQUIREMENT are composed in a POLICY. l

3.4.3 From π-ServiceComposition to π-PEWS

Table 7 describes the PIM to PSM transformations between π-ServiceComposition and

π-PEWS meta-models. We propose two groups of rules: those that transform services com-

position elements of the π-ServiceComposition into π-PEWS meta-model elements; and those

that transform rules grouped by policies into A-policy types.

A named action of the π-ServiceComposition represented by Action and Action:name

is transformed to a named class OPERATION with a corresponding attribute name OPERA-

TION:NAME. A named service activity represented by the elements Service Activity and Ser-

vice Activity:name of the π-ServiceComposition, are transformed into a named operation of

the π-PEWS represented by the elements COMPOSITE OPERATION and COMPOSITE OPERA-

TION:NAME. When more than one action is called, according to the following composition pat-

terns expressed using the operators merge, decision, fork and join in the π-ServiceComposition

the corresponding transformations, according to the PEWS operators presented above, are:

3.4 Model Transformations 92

• op1.op2 if no Control Node is specified

• (op1 ‖ op2q.op3 if control nodes of type fork, join are combined

• (op1 ` op2q.op3 if control nodes of type decision, merge are combined

The A-policies defined for the elements of the π-ServiceComposition are transformed

into A-POLICY classes, named according to the names expressed in the source model. The

transformation of the rules expressed in the π-ServiceComposition is guided by the event

types associated to these rules. The variables associated to an A-policy expressed in the π-

ServiceComposition as ăVariable:name, Variable:typeą are transformed into elements of type

VARIABLE with attributes NAME and TYPE directly specified from the elements Variable:name

and Variable:type of the π-ServiceComposition model.

Table 7: Transformation Rules: From π-ServiceComposition to π-PEWS

Source Mapping Rules Target

π-ServiceComposition meta-model π-PEWS meta-model

Action - An Action in the source model corresponding to an external Business Collaborator is mapped Operation:alias

to an Operation in target model.

- The Action:name in the source model is transformed into Operation:name in the target model.

Service Activity - The Service Activity in the source model is mapped to a Composite Operation in target Type Operation,

model when more than one Actions are called. Composition Operation

- If Composite Operation is generated for a given Service Activity then the Service Activity:name
in the source model is mapped to Composition Operation:name in the target model.

Control Nodes - The Control Node in the source model is mapped to a Operator in target model. According to the Operator

type of Control Node (merge, decision, join, fork) the expression of the Composite Operation is:

‚ Sequence if no Control Node is specified;

‚ Parallel - Sequence for a Control Nodes pattern fork - join;

‚ Choice - Sequence for a Control Node pattern decision - merge

Business Collaborator A Business Collaborator:isExternal in the source model generates a Namespaces in the target model Namespace

Rule:event The Ruleś attribute event in the source model is transformed into an Event:type of the target Event Type,

model. In this case attribute is mapped to an entity with an attribute. The Event Type of a Event

Rule in the target model is determined by the Rule type:

‚ Event Type of a Precondition Rule is ActivityPrepared;

‚ Event Type of a Postcondition Rule is TermActivity;

‚ Event Type of a TimeRestriction Rule is Activity;

Rule:condition The Ruleś attribute condition in the source model is transformed into a Condition:expression Condition

in the target model. In this case, an attribute is mapped into an entity with an attribute

Rule:action The Rule:action in the source model is transformed in an Action:act in the target model. Action

The attribute action is mapped to an entity with an attribute. In the target model an action

is executed according to the rule condition value (true/false).

Policy - Every Policy associated to an element (Business Collaborator, Service, Activity, Action) in the APolicy

source model becomes an APolicy associated to the corresponding element in the target model.

- The name attribute of a Policy in the source model becomes an Apolicy:name of the target model.

Variable Every Variable, and its attributes, associated to a Policy in the source model becomes a Variable Variable

associated to an APolicy in the target model. The variables can be used in an APolicyś Condition

of the target model.

Rule:event For a Rule in the source model, depending on the Event Type, the corresponding transformation Precondition

in the target model is: Precondition, Postcondition or TimeRestriction Rule Postcondition

TimeRestriction

Rule

As shown in Table 7, for an event of type Pre the corresponding transformed rule is of type

PRECONDITION; for an event of type Post the corresponding transformed rule is of type POST-

CONDITION; finally, for an event of type TimeRestriction the corresponding transformed rule is

of type TIME. The condition expression of a rule in the π-ServiceComposition (Rule:condition)

3.5 Conclusions 93

is transformed into a class Condition:expression where the attributes of the expression are trans-

formed into elements of type ATTRIBUTE.

Figures 32 and 33 present the π-PEWS specification resulting from the π-

ServiceComposition model transformation of our scenario example.

3.5 Conclusions

This chapter presented π-SOD-M for specifying and designing reliable service based ap-

plications, using a MDA approach. As one of the main aims of MDA is to separate design

from architecture and technologies, the πSOD-M’s models describe the system behaviour and

its restrictions, without considering definition of a standard architecture.

Non-functional constraints are related to business rules associated to the general semantics

of the application. In the case of service-based applications, this type of applications also con-

cern the use constraints imposed by the services. We worked on the definition of a method for

explicitly expressing such properties in the early stages of the specification of services based

applications. Having such business rules expressed and then translated and associated to the

services’ composition can help to ensure that the resulting application is compliant to the user

requirements and also to the characteristics of the services it uses.

Designing and programming non-functional properties is not an easy task, so we are defin-

ing a set of predefined Policy types with the associated use rules for guiding the programmer

when she associates them to a concrete application. Policy types that can also serve as patterns

for programming or specializing the way non-functional constraints are programmed. We model

and associate policies to service-based applications that represent both systems’ cross-cutting

aspects and use constraints stemming from the services used for implementing them.

An advantage of our methodology is the use of high-level models, which by means of model

transformations, helps software developers to make the most of the knowledge for specifying

and developing business services.

94

4 πSOD-M Environment

“The computer was born to solve

problems that did not exist before.”

Bill Gates

This chapter describes the πSOD-M environment for developing reliable service based sys-

tems using the methodology we propose. The πSOD-M environment was developed to support

the πSOD-M methodology. The πSOD-M based process consists in generating an application

starting from a π-UseCase model and then transforming it into series of models at the PIM and

PSM levels before finally generating the code that implements the application.

πSOD-M environment is built on the top of Eclipse framework (http://www.eclipse.org),

which is a framework to build Integrated Development Environments (IDEs). We also use

the Eclipse Modelling Framework (EMF), a meta-modelling framework that was devised to

be extended and provides with the utilities needed to define, edit and handle (meta)-models.

To automate the transformation models we use the ATL Language1 [49], a model transforma-

tion language framed in Eclipse. Another language used for model transformation is Acceleo

[72], a model to text engine. πSOD-M uses this environment to generate service composition

specification code in π-PEWS.

The remainder of the chapter is organized as follows. Section 4.1 describes the environment

architecture, including the definition of meta-models; and, the implementation of the model

transformation process and the code generation engine. In section 4.2 describes how to install

and use the environment. Section 4.3 describes how to extend the environment, for adding new

components for generation of system specification in different languages. Section 4.4 concludes

the chapter.

1ATL uses EMF to handle models (that is to serialize, to navigate and to modify them). Once the ATL transfor-
mation is executed, the ATL engine matches the source pattern and the source model and instantiates each pattern
into the target model.

4.1 General Architecture 95

4.1 General Architecture

Figure 41 presents the general architecture for the πSOD-M environment and details how

components interact with each other. Each model has an editor, and transformation tools that

support the application development.

PE
W

S	
	

En
gi
ne

	

MOM	

A
-‐P
ol
ic
y	
En

gi
ne

	

Manager	

A-‐Executor	

C-‐Evaluator	 Event	 Monitor	

En
gi
ne

	

Mappings	
Plug-‐in

Models	
Plug-‐ins π-‐ServiceComposition	 Model	 Plug-‐in

Editor π-‐ServiceComposition	
Metamodel.ecore	

π-PEWS	 Model	 Plug-‐in

	 Editor π-PEWS	
Metamodel.ecore	

π-‐ServiceComposition	 2	 	
π-PEWS.atl

π-PEWS	
Model	

π-‐ServiceComposition	
Model

ConformsTo

Code	 Generation
PEWS.mt PEWSChain

PEWS	
Code	

ConformsTo

Editor π-‐ServiceProcess	
Metamodel.ecore	

Editor π-‐UseCase	

Metamodel.ecore	

π-‐ServiceProcess	 Model	 Plug-‐in π-‐UseCase	 Model	 Plug-‐in

π-‐ServiceProcess	 2	 	
π-ServiceComposition.atl π-‐ServiceProcess	

Model
π-‐UseCase	
Model π-‐UseCase	 2	 	

π-ServiceProcess.atl

ConformsTo ConformsTo

π-ServiceComposition2π-PEWS	 Plug-‐in π-ServiceProcess2π-ServiceComposition	 Plug-‐in π-UseCase2π-ServiceProcess	 Plug-‐in

Figure 41: πSOD-M Development Environment.

The πSOD-M environment architecture is organized in three layers: (i) Meta-model level,

(ii) PIM-to-PIM Transformations level level, (iii) PIM-to-PSM Transformations level level and

(iv) Code generation level. Each layer comprises a set of components that together support the

πSOD-M environment. This figure presents how those components are implemented by our

tool: (i) the Meta-model component (figure 42) represents the Model plugins module of figure

41 (together with all methodology meta-models); (ii) the PIM-to-PIM Transformations and

PIM-to-PSM Transformations components (figure 42) represent the Mapping plugins module

of figure 41; (iii) the Code Transformation component of the figure 42 is implemented by the

Code generation module of figure 41; and (iv) the Execution engine is represented by the lower

tier of figure 41.

4.1 General Architecture 96

Meta-model component

pi-UseCase meta-model pi-ServiceProcess meta-model pi-ServiceComposition meta-model

pi-PEWS meta-model

PIM-to-PIM Transformations

pi-UseCase2pi-ServiceProcess pi-ServiceProcess2pi-ServiceComposition

PIM-to-PSM Transformations

pi-ServiceComposition2pi-PEWS

Execution Engines
APolicy Engine PEWS Engine

Code Transformation

Figure 42: Environment Components

The Models plugin module comprises the components that describe the πSOD-M meta-

models, and how their models must be created. There are four meta-model components. All

components of the Mapping plugin module depend of the definitions made in Models plugin.

When a model transformation is made, the models must comply with their respective meta-

model. The process is executed as follows: every time a transformation is performed, a consis-

tency check of both, source and target models is performed. After all transformation are made,

the PSM model is translated into code of a particular platform, in the case of πSOD-M, π-PEWS

is the chosen platform. The transformation of PSM model in code is the last stage of transfor-

mation. The component of the Code generation module depend of the PSM generated by the

last model transformation. Finally, the Execution Engine component performs the execution of

the service-based specification code.

4.1.1 Ecore Meta-models (Models Plugin Module)

The implementation of each meta-model is defined in Ecore2 files, they are: π-UseCase, π-

ServiceProcess, π-ServiceComposition and π-PEWS. All meta-models have a related genmodel3

definition. The plugin editor can be created from the genmodel definition, so that models can

be specified.

Using these set of tools (model editors) it is possible to create models at different πSOD-M

2The Models Plugin Module is a set of Ecore files that represents all πSOD-M meta-models. These meta-
models are the sources for the development of each of the methodology’s model. All models designed for an
application must obey their meta-model specification. This module is composed by all the proposed methodology’s
models in EMF (.ecore extension).

3A .genmodel is a intermediary file format used to produce the syntax editor for each meta-model.

4.1 General Architecture 97

levels. There are editors for all πSOD-M models: π-UseCase editor, π-ServiceProcess editor,

π-ServiceComposition editor and π-PEWS editor.

Although there are editors for each methodology model, it is still necessary components to

perform transformations among them. Thus, the model specification process can be made in all

methodology levels. However it can be made only at the highest level, i.e. π-UseCase model,

and then execute automatic transformation to generate lowest level models.

4.1.2 Model Transformation (Mapping Plugin Module)

The Model transformation level has a set of components for processing and transforming

models. The model transformation components are based on the source models for generat-

ing the equivalent target model. For example, from a π-UseCase model is generated the π-

ServiceProcess model, from a π-ServiceProcess model is generated the π-ServiceComposition

model, and finally, from a π-ServiceComposition model is generated a π-PEWS model. After

the model generation the designer can perform refinements. Refinement can improve and adjust

elements that require a more detailed description at this modeling level.

πSOD-M model transformation process is based on the rules described in chapter 3. The

implementation process requires additional, more specific information to be taken into account.

We had to consider the representation of our concepts in the Eclipse and ATL environments for

MDA-based application development, e.g., aspects of plugin generation; design model prop-

erties; compliance of the designed meta-model with the generated model; the specific model

implementation; and etc.

We used the Eclipse Modeling Framework (EMF) for implementing the meta-models π-

UseCase, π-ServiceProcess, π-ServiceComposition and π-PEWS. The ATL language was used

for developing the mapping rules for transformation of models (π-UseCase2π-ServiceProcess,

π-ServiceProcess2π-ServiceComposition and π-ServiceComposition2π-PEWS plug-ins). This

plugin takes as input a π-PEWS model implementing a specific service composition and it

generates the code to be executed by the Policy based Execution Engine (figure 42).

Figures 43 and 44 present a general view of the πSOD-M models transformation, show-

ing the set of plug-ins developed to implement it. Figures 43 presents the model-to-model

transformations, while figure 44 shows the model-to-text transformation schema. The environ-

ment implements the abstract architecture shown in figure 41. This environment consists of

plug-ins implementing the π-UseCase, π-ServiceProcess, π-ServiceComposition and π-PEWS

meta-models used for defining models; and ATL rules for transforming PIM and PSM mod-

4.1 General Architecture 98

ECORE	 METAMODEL	

π-‐UseCase	
Metamodel	

π-‐ServiceProcess	
Metamodel	

π-‐ServiceComposi=on	
Metamodel	

π-‐PEWS	
Metamodel	

π-‐UseCase2π-‐ServiceProcess	

PublishMusic	 	
π-‐UseCase	 Model	

PublishMusic	 	
π-‐ServiceProcess	 Model	

π-‐ServiceProcess2π-‐ServiceComposi=on	

PublishMusic	 	
π-‐ServiceComposi=on	 Model	

π-‐ServiceComposi=on2π-‐PEWS	

PublishMusic	 	
π-‐PEWS	 Model	

Source	 Source	 Source	 Target	 Target	 Target	

ATL	 Engine	
Conforms	 to	

Uses	
Depends	

ATL	 Engine	 ATL	 Engine	

Figure 43: ATL Model to Model Transformation in πSOD-M.

els (model to model transformation) and finally generating code (model to text transformation)

with Acceleo.

ECORE	 METAMODEL	

π-‐PEWS	
Metamodel	

PublishMusic	 	
π-‐PEWS	 Model	

π-‐PEWSChain	

π-‐PEWS.mt	

Acceleo	 Model	 to	 Text	
TransformaBon	 Engine	

PublishMusic.pews	

Conforms	 to	

Uses	
Depends	

Generates	

Figure 44: Acceleo Model to Text Transformation in πSOD-M.

In order to proceed with a model transformation it is necessary to configure the transforma-

tion environment. Figure 45 presents a standard screen for configuring each transformation (in

this case for the “to publish music” scenario). From any source model, for example, π-UseCase,

π-ServiceProcess or π-ServiceComposition, the system can perform the automatic transforma-

tion. Using the transformation tool of figure 45 requires from the user: (1) to indicate the ATL

transformation rules file; (2) to choose the source meta-model reference (.ecore file); (3) to

choose the target meta-model reference (.ecore file); (4) to choose the source model that will

be transformed (e.g. music.piusecase file); (5) to choose the target model that will be generated

(e.g. music.piserviceprocess file); and finally, (6) to run the tool. The same must be performed

for all model-to-model transformations. For model-to-text transformation, the rule file to be

4.1 General Architecture 99

chosen should be the Acceleo file.

1

2

3

4

5

6

Figure 45: ATL Configuration for πSOD-M Transformation.

As an example, figure 45 shows the configuration for the transformation from π-UseCase

(source) to π-ServiceProcess (target). Notice that, in this case, the reference meta-models must

be the same. For further transformations, this process must follow the same sequence, changing

only the models and reference meta-models.

4.1.2.1 π-UseCase2πServiceProcess Transformation Rules

The transformation rules describe how models are transformed. As a general rule, the auto-

matic transformation of models favors a faster development of applications. In most cased, the

environment or the designer should verify if the transformations are valid or not. In the πSOD-

M environment, the consistency of the transformations must be performed by the designer. If a

problem on the transformation is identified, the target model can be modified manually.

In ATL, there exist two different kinds of rules that correspond to the two different program-

ming modes provided by ATL (e.g. declarative and imperative programming). The matched

4.1 General Architecture 100

Listing 4.1: ATL Example Rule

1 r u l e ruleName {
2 from
3 var_sourceName : SourceModel ! E n t i t y
4 t o
5 v a r _ t a r g e t N a m e : Targe tMode l ! E n t i t y (
6 a t r i b u t e _ 1 <́ var_sourceName . a t r i b u t e _ a ,
7 a t r i b u t e _ 2 <́ var_sourceName . a t r i b u t e _ b
8)
9 }

Listing 4.2: ATL - piServiceProcess2piServiceComposition : root Rule

1 r u l e r o o t {
2 from
3 r o o t : p i S e r v i c e P r o c e s s ! S e r v i c e P r o c e s s
4 t o
5 r o o t _ s e r v i c e : p i S e r v i c e C o m p o s i t i o n ! C o m p o s i t i on S e r v i c e M o d e l (
6 a c t i v i t i e s <́ r o o t . a c t i v i t y ,
7 edges <́ r o o t . edge ,
8 c o m p o s i t i o n P o l i c e s <́ r o o t . c o n t r a c t
9)
10 }

rules4 (declarative programming) and the called rules5 (imperative programming) [49]. For the

πSOD-M environment, we use both types of rules. Listing 4.1 shows a general example of an

ATL matched rule. According to this, we will present the main ATL rules used to implement

the model transformation. As described in listing ??, a rule consists of a name (line 1), a source

entity (from clause in lines 2-3), and one or more target entities (to clause in line 4-5). Each

entity has a name, such as varsourceNameand

As the π-ServiceComposition model is a refinement of some concepts defined in π-

ServiceProcess, such as CONTRACT and ACTIVITY SERVICES, most of the transformation

between these models are through direct transformation, without restrictions. We present the

ATL transformation (listing 4.2) of the root element that comprises the main elements of both

models.

Listing 4.2 shows the transformation rule for the main elements from π-ServiceProcess to

π-ServiceComposition model. The ACTIVITIES and its EDGES, and CONTRACTS, which are

transformed into POLICY (lines 6-8). Other rules that describe the transformation between

ASSERTIONS into policy RULE are other type of transformation. However, other rules describe

4The matched rules constitute the core of an ATL declarative transformation since they make it possible to
specify 1) for which kinds of source elements target elements must be generated, and 2) the way the generated
target elements have to be initialized. A matched rule is identified by its name. It matches a given type of source
model element, and generates one or more kinds of target model elements. The rule specifies the way generated
target model elements must be initialized from each matched source model element[49].

5The called rules provide ATL developers with convenient imperative programming facilities. Called rules
can be seen as a particular type of helpers: they have to be explicitly called to be executed and they can accept
parameters. However, as opposed to helpers, called rules can generate target model elements as matched rules do.
A called rule has to be called from an imperative code section, either from a match rule or another called rule[49].

4.1 General Architecture 101

Listing 4.3: ATL - piServiceComposition2piPEWS : root Rule

1 r u l e r o o t {
2 from sCM : p i s c ! C o m p o s i t i o n S e r v i c e M o de l
3 t o
4 p a t h : p ipews ! Pa th () ,
5 pews : p ipews ! PEWSCTSpec (
6 name <́ ’newModelPEWSpecName ’ ,
7 has <́ pa th ,
8 c o n t a i n s <́ sCM . p a r t i t i o n ,
9 d e f i n e s <́ t h i s M o d u l e . p o l i c i e s
10)
11 }

that all CONTRACTS must belong to a specific NON-FUNCTIONAL REQUIREMENT, for exam-

ple, all contracts for the performance restrictions, will be grouped into a single performance

POLICY. This listing is an ATL example for π-ServiceProcess model transformation into to

π-ServiceComposition model.

4.1.2.2 π-ServiceComposition2π-PEWS Transformation Rules

The transformation π-ServiceComposition2π-PEWS is unique among PIM and PSM levels,

however there is no difference in the rules description in ATL, since all rules are defined in

terms of meta-models rather than specific models. Thus, PIM-to-PSM transformation rules in

ATL follow the same syntax and semantics of the PIM-to-PIM transformation rules.

The model to be generated in this transformation, namely π-PEWS model, will be used as

input for the code generation component, so that the application code specification is gener-

ated. The listings 4.3 and 4.4 present two transformation rules in ATL. The first describes the

transformations of the main elements for the description of a service composition, the main

path, the name of the specification, the services and policies (lines 6 - 9), while listing 4.4 de-

scribes a policy RULE and its related concepts, such as ACTION, EVENT and CONDITION. The

ATL rule has a constraint to be checked (line 4), what kind of RULE is being translated for the

specific language, because depending on the type, the transformation will be change. The RULE

element (line 15) consists of all the properties necessary to create a PRE-CONDITION, such as

ACTION, EVENT and CONDITION (lines 16-18), and to which POLICY the PRE-CONDITION is

related (line 19).

4.1.3 Code Generation (Code Generation Module)

The πSOD-M architecture’s code generation component (Code generation level) is a π-

PEWS specification generator. The code is produced from a π-PEWS model, after it be gen-

erated by a model transformation from π-ServiceComposition model. This component was

4.1 General Architecture 102

Listing 4.4: ATL - piServiceComposition2piPEWS : Pre-condition Rule

1 r u l e r u l e P r e {
2 from
3 r : p i s c ! Rule (
4 r . e v e n t = #PRE)
5 t o
6 rAc t : p ipews ! Ac t io n (
7 a c t <́ r . a c t i o n
8) ,
9 r E v t : p ipews ! Event (
10 t y p e <́ # A c t i v i t y P r e p e r e d
11) ,
12 rCond : p ipews ! C o n d i t i o n (
13 e x p r e s s i o n <́ r . c o n d i t i o n
14) ,
15 r R u l e : p ipews ! P r e c o n d i t i o n (
16 c a l l s <́ rAct ,
17 d e f i n e s <́ rCond ,
18 hasSome <́ rEvt ,
19 p o l i c y <́ r . p o l i c y
20)
21 }

implemented using Acceleo [72]. Figure 47 presents a sequence diagram describing the model

transformation process and how the designer interacts with the environment to specify each

πSOD-M model until the specification code is generated.

Figure 46: Acceleo Specification for π-PEWS Code Generation.

Figure 46 presents the π-PEWS meta-model developed using EMF and some pieces of Ac-

celeo specification. This figure shows the specification for the Namescape, Operation, Service

and Contract code generation for π-PEWS. After the code transformation process, a .pews file

is created. The listing 4.5, 4.6 and 4.7 present parts of Acceleo code for the π-PEWS code gen-

eration. The code are the same presented in figure 46, which presents the relation between the

meta-model concepts and the Acceleo code. The code generation follow the language syntax

described in appendix C.

4.1 General Architecture 103

Listing 4.5: Acceleo - Namespace and Operation Code Specification
1 <% s c r i p t t y p e =" PiPEWSMetamodel . PEWSSpec" name=" d e f a u l t "
2 f i l e ="<%name%>.pews"%>
3 //́ ´́

4 //́ ´́ ´́ ´́ ´́ ´́ ´ <%name%>.pews S e r v i c e S p e c i f i c a t i o n ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

5 //́ ´́

7 / / Namespaces
8 <%f o r (c o n t a i n s){%>
9 namespace <%name%> = <%WDSLAdress%>
10 <%}%>

12 / / O p e r a t i o n s
13 <%f o r (has . e A l l C o n t e n t s (" O p e r a t i o n ")){% >
14 a l i a s <% a l i a s %> = p o r t T y p e /<%name%> i n <%i s D e f i n e d I n . name%>
15 <%}%>

Listing 4.6: Acceleo - Service Code Specification
1 / / S e r v i c e s
2 <%f o r (has . e A l l C o n t e n t s (" C o m p o s i t e O p e r a t i o n ")) {%>
3 s e r v i c e <%name%> = <%c o n t a i n s . l e f t . f i l t e r (" O p e r a t i o n ") . a l i a s %>
4 <% i f ((c o n t a i n s . nameOpera tor . t o S t r i n g () . e q u a l s I g n o r e C a s e (" s e q u e n c e "))) {%>
5 .
6 <%} e l s e i f ((c o n t a i n s . nameOpera tor . t o S t r i n g () . e q u a l s I g n o r e C a s e (" p a r a l l e l "))){% >
7 | |
8 <%}%>
9 <%c o n t a i n s . r i g h t . f i l t e r (" O p e r a t i o n ") . a l i a s %>
10 <%}%>

In listing 4.5 (lines 1-2) references the meta-model, the root element (PEWSSpec), and the

name of the generated file (<%name%>.pews). Lines 3-5 presents the name of the service spec-

ification. Lines 7-10 describes a for integration in the contains relationship between PEWSSpec

and Namespace, and lines 12-15 all operations defined in each Namespace is generated. This

operations came from the isDefinedIn relationship between Namespace and Operation entities.

Listing 4.6 presents the Acceleo specification for the π-PEWS model transformation into

code. A service is an alias for one or more operations. Listing 4.7 specifies the contract genera-

tion, using the defines relationship between APolicy and Rule. Each contract have a set of rules

for the specification.

Listing 4.7: Acceleo - PEWS Contract Code Specification
1 / / C o n t r a c t
2 <%f o r (d e f i n e s) {%>
3 d e f C o n t r a c t <%name%>C o n t r a c t {
4 i s A p p l i e d T o : <%i s R e l a t e d W i t h . f i l t e r (" O p e r a t i o n ") . a l i a s %>;
5 <%f o r (d e f i n e s . f i l t e r (" P r e c o n d i t i o n ")) {%>
6 r e q u i r e s : <%d e f i n e s . e x p r e s s i o n%>
7 (OnFai lureDo : <% c a l l s . a c t . t o S t r i n g ()% >) ;
8 <%}%>
9 <%f o r (d e f i n e s . f i l t e r (" P o s t c o n d i t i o n ")) {%>
10 e n s u r e s : <%d e f i n e s . e x p r e s s i o n%>
11 (OnFai lureDo : <% c a l l s . a c t . t o S t r i n g ()% >) ;
12 <%}%>
13 <%f o r (d e f i n e s . f i l t e r (" T i m e R e s t r i c t i o n ")) {%>
14 t i m e C o n s t r a i n t s : <%d e f i n e s . e x p r e s s i o n%>
15 <%}%>
16 }

<%}%>

4.1
G

eneralA
rchitecture

104

:designer

:pi-UseCase

:pi-ServiceProcess

:pi-ServiceComposition

:pi-PEWS

:Execution Engine :Model Transformation Engine

create_UCmodel(name: String)

uc_model: pi-UseCase

model: pi-ServiceProcess

generate_SPmodel(uc_model: pi-UseCase)

sp_model: pi-ServiceProcess

pi-UseCase2pi-ServiceProcess(uc_model: pi-UseCase)

create_SPmodel(pi-uc: pi-UseCase)

generate_SCmodel(sp_model: pi-ServiceProcess)

pi-sc: pi-ServiceComposition

pi-ServiceProcess2pi-ServiceComposition(sp_model: pi-ServiceProcess)

create_SCmodel(pi-sp: pi-ServiceProcess)

sc_model: pi-ServiceComposition

INPUT:
- requirement specification;
- business specification.

generate_PEWSmodel(sc_model: pi-ServiceComposition)

specification_code: pi-PEWS

pi-ServiceComposition2pi-PEWS(sc_mode: pi-ServiceComposition)

create_PEWSmodel(pi-sc: pi-ServiceComposition)

pews_model: pi-PEWS

generateCode(pews_model: pi-PEWS)

specification_code: pi-PEWS

execute(specification_code: pi-PEWS)

results

Figure 47: Model Transformation Process.

4.2 Defining Reliable Service Based Applications 105

The generated code can be executed in both, π-PEWS and A-Policy engines6 These 2 en-

gines are not native components in the πSOD-M plugin. The environment supports the process

design to generate code in any language. New language editor components, like BPEL or

XAML, can be easily coupled to the environment. Therewith, it is necessary to add the lan-

guage meta-model and make the transformation process. Thus, from a π-ServiceComposition

model, different models and codes can be generated (not only π-PEWS). This requires only the

definition of equivalent meta-models, and the corresponding code transformation rules.

The composition engine manages the life cycle of the composition. Once a composition in-

stance is activated, the engine schedules the composition activities according to the composition

control flow. Each activity is seen as a process where the service method call is executed. The

execution of an activity has four states: prepared, started, terminated, and failure. The execution

of the control flow (sequence, and/or split and join) can also be prepared, started, terminated

and raise a failure.

At execution time, the evaluation of policies done by the POLICY manager must be syn-

chronized with the execution of the services composition (i.e., the execution of an activity or a

control flow). Policies associated to a scope are activated when the execution of its scope starts.

A POLICY will have to be executed only if one or several of its rules is triggered. If several

rules are triggered, the Policy manager first builds an execution plan that specifies the order in

which such rules will be executed according to the strategies defined in the following section.

If rules belonging to several policies are triggered then policies are also ordered according to an

execution plan. The execution of policies is out of the scope of this thesis, the interested reader

can refer to [55] for further details.

4.2 Defining Reliable Service Based Applications

The πSOD-M environment development starts with the creation of a project and then the

definition of a π-UseCase model7, supposing that the business and requirement specification

document have been previously completed. Figure 48 presents the views provided by the envi-

ronment: Project view, Menu view, Editor view and Properties view.
6 Both engines are currently under development. The π-PEWS engine is being developed at UFRN anf the

A-Policy engine in being developed at Grenoble/France.
7To create a model, the user must execute the sequence: File > New > Other > EMF Model Wizard, and choose

one of the methodology’s model.

4.2 Defining Reliable Service Based Applications 106

1 - Project view

3 - Editor view

2 - Menu view

4 - Properties view

Figure 48: πSOD-M Eclipse Plugin Environment.

4.2.1 π-UseCase Model

The goal of creating a π-UseCase is to represent the functions and system services described

in the requirements specification and business specification documents, which are the require-

ments input for this phase. In accordance to the process described in figure 47, the designer

receives the documents as input and creates the π-UseCase model. With this model created, the

transformation component generates the π-ServiceProcess model as output.

To create the π-UseCase model, it is necessary choose the root element (Model) as the

starting point of modeling, during the process of create a “new .piusecase file” (using the

sequence, File > New > Other > EMF Model Wizard). From this point the model is created as

a tree of elements with its specific references, as shown in Figure 49, which shows the model

elements and its equivalence in the graphical π-UseCase model, each element is built in an

iterative way and must obey the hierarchy and its relationships.

Each model element has a number of childs or siblings to which it is related to, e.g., an USE

CASE relates CONSTRAINT, EXTEND and INCLUDE elements, as well as NFRS relates NFAS.

Figure 49 shows how to create the model elements for the “to publish music” scenario.

Example: Items 1 and 2 in Figure 49 show how to create an ACTOR and a REQUIREMENT,

item 3 presents the update music USE CASE and how to create a CONSTRAINT related to this

4.2 Defining Reliable Service Based Applications 107

app.twitter

publish twitter
update music

<<extend>>

user

app.facebook

publish facebook

<<extend>>

user must authenticate

<<constraint>>
<<value>>

!authentication! - the user must proceed
with login.
DESCRIPTION - To update a @song,
the user must log in to social
networking. The user must provide @id,
@password, and pass the @song data.

$publish music$ - The user can publish
the song in a social network;

#security# - The system must to provide
security of data for publish the music;

%publish music%

1

1

2

2

3

3

4

4

5

5

6

6

3

Figure 49: π-UseCase Model Definition in πSOD-M Eclipse Plugin.

element. Item 4 makes reference to a CONSTRAINT and finally, the items 5 and 6 are equivalent

to a NFR and a PACKAGE elements, respectively. Each item in the model refers to a equivalent

element in the graphical model. l

Figure 50 presents some configuration properties. After creating an element, it is neces-

sary to set its properties. All elements have properties that describes their relationship and

specification values. These properties are used to give specification details, as well as future

transformations.

Example: Item 1 in Figure 50 shows the USE CASE element properties for the “to publish mu-

sic” application. After the creation of a use case it is necessary to create the actor, its name,

which requirement the use case belongs, and the respective package. Item 2 shows the proper-

ties of a CONSTRAINT element. In a constraint, its type must be explicit (VALUE, BUSINESS or

EXCEPTIONALBEHAVIOUR), its description, with all candidate variables described with an

‘@’, its name and which NON-FUNCTIONAL ATTRIBUTES element this constraint is related to,

e.g., Authentication, is an attribute of the NON-FUNCTIONAL REQUIREMENTS, Security. Items

4.2 Defining Reliable Service Based Applications 108

3 and 4 show the “To Publish Music” requirement properties and package “app”, respectively.

The properties of each element obey the elements described in the π-UseCase meta-model.

app.twitter

publish twitter
update music

<<extend>>

user

app.facebook

publish facebook

<<extend>>

user must authenticate

<<constraint>>
<<value>>

!authentication! - the user must proceed
with login.
DESCRIPTION - To update a @song,
the user must log in to social
networking. The user must provide @id,
@password, and pass the @song data.

$publish music$ - The user can publish
the song in a social network;

#security# - The system must to provide
security of data for publish the music;

%publish music%

1

2

3
4

1

2

3

2

4

Figure 50: π-UseCase Properties in πSOD-M Eclipse Plugin.

4.2.2 π-ServiceProcess Models

The goal of creating a π-ServiceProcess model is to represent the system execution flow.

The designer receives the π-UseCase model as input to generate the π-ServiceProcess model.

After the π-ServiceProcess model be generated, the designer calls again the model transforma-

tion component to generate the π-ServiceComposition model as output (figure 47).

To create the π-ServiceProcess model, it is necessary choose the root object (Service Pro-

cess) as the starting point of modeling, during the process of create a “new .piserviceprocess

file” option. From this point on, the model is created as a tree with its specific references.

As this model is a refinement of the concepts described in the previous model, its informa-

tion is part of the information and properties of the π-UseCase model, but they focus on the

process workflow and application functions.

Example: Figure 51 shows the complete model of the example scenario and its main compo-

nents. From the root element the user can create the following elements: SERVICE ACTIVITY,

OBJECT FLOW, CONTROL FLOW, CONTRACT and NON-FUNCTIONAL ATTRIBUTE. In Fig-

ure 51, item marked with 1 highlights the creation of the CONTROL FLOW . Items 2 and 3

4.2 Defining Reliable Service Based Applications 109

show the elements FORK NODE and JOIN NODE, respectively, essential for the execution flow

description. Items 4 show the ACTION element, which describes the download music, listen

music and publish twitter actions and finally, items 5 highlight the ASSERTION element, which

is used to describe the restrictions over each ACTION. l

listen music

buy music

download music

search music select music

buy? no

<<assertion>>
verify user data

<<assertion>>
verify payment data

and check value

<<assertion>>
payment confirmation

<<assertion>>
authorization to

download

$pre-condition$

nameSpotify == ?? &&
passwordSpotify == ?? #

$pre-condition$
(bankBalance > ?value) &&
cardName == ?? &&
cardNumber == ?? &&
cardValid >= ??#

$post-condition$
(paymentOk == true) ==>
numVaucher == ?? #

$ post-condition$
(authozationOk == true) ==>
messageUser == 'download ok' #

buy? yes

<<assertion>>
verify song data

format

<<assertion>>
check user and

password
publish twitter

<<assertion>>
check spotify

user data
publish facebook

<<assertion>>
send notification

publish? yes, twitter

publish? yes, facebook

$pre-condition$

#songFormat == ??#

$pre-condition$

name == ?? &&
password == ??#

$pre-condition$

spotifyLogin == facebookLogin &&
spotifyPassw == facebookPassw #

$post-condition$

notification == 'published'

1

1

1

2

2

3

3

4

4

4

5

5

5

Figure 51: π-ServiceProcess Model Definition in πSOD-M Eclipse Plugin.

The designer must also configure the properties of each π-ServiceProcess model element to

complete it by specifying all constraints that compose the contracts and the application process.

4.2 Defining Reliable Service Based Applications 110

Figure 52 presents the properties of the main model elements for our example scenario. These

properties complement the modeling of the execution flow.

<<assertion>>
verify song data

format

<<assertion>>
check user and

password
publish twitter

<<assertion>>
check spotify

user data
publish facebook

<<assertion>>
send notification

publish? yes, twitter

publish? yes, facebook

$pre-condition$

#songFormat == ??#

$pre-condition$

name == ?? &&
password == ??#

$pre-condition$

spotifyLogin == facebookLogin &&
spotifyPassw == facebookPassw #

$post-condition$

notification == 'published'

1

1

2

2

3

3

4

5
5

4

Figure 52: π-ServiceProcess Properties in πSOD-M Eclipse Plugin.

Example: Items 1 in Figure 52 describe the properties of a FORK NODE, which is associated

with EDGE ACTIVITIES (CONTROL FLOW and OBJECT FLOW) that connect the ACTION el-

ements. For example, the FORK NODE fn_toPublishMusic has an input edge (cf1) and three

output streams edges (cf2, cf3 and cf5). All these elements are CONTROL FLOW entities (items

3). Items 2 show the ACTION properties, and items 4 and 5 describe a CONTRACT and its

ASSERTIONS properties, respectively. A CONTRACT has a name and the information of an

ACTION. ASSERTIONS are CONTRACT’s child element. Each CONTRACT can have many AS-

SERTIONS. Each ASSERTION has six properties, they are: (i) AProperty, which describes the

runtime verification execution time, (ii) description, (iii) variable name, (iv and v) a maximum

and minimum allowed to be checked (MaxValue and MinValue) and the variable (vi) type. In

cases of non numeric types, e.g. Short Int, Flot and Double, only MinValue property value is

considered property andMaxValue is described as null. l

4.2 Defining Reliable Service Based Applications 111

4.2.3 π-ServiceComposition Models

The goal of creating a π-ServiceComposition model is to represent the system service com-

positions and to reference the external services that are called by the application. The designer

receives the π-ServiceProcess model as input to generate the π-ServiceComposition model.

After the π-ServiceComposition model is generated, the designer calls again the model trans-

formation component to generate the π-PEWS model as output (figure 47). The output model

describes the system specification in a specific platform.

To create the π-ServiceComposition model, it is necessary to choose the root object (Com-

position Service Model) as the starting point of modeling, during the process of creating a “new

.piservicecomposition file” option. From this point on, the model is created as a tree with its

specific references.

Recall that the π-ServiceComposition model is a refinement of π-ServiceProcess model,

most elements are the same, except for BUSINESS COLLABORATOR, POLICY, RULES and

VARIABLE. Thus, we will detail these elements in the model editor description.

Example: Figure 53 shows the relationship of these elements for our example scenario. Each

ACTION has an specific BUSINESS COLLABORATOR (item 3), this elements express the ex-

ternal service provider, such as Facebook, Twitter or Bank. Another example of a BUSINESS

COLLABORATOR definition is a WSDL specification. The WSDL namespaces represents a kind

of BUSINESS COLLABORATOR. Besides BUSINESS COLLABORATOR element, the main chil-

dren root element (Composition Service Model) are: POLICY and SERVICE ACTIVITY (items

1), and each POLICY (items 2) is directly related with SERVICE ACTIVITIES. From a POLICY

it is possible to create a set of RULES (item 4). Figure 53 also presents an equivalent graphic

model of the application. In this figure, the Application’s BUSINESS COLLABORATOR presents

only the main ACTIONS (buy music, listen music, publish Facebook and publish twitter) that are

related with a SERVICE ACTIVITIES that have one POLICY. The Application’s BUSINESS COL-

LABORATOR model is the same presented in the previous section (π-ServiceProcess model).

The properties of π-ServiceComposition elements are configured as the same way the other

two previous editors, and the properties described in the π-ServiceComposition meta-model

(Figure 29). Thus, to configure the properties of this model, it is necessary simply choose the

desired element and to modify its values.

4.2 Defining Reliable Service Based Applications 112

3

4

 listen music

 publish facebook

 publish twitter

 buy music

 download music

 search music select music

 buy? yes

 buy? no

 <<assertion>>
 verify user data

 <<assertion>>
 verify payment data

 and check value

 <<assertion>>
 payment confirmation

 <<assertion>>
 authorization to

 download

 <<assertion>>
 check user and

 password

 <<assertion>>
 verify song data

 format

 <<assertion>>
 check spotify

 user data

 <<assertion>>
 send notification

 publish? yes, facebook

 publish? yes, twitter

 <<External false>>
 Application

 <<External true>>
 Bank <<service>>

 pay
 <<service>>

 send confirmation

 <<External true>>
 Spotify

 <<service>>
 listen song

 <<External true>>
 Twitter

 <<service>>
 publish message

 <<External true>>
 Facebook

 <<service>>
 update status

 <<Policy>>
 $httpAuthPolicy$
 % Performance, Security#
 Rule R1{
 @PRE@

 # event.activityName ==
 scope.name#

 ! Scope.httpRequest.Credentials =
 newNetworkCredential(username,
 password)!

 } Rule R2{
 @POST@

 !sendNotification('song published')!
 }

 <<Policy>>
 $authPolicy$
 %Security%
 Rule R1{
 @PRE@

 # event.activityName == scope.name
 AND token == null;#

 !token = getToken()!

 } Rule R2{
 @ PRE;

 # event.activityName == scope.name
 AND token != null AND
 token.isExpired() == true#

 !token = renewToken()!
 }

 <<service>>
 music search

 <<Policy>>
 $trasactionPolicy$
 % Security %

 Rule R1{
 @PRE@

 # event.activityName == scope.name AND
 userName == ?? AND passW == ?? AND
 valuePayment < userBalance#

 ! Scope.httpRequest.Credentials =
 newNetworkCredential(username,
 password) AND
 Scope.httpRequest.Payment =
 newNetworkPay(cardName, cardNumber, value)!
 } Rule R2{
 @POST@

 ! sendNotification('payment ok') AND
 sendNotification('download authorized')!
 }

 publish? no

4

3

3

3

3

2

5

5

5

1

1

1

2

Figure 53: π-ServiceComposition Model Definition in πSOD-M Eclipse Plugin.

4.2.4 π-PEWS Models

The goal of creating a π-PEWS model is to represent the application in a specific platform.

The designer receives the π-ServiceComposition model as input to generate the π-PEWS model.

After the π-PEWS model be generated, the designer calls again the model transformation com-

ponent to generate the π-PEWS specification code as output (figure 47). This code will be

executed.

To create the π-PEWS model, it is necessary to choose the root object (PEWS Spec) as the

starting point of modeling. From this point on, the model is created as a tree with its specific

references.

The π-PEWS meta-model is a representation of the π-PEWS language. Each π-PEWS

4.3 Extending the Environment 113

model is a program/specification written in that language. The elements described in this model

represent parts of language’s grammar constructs. Each entity in the model represents a piece

of π-PEWS code.

1

2

3

4

Figure 54: π-PEWS Model Definition in πSOD-M Eclipse Plugin.

Figures 54 and 55 show how the elements that compose a π-PEWS model can be specified

in our tool. This model is generated automatically from the π-ServiceComposition model.

π-PEWS is the last model generated before the code generation. At this stage, it is spected

that the designer proceeds with a general (manual) check of consistency of the model. It is

important to remark that the environment alone does not replace the modeling work required to

design and develop services based applications.

4.3 Extending the Environment

Both, the πSOD-M environment and methodology can be extended, in order to improve

the components that describe and implement the methodology. Extensions can be done in two

different levels: (i) adding new models to the existing infra-structure, and (ii) considering more

abstract levels.

The extension may be in terms of language: new meta-models for other languages can be

described and coupled to the environment. The extension process should take place as follows:

4.4 Conclusion 114

1

2

3

4

Figure 55: π-PEWS Model Properties in πSOD-M Eclipse Plugin.

new languages meta-models may be designed and coupled in the environment architecture (such

as BPEL, XAML, WSDL and XLANG). After creating the desired meta-model, a mapping must

be done. The mapping must respect the π-ServiceComposition meta-model. It is also necessary

to describe the rules for code generation, using a code generator engine such Acceleo.

Considering the more abstract level of the methodology, new meta-models can be described.

For instance, the computing independent level (CIM level) of SOD-M may be added to our

methodology to describe the requirements and business restrictions in terms of models.

4.4 Conclusion

This chapter introduced the implementation of the πSOD-M methodology environment.

We also presented a representation for our model description. The implementation includes all

(i) meta-models of πSOD-M, (ii) editors for each model for the applications being developed,

and (iii) the plugins for the transformations defined by the methodology. An example was also

presented to describe the environment features.

115

5 Validation

“Let us change our traditional attitude to

the construction of programs: Instead of

imagining that our main task is to

instruct a computer what to do, let us

concentrate rather on explaining to

human beings what we want a computer

to do.”

Donald E. Knuth

This chapter describes the experimentation we conducted for validating the πSOD-M

methodology. The chapter presents three case studies. The first two case studies concern sim-

plified service-based applications that focus on the application’s logic and explicit business

rules. They show how πSOD-M can be used for developing applications and exemplify the

consideration of non-functional aspects along the whole development process. The last case

study (GesIMED [36] application) aims to perform a qualitative evaluation of our approach,

analyzing the main differences and particularities between SOD-M and πSOD-M.

The IEEE Standard Computer Dictionary [53] defines validation as the process of evaluat-

ing a system or component during or at the end of the development process to determine whether

it satisfies specified requirements. If we apply this definition to a methodology: Validation is

the process of evaluating a method during or at the end of the development process to determine

whether it satisfies specified requirements and eases the development of a system. This chapter

validates the methodology proposed in this thesis in order to verify whether it promotes a better

development of reliable services composition applications.

The validation process has been performed in a continuous and progressive approach along

the definition of πSOD-M.

This chapter is organized as follows: section 5.1 shows To Listen Music case study, section

5.2 introduces the case study Crime Map and section 5.3 introduces the case study GesIMED

5.1 Case Study 1: To Publish Music 116

that we used for validating the methodology. Section 5.4 presents the lessons learned with

the validation process. Finally, Section 5.5 concludes the chapter and discusses on validation

results.

5.1 Case Study 1: To Publish Music

An organization wants to provide the service-based application that monitors the music a

person is listening during some periods of time and sends the song title to this person’s Twitter

or Facebook accounts. Thus, this social network user will have her status synchronized in

Twitter or Facebook. The scenario begins by get through the music service Spotify for fetching

the user’s musical status. The social network services are then contacted to modify the user’s

status with the music information. The user can also download a specific music, he can proceed

with the download process, which includes the payment process.

The user can download a music, after having proceed with the payment via PayPal or credit

card. All services are available via Spotify and this application needs to interact with Spotify

users, so they can listen music, publish them on Facebook and Twitter, or buy music online.

The scenario to monitor and publish songs has the User and Spotify actors.

The functionality of the application are: Search music; Choose music; Download music;

Listen Music; Buy music and Publish music.

5.1.1 π-UseCase Model

Figure 56 shows the main part of the use case model for the To Publish Music application1.

The π-UseCase model describes the system functions and constraints. Figures 57 and 58 de-

tail the model and configuration properties for the described example (actual view taken from

the πSOD-M environment). Three restrictions are specified on the use cases described by the

model, two on the buy music use case and a restriction on the pay use case. These restrictions

are value and business constraints. Buy music restrictions are related to secure connection and

to ensure that the user needs to have an account in the music network. They are marked using

. . . , figures 56, 57 and 58. Notice that those NFRs and constraints will be the base to define

assertions and contracts by the transformations of models.

Figures 57 and 58 present the update music model and show how the properties are defined

in the πSOD-M environment. This example describes the properties over the update music

1The complete π-UseCase model can be found in appendix D.

5.1 Case Study 1: To Publish Music 117

app

app.bank

pay by cardpay by paypal

pay

<<extend>>
<<extend>>

app.spotify

listen music

spotify

receivePaiment

download music

buy music

<<include>> <<include>>user

have/create a Spotify account

<<constraint>>
<<value>>

!privacy and confidentiability! - the user may
have the privacy informations preserved.

DESCRIPTION - The user must provide
a Spotivy @login and @password.

security http

<<constraint>>
<<business>>

security transaction

<<constraint>>
<<value>>

!transaction! - the payment must be in a
security transaction;

DESCRIPTION - The minimum
@payment_value is 2 euros. It needs the
@card or @paypal @user_data, so that the
payment is made.

$buy music$ - The user have to pay before
download the music;

#security# - The system must to provide
security connection for payment;

%payment%

!connection! - For buy a music, the
system must provide a security connection;

DESCRIPTION - It is necessary send a
notification to the user if something
wrong happened, after the execution;

$listen music$ - The user can listen a
music if he wants;

#performance# - The system
must to provide a good performance;

%listen music%

$buy music$ - The user have to buy the music
before download it;

#reliability and security# - The system must to
provide reliability and user privacy data;

%payment%

$download$ - The user can download a
music if he wants;

#reliability and security# - The system
must to provide reliability and user privacy
data;

%download%

Figure 56: To Publish Music π-UseCase.

(item 4, figure 57) use case and the restriction over the authentication process (item 3, figure

57). To update a music in a social network, the user must be authenticated.

The modeling of the application properties using the environment πSOD-M are the same

presented in the π-UseCase model, as described in Figure 58. For example, the authentication

restriction details the type of constraint (VALUE), a description, name and a non-functional

attribute (authentication). These properties are described in all constraints (item 2, figure 58).

Figure 59 shows the service components that must interact with the application and the

interaction among them. There are four services that are invoked to produce results for the

Publish Music application: Spotify, Facebook, Twitter and Bank.

5.1 Case Study 1: To Publish Music 118

app.twitter

publish twitter
update music

<<extend>>

user

app.facebook

publish facebook

<<extend>>

user must authenticate

<<constraint>>
<<value>>

!authentication! - the user must proceed
with login.
DESCRIPTION - To update a @song,
the user must log in to social
networking. The user must provide @id,
@password, and pass the @song data.

$publish music$ - The user can publish
the song in a social network;

#security# - The system must to provide
security of data for publish the music;

%publish music%

1

1

2

2

3

3

4

4

5

5

6

6

3

Figure 57: To Publish Music π-UseCase Environment Detail.

app.twitter

publish twitter
update music

<<extend>>

user

app.facebook

publish facebook

<<extend>>

user must authenticate

<<constraint>>
<<value>>

!authentication! - the user must proceed
with login.
DESCRIPTION - To update a @song,
the user must log in to social
networking. The user must provide @id,
@password, and pass the @song data.

$publish music$ - The user can publish
the song in a social network;

#security# - The system must to provide
security of data for publish the music;

%publish music%

1

2

3
4

1

2

3

2

4

Figure 58: To Publish Musicπ-UseCase Environment Detail.

5.1 Case Study 1: To Publish Music 119

<<application>>

To Publish Music

User

<<service>>

Twitter

<<service>>

Spotify

<<service>>

Bank

<<service>>

Facebook

Figure 59: To Publish Music Services.

5.1.2 π-ServiceProcess Model

Figure 60 shows the π-ServiceProcess diagram for the execution of activitiesbased on con-

tracts. We present here the part of the diagram produced from the concepts of the figure 58.

The complete π-ServiceProcess diagram of the application is shown in figure 26. Notice that it

is necessary to represent each CONSTRAINT modelled in a CONTRACT based service activity

diagram. Each constraint described in the previous model is transformed into a contract in the

π-ServiceProcess model.

Publish Twitter and publish Facebook (figure 60) have pre- and post-conditions assertions

that are grouped into a contract for each service: (i) verify if the user data are correct; (ii) if

the user is already logged in Spotify; As post-condition, it ensures the complete transaction and

verifies whether the payment authorization notification was sent to the user and to Spotify. There

may be different restrictions depending on the services participating in the publish process.

The user must be logged in Spotify in order to access Facebook, and Facebook must send

a “successful login” acknowledge which is verified by the post-condition. For publishing a

message, Twitter imposes pre-conditions on the length of the message and user data login. In

contrast, Facebook only sends a confirmation acknowledge. Items 4 and 5 in figure 60 show the

pre-conditions for “publish Twitter” concerning (i) the format of the music file and (ii) access

authorization credentials, namely login and password.

The development of the π-ServiceProcess refine the case study constraints into contracts

for the services as shown in Figure 60.

5.1 Case Study 1: To Publish Music 120

<<assertion>>
verify song data

format

<<assertion>>
check user and

password
publish twitter

<<assertion>>
check spotify

user data
publish facebook

<<assertion>>
send notification

publish? yes, twitter

publish? yes, facebook

$pre-condition$

#songFormat == ??#

$pre-condition$

name == ?? &&
password == ??#

$pre-condition$

spotifyLogin == facebookLogin &&
spotifyPassw == facebookPassw #

$post-condition$

notification == 'published'

1

1

2

2

3

3

4

5
5

4

Figure 60: To Publish Music π-ServiceProcess.

5.1.3 π-ServiceComposition Model

There are four external BUSINESS COLLABORATORS in this application: Bank, Spotify,

Twitter and Facebook (items 3, figure 61). Figure 61 shows the application services that consist

of a set of functions: search music, select music, buy music, download music, listen music and

publish music. The publish music action calls two service collaborators (Facebook and Twitter),

and the buy music action calls two functions of the Bank service collaborator.

The To Publish Music π-ServiceComposition model defines three policies: transactionPol-

icy (item 4, figure 61), httpAuthPolicy (item 2) and authPolicy (item 6). The trasactionPolicy

verifies the Bank data restrictions over the payment and confirmation process. The httpAuth-

Policy policy specifies rules over the Facebook function for the authentication and notification

processes. These rules are executed during the publish massage function request. The auth-

Policy policy implements the open authentication protocol required for accessing the Twitter

service.

From the To Publish Music rules and policies it is possible to model and associate non-

functional properties to services’ compositions, e.g. the integration of information retrieved

from different social network services, automatic generation of an integrated view of the op-

5.2 Case Study 2: Crime Map 121

3

4

 listen music

 publish facebook

 publish twitter

 buy music

 download music

 search music select music

 buy? yes

 buy? no

 <<assertion>>
 verify user data

 <<assertion>>
 verify payment data

 and check value

 <<assertion>>
 payment confirmation

 <<assertion>>
 authorization to

 download

 <<assertion>>
 check user and

 password

 <<assertion>>
 verify song data

 format

 <<assertion>>
 check spotify

 user data

 <<assertion>>
 send notification

 publish? yes, facebook

 publish? yes, twitter

 <<External false>>
 Application

 <<External true>>
 Bank <<service>>

 pay
 <<service>>

 send confirmation

 <<External true>>
 Spotify

 <<service>>
 listen song

 <<External true>>
 Twitter

 <<service>>
 publish message

 <<External true>>
 Facebook

 <<service>>
 update status

 <<Policy>>
 $httpAuthPolicy$
 % Performance, Security#
 Rule R1{
 @PRE@

 # event.activityName ==
 scope.name#

 ! Scope.httpRequest.Credentials =
 newNetworkCredential(username,
 password)!

 } Rule R2{
 @POST@

 !sendNotification('song published')!
 }

 <<Policy>>
 $authPolicy$
 %Security%
 Rule R1{
 @PRE@

 # event.activityName == scope.name
 AND token == null;#

 !token = getToken()!

 } Rule R2{
 @ PRE;

 # event.activityName == scope.name
 AND token != null AND
 token.isExpired() == true#

 !token = renewToken()!
 }

 <<service>>
 music search

 <<Policy>>
 $trasactionPolicy$
 % Security %

 Rule R1{
 @PRE@

 # event.activityName == scope.name AND
 userName == ?? AND passW == ?? AND
 valuePayment < userBalance#

 ! Scope.httpRequest.Credentials =
 newNetworkCredential(username,
 password) AND
 Scope.httpRequest.Payment =
 newNetworkPay(cardName, cardNumber, value)!
 } Rule R2{
 @POST@

 ! sendNotification('payment ok') AND
 sendNotification('download authorized')!
 }

 publish? no

4

3

3

3

3

2

5

5

5

1

1

1

2

Figure 61: To Publish Music π-ServiceComposition Model.

erations executed in different social networks or for providing security in the communication

channel when the payment service is called.

From this stage, the π-PEWS model (PSM) depicted in figures 32 and 33 can be generated.

5.2 Case Study 2: Crime Map

The Crime Map case study addresses the design and implementation of a system that deals

with statistical data on criminal activities. The system works in conjunction with third-party

services, in order to process a search supplied by a user. The system must provide a public

utility service to inform citizens about the real crime situation in a particular location or region.

5.2 Case Study 2: Crime Map 122

Making use of third party services, the application must provide a statistics crime portal. The

result depends on user queries and upon a user demand results can be presented on a map. The

system also interacts with micro-blogging, for looking up messages containing specific crime

information. The presentation of the data concerning criminal activities is provided by the

Police service. The presentation of a locality map crime is made by the Google Maps service

and messages presentation on the micro-blogging is done by the Twitter service. The system

also has a Post service, for searching an address location that can be then presented in a map

by Google maps. The scenarios to query data and crime statistics have the following actors: (i)

User, (ii) Map service, (iii) Post service, (iv) Micro-blogging service and (v) Police service, to

query the criminal activities (figure 62).

Considering the application functions, the crimes may be searched by types, e.g. theft,

murder, kidnapping, etc. The search can also be made by city’ district or region, for example,

center, west, south, north or east, and it can process search temporal criteria, for example,

crimes of the previous day of the last weeks or months. Finally, the service can also process

conjunctive queries, e.g., the number of kidnapping of a specific district in the last month.

Whenever a new crime is published by the police, the system should post a message on

Twitter stating the new crime, with a specific hashtag, e.g. #crime043_kidnapping_center_05-

08-2012. The hashtag structure contains the crime number, type, local and the day it happens.

From this, users can comment about the crime and these comment will appear in the application

interface. All users must have an account to use the application.

The application functionalities are: Choose search type of crime; see crime information;

Receive information on the chosen query; See map; List crimes; and Comment about a crime.

Non-functional requirements for this application include: queries response performance,

crime information validation, crime information presented in a map and ensuring crimes data

security.

5.2.1 π-UseCase Model

Figure 62 presents the Crime Map π-UseCase model. This model includes examples of

business, value and exceptional behaviours constraints. The application accesses data from

third party services to provide the user an easy way to visualize new information, these services

are: Map, Police, Postal and Microb-logging Services.

The user interacts with the application that will perform the services for obtain and publish

details about the crimes. The services are modeled as actors (they are external applications).

5.2 Case Study 2: Crime Map 123

Each service has a set of functions that can be performed. The π-UseCase model describes both

the external services and the functionality of the application (see figure 62).

app

search crimes
search by types

search by address search by period

<<extend>>

<<extend>>

<<extend>>
show map

<<include>>

see crime information

<<include>>

share information

<<extend>>

User

see statistics

app.police

Police Service

app.maps

Google Maps Service

app.post

Post Service

app.twitter

Twitter Service

requires user login

<<constraint>>
<<value>>valid crimes information

<<constraint>>
<<business>>

search relevant types

<<constraint>>
<<value>>

search by valid address

<<constraint>>
<<value>>

search in short periods

<<constraint>>
<<value>>

response performance

<<contraint>>
<<business>>

present only information

<<constraint>>
<<exceptional_hebaviour>>

1

1

1

1

1

22

2

3

3

4

4

1

Figure 62: Crime Map π-UseCase.

The user can search for crimes and view its occurrences in a map. The search may be

performed by type of crime, region or period. The user can also perform a search that combines

these criteria. If the application’s user does not choose any option, the search will retrieve up to

30 recent occurrences. If the location maps service is unavailable or there is no response from

it after 5 seconds, only the crimes information will be presented, without a map view.

Figure 62 also presents the π-UseCase model tree representation generated by the πSOD-M

5.2 Case Study 2: Crime Map 124

environment model .Figures 63 and 64 detail the use cases and constraints presented in Figure

62.

app

search crimes
search by types

search by address search by period

<<extend>>
<<extend>>

<<extend>>

User

app.police

Police Servicesearch relevant types

<<constraint>>
<<value>>

search by valid address

<<constraint>>
<<value>>

search in short periods

<<constraint>>
<<value>>

present only information

<<constraint>>
<<exceptional_hebaviour>>

$search crimes$ - User can search for
information about crimes that occur
on a given domain.

#performance and reliability# - This function
must to provide a good performance
and reliability for the User.

%crime information%

! integrity ! - The application must
preserve the integrity of crimes data.

DESCRIPTION - If the map service is
not available, the application presents
only the detail information about the
searched list of crimes, without maps
localizations.

!resource! - This constraint is a restriction
on crimes data that may be necessary
for use of the service.

DESCRIPTION - The @types of crimes
listed to search are those who have
more than five occurrences.

!conformability! - This factor evaluates
the address information format
for the maps service restriction request.

DESCRIPTION - the input @address must
be known by the maps service

!integrity! - The application must
preserve the integrity of old crimes
data.

DESCRIPTION - The @period available
for the search are the crimes up to 6
months ago.

1

2

3

4

3

4

1
2

Figure 63: Search crime π-UseCase Detail.

The search crimes use case (Figure 63) requests the Police service to verify the crimes

according to the parameters supplied by the user. The restriction of this use case depends on

the parameters selected by the user. If the user chooses one or several types of specific crime’s

type, the system will present those crimes that have more than five occurrences. For search by

address, the address must comply with the restrictions of the police service, the research can be

done by street, neighborhood, city or district. Search by period will provide only occurrences

within the last six months.

Figure 64 describes the design of the use cases: see crime information, see statistics, show

map and share information. To share information of a crime, it is necessary to access the Twitter

micro-blogging service to proceed with the authentication and posting. The service requires the

user id and password, however the application must ensure the User privacy information while

performing authentication. To see statistics of crimes, the application should process a larger

volume of data to generate statistical results. Thus, it is required to provide resources to ensure

5.2 Case Study 2: Crime Map 125

app

show map

see crime information

<<include>>

share information

<<extend>>

User

see statistics

app.maps

Google Maps Service

app.post

Post Service

app.twitter

Twitter Service

requires user login

<<constraint>>
<<value>>

valid crimes information

<<constraint>>
<<business>>

response performance

<<contraint>>
<<business>>

$crime details$ - The User can
see details of crimes in a map.

#availability and reliability
and performance# -
The application must preserve
the address integrity of each
crime.

%crime information%

!time and accessability and
capacity!

DESCRIPTION - The response of the map
service should be at least in 5 seconds

!privacy and authentication! - the user may
have the privacy informations preserved.

DESCRIPTION - The user must provide
a twitter @login and @password.

$crime statistics$ - The User can
see statistics about the crimes,
such as the district more
dengereous or calm, and also
type of crimes that happens
often.

#availability# - The application
must preserve the integrity of
crimes data and perform a big
data volume.

%crime information%

!capacity! - The application may to perform
a data volume steadily.

DESCRIPTION - This constraint is a restriction
on crimes volume data that may be necessary
for perform of the service.

$crime details$ - The User can share the
crime information in a microblogging.

#security# - The application must provide
security connection for twitter
authentication.

%crime information%

$crime details$ - The User can
see details of a specific crime,
or a list of them.

#availability and reliability# -
The application must the
integrity of crimes data.

%crime information%

1

2

3

4

5

1

2

3

4

5

Figure 64: See crime information π-UseCase Detail.

the data processing performance. The restriction on map presentation is over response time and

accessibility of the Postal and Google maps services. The response time limit is 5 seconds. If

the map is not processed, only the information of the crime are presented. Figures 63 and 64

also show the properties used in the πSOD-M environment and the equivalent concepts in the

model.

After the identification the various functions that are required by the system to perform the

business services, the π-ServiceProcess model is used to represent the workflow necessary to

perform a service within the system.

5.2 Case Study 2: Crime Map 126

<<application>>

Crimes' Map

User

<<service>>

Twitter

<<service>>

Police

<<service>>

Post

<<service>>

Google Maps

Figure 65: Crime Map Services.

5.2.2 π-ServiceProcess Model

The π-ServiceProcess model is used to represent the workflow necessary to perform the

system service. The service processes execution is described in two steps. Figures 66 and 68

show the flow of functions execution described in the π-UseCase models shown in Figures 63

and 64. Each diagram can represent different business services (see figures 63 and 64).

The diagrams of figures 66 and 68 were obtained by applying the π-UseCase2π-

ServiceProcess transformation to the diagrams of figures 63 and 64, respectively.

choose crimes'
properties

search crime

see map

see crimes'
information

<<assertion>>
verify types

<<assertion>>
verify address

<<assertion>>
verify period

<<assertion>>
verify time

request

$post-condition$

#serviceResponse.getTime() < 5000 #

$post-condition$

#result[i].period < 180#

$post-condition$

#not(getCrimes(type).legth > 5)
--> false#

$pre-condition$

#addressFormat == ???#

Figure 66: Crime information π-ServiceProcess.

Each constraint of figures 66 and 68 are transformed into assertions. For example, the as-

sertions of address format, crime types and time are restrictions over the action search crime,

being one pre-condition and two post-conditions. These restrictions form the contract on the

5.2 Case Study 2: Crime Map 127

Figure 67: Crime information π-ServiceProcess Environment.

search crime function. Similarly, for viewing maps, if the answer to the request takes longer

than 5 seconds (5000 milliseconds), the map display is suspended and only the information is

presented. Each assertion in this π-ServiceProcess model stems from the π-UseCase model

constraints. These restrictions are shown in Figure 66. Figure 67 presents the equivalent model

generated by the methodology transformation in the πSOD-M environment for the process de-

tailed in Figure 66. Each node defines the process element and its properties.

In Figure 67, i_node corresponds to the initial process node. ACTIONS are grouped into

SERVICE ACTIVITIES, such as choose crimes property action that is part of the search crime

service activity. A CONTROL FLOW is an edge that links two nodes, for example cf1 connect

the initial node i_node (source) with the choose crimes property action (target). Figure 67 also

presents the assertions described in Figure 66 grouped into CONTRACTS. The contracts are:

searchCrimeContract and seeCrimeInformationContract. These contracts are related with the

actions search crime and see crimes information.

5.2 Case Study 2: Crime Map 128

search crimes

see statistics

see crime'
information

<<assertion>>
check user and

password

<<assertion>>
verify crime's

information format
share information

<<assertion>>
process data volume

$post-condition$

#crimes[i].Format == ??#

$pre-condition$

name == ?? &&
password == ??#

<<assertion>>
verify crime's

information format

$pre-condition$

#crimes[i].Format == ??#

Figure 68: See crime statistic and share information π-ServiceProcess Detail.

Figure 68 presents the assertions over the see statistics and share information actions. Both

have 2 pre-conditions. To share information on Twitter it is necessary to verify the format of

crime information (140 characters) and the Twitter id and password, for authentication. Re-

garding the see statistics action, there is a business restriction over data volume, and a value

restriction over the crime information format. Thus, the presentation of the crimes statistics

must be done after the contract verification. Figure 69 presents the equivalent model generated

by the methodology transformation in the πSOD-M environment for the process detailed in

Figure 68. Each node defines the process element and its properties. Figure 69 also presents the

assertions grouped into three contracts that are related with its specific actions. The contracts

are: seeStatisticsContract, seeCrimeInformationContract and shareInformationContract. The

contracts are related with the action see statistics, see crimes information and share information,

respectively.

These models provide an overview of the business processes from the requirements de-

scribed in the π-UseCase model. These models also provide a more detailed view of the execu-

tion of business processes and the possible interaction with external services. The description

of this interaction is the result of the refinement of these models (π-ServiceProcess models)

through the π-ServiceComposition model.

5.2.3 π-ServiceComposition Model

Figures 70 and 72 show the π-ServiceComposition models, which represent the service

composition processes of each business service and additional indication of which are members

5.2 Case Study 2: Crime Map 129

Figure 69: Crime statistic and share information π-ServiceComposition Environment.

of the business that execute the action. Actions are derived from service activities, identifying

the set of actions that are necessary for the completion of each service.

The main partition expresses the Application execution (External false) that represents the

general process. Actions have the equivalent service relation, which realize the external ser-

vice, such as Police, Google Maps or Twitter services. They are expressed by a BUSINESS

COLLABORATOR. Both, Figure 70 and 72 present two external BUSINESS COLLABORATORS

describing the application services that are invoked. These π-ServiceComposition models refine

the π-ServiceProcess models, matching action with real service functions that may be executed

by the system application.

For each π-ServiceComposition model, the contracts described in the π-ServiceProcess

model are grouped in policies. Figure 70 describes the performancePolicy and reliabilityPolicy

policies, both associated with a service activity and its actions. It is important to highlight that

5.2 Case Study 2: Crime Map 130

choose crimes'
properties

search crime

see map

see crimes'
information

<<assertion>>
verify types

<<assertion>>
verify address

<<assertion>>
verify period

<<assertion>>
verify time

request

<<External false>>
Application

<<External true>>
Google Maps

<<External true>>
Police

<<service>>
show map

<<service>>
search crimes

<<service>>
get crime detail

<<policy>>
$reliabilityPolicy$
%Reliability%

Rule R1{
@PRE@

#addressFormat == ???#

! abort()!
}
Rule R2{
@POST@

#not(getCrimes(types).length > 5)
--> false#

!show(getCrimesInformation())!
}
Rule R3{
@POST@

#result[i].period < 1800#

!show(getCrimesInformation())!
}

<<policy>>
$performancePolicy$
%Performance%

Rule R1{
@POST@

#serviceResponse.getTime() < 5000#

!true!
}

Figure 70: Crime information π-ServiceComposition.

all policies are applied to the entire actions associated with a service activity, for example, the

performancePolicy verifies the request time for presenting the Google maps. If the time exceeds

5000 milliseconds, the maps call is ignored and only the crime information is presented. The

reliabilityPolicy is associated with crime data verification. There are three rules over crime ad-

dress format, types of crime and the period of time in which it happens. The crime presentation

may obey the pre- and post-condition described in this policy. Figure 71 presents the πSOD-M

tool description for the model described in Figure 70.

Figure 72 refines the π-ServiceProcess model described in Figure 68 and Figure 73 presents

the πSOD-M tool description for the model described in Figure 72. This model details the

policies for crime statistic and share information services. The policies are statisticPolicy and

authenticationPolicy, respectively.

These models provide an overview of the external services and its composition from the

actions described in the π-ServiceProcess model. These models also provide a more detailed

5.2 Case Study 2: Crime Map 131

Figure 71: Crime information π-ServiceComposition Environment.

view of the system restrictions, applying policies over external services. This model refines

the π-ServiceProcess models detailing the Business Collaborators that are expressed as external

5.3 Case Study 3: GesIMED Application 132

search crimes

see statistics

see crime'
information

<<assertion>>
check user and

password

<<assertion>>
verify crime's

information format
share information

<<assertion>>
process data volume

<<assertion>>
verify crime's

information format

<<External false>>
Application

<<External true>>
Twitter

<<External true>>
Police

<<service>>
publish message

<<service>>
search crimes

<<service>>
get crime detail

<<service>>
get crimes'
statistics

<<policy>>
$reliabilityPolicy$
%Reliability%

Rule R1{
@PRE@

#addressFormat == ???#

! abort()!
}
Rule R2{
@POST@

#not(getCrimes(types).length > 5)
--> false#

!show(getCrimesInformation())!
}
Rule R3{
@POST@

#result[i].period < 1800#

!show(getCrimesInformation())!
}

<<policy>>
$reliabilityPolicy$
%Reliability%

Rule R1{
@PRE@

#addressFormat == ???#

! abort()!
}

<<Policy>>
$authenticationPolicy$
%Security%

Rule R1{
@PRE@

name == ?? AND password == ??#

!token = getToken()!
}
Rule R2{
@ PRE@

crimes[i].Format == ??#

!true!
}

Figure 72: Crime statistic and share information π-ServiceComposition.

services, and grouping contract into policies.

The result of the transformation of this model to the π-PEWS model is gives in the listing

5.1 and 5.2.

5.3 Case Study 3: GesIMED Application

Aiming to perform a qualitative analysis and the validation of πSOD-M methodology, we

present the GesIMED Application2 case study.

2If necessary, a detailed description of this case study can be found in [36].

5.3 Case Study 3: GesIMED Application 133

Figure 73: See crime statistic and share information π-ServiceComposition Environment De-
tail.

This case study was originally developed in [36] for the SOD-M methodology. Here , we

adapt the requirements of the system to include NFR. This system is a management Web system

that processes medical images through the Web [36]. The objective is to manage information

about the creation and maintenance of scientific studies for neuroscience research. The appli-

cation is designed to be used primarily by researchers in neuroscience, such as neurologists,

neuropsychologists and neuroradiologists who conducting research in this area.

The application requirements are the following: (i) a database of medical images that can

be accessed by the user; (ii) it has an interface for querying the database; (iii) implement stan-

dard procedures for analyzing and processing stored images; and (iv) the images analysis and

processing results must be also stored, so they can be used in future studies.

The Medical Image Analysis Laboratory from the Universidad Rey Juan Carlos (LAIM)

5.3 Case Study 3: GesIMED Application 134

Listing 5.1: pi-PEWS Specification: Crime information

1 ns p o l i c e = " h t t p : \ \ www. pm . rn . gov . b r / s e r v i c e "
2 ns googleMaps = " h t t p : / / maps . g o o g l e a p i s . com / maps / a p i / "

4 a l i a s c h o o s e C r i m e s P r o p e r t i e s = p o r t T y p e / c h o o s e C r i m e s P r o p e r t i e s i n p o l i c e
5 a l i a s s e a r c h C r i m e s = p o r t T y p e / s e a r c h C r i m e s i n p o l i c e
6 a l i a s seeMap = p o r t T y p e / showMap i n googleMaps
7 a l i a s s e e C r i m e s I n f o r m a t i o n = p o r t T y p e / g e t C r i m e D e t a i l i n p o l i c e

9 (c h o o s e C r i m e s P r o p e r t i e s . s e a r c h C r i m e s)* . seeMap . s e e C r i m e s I n f o r m a t i o n

11 d e f c o n t r a c t s e a r c h C r i m e s C o n t r a c t {
12 i s A p p l i e d T o : s e a r c h C r i m e s ;
13 r e q u i r e s : a d d r e s s F o r m a t == ??
14 (o n F a i l u r e D o : c a l l (c h o o s e C r i m e s P r o p e r t i e s)) ;
15 e n s u r e s : ! (g e t C r i m e s (t y p e s) . l e n g t h > 5) ==> f a l s e &&
16 r e s u l t [i] . p e r i o d < 1800
17 (o n F a i l u r e D o : show (g e t C r i m e s I n f o r m a t i o n ())) ;
18 }

20 d e f c o n t r a c t showMapContract {
21 i s A p p l i e d T o : seeMap ;
22 e n s u r e s : s e r v i c e R e s p o n s e . ge tTime () < 5000
23 (o n F a i l u r e D o : s k i p) ;
24 }

Listing 5.2: pi-PEWS Specification: Crime statistic and share information

1 ns p o l i c e = " h t t p : \ \ www. pm . rn . gov . b r / s e r v i c e "
2 ns t w i t t e r = " h t t p s : / / dev . t w i t t e r . com / docs / a p i / "

5 a l i a s s e a r c h C r i m e s = p o r t T y p e / s e a r c h C r i m e s i n p o l i c e
7 a l i a s s e e C r i m e s I n f o r m a t i o n = p o r t T y p e / g e t C r i m e D e t a i l i n p o l i c e
4 a l i a s s e e S t a t i s t i c s = p o r t T y p e / g e t C r i m e S t a t i s t i c s i n p o l i c e
6 a l i a s s h a r e I n f o r m a t i o n = p o r t T y p e / p u b l i s h M e s s a g e i n t w i t t e r

9 s e a r c h C r i m e s . ((s e e C r i m e s I n f o r m a t i o n . s h a r e I n f o r m a t i o n) |
10 s e e S t a t i s t i c s)

12 d e f c o n t r a c t s e a r c h C r i m e s C o n t r a c t {
13 i s A p p l i e d T o : s e a r c h C r i m e s ;
14 r e q u i r e s : a d d r e s s F o r m a t == ??
15 (o n F a i l u r e D o : c a l l (c h o o s e C r i m e s P r o p e r t i e s)) ;
16 e n s u r e s : ! (g e t C r i m e s (t y p e s) . l e n g t h > 5) ==> f a l s e &&
17 r e s u l t [i] . p e r i o d < 1800
18 (o n F a i l u r e D o : show (g e t C r i m e s I n f o r m a t i o n ())) ;
19 }

21 d e f c o n t r a c t s h a r e I n f o r m a t i o n C o n t r a c t {
22 i s A p p l i e d T o : s h a r e I n f o r m a t i o n ;
23 r e q u i r e s : name == ?? AND password == ?? &&
24 c r i m e s [i] . Format == ??
25 (o n F a i l u r e D o : c a l l (s h a r e I n f o r m a t i o n)) ;
26 }

28 d e f c o n t r a c t s e e S t a t i s t i c s C o n t r a c t {
29 i s A p p l i e d T o : s e e S t a t i s t i c s ;
30 r e q u i r e s : c r i m e s [i] . Format == ??
31 (o n F a i l u r e D o : c a l l (s e e S t a t i s t i c s)) ;
32 }

offers three specific services to researchers in neuroscience. The access to services has a cost

and financial revenues are assigned to LAIM. The services are:

• Storage and retrieval medical imaging service (SACim);

• Image processing service (SPim);

• Image visualization service (SVim);

From the functions offered by these services we will detail the application characteristics.

The application uses these services offered by LAIM for modeling the application.

5.3 Case Study 3: GesIMED Application 135

Given the description of the business requirements and the expected functionality of the

system, πSOD-M is used for developing this application.

We will detail the perform image processing business service. In πSOD-M, the π-UseCase

model describes the application functions, restrictions and its non-functional attributes. This

business service (perform image processing) is sufficiently rich to describe the peculiarities of

πSOD-M compared to the original model of SOD-M.

5.3.1 π-UseCase Model

Figure 74 shows the π-UseCase model. This model defines four constraints: authenticate,

response time, data format and validate payment card. These constraints are restrictions over

the functions of the GesIMED application. In the description of each constraint it is necessary

to describe the constraint type (business or value). The model has one business constraint and

three value constraints. It is possible to describe constraints for each use case application.

LAIM

neuroscience researcher

LAIM.SAC

authenticate

<<constraint>>
<<value>>

download resultget results

LAIM.Payment

payment

validate payment card

<<constraint>>
<<value>>

perform processing

<<extend>>

<<include>>

response time

<<constraint>>
<<business>>

provide imagens

<<include>>

data format

<<constraint>>
<<value>>

!privacy! - the user may
have the privacy informations
preserved.

DESCRIPTION - It needs the
@card_name, @user_name and @value
so that the payment is made.

$perform processing$ -
The system must perform the
payment to provide an image.

#security# - The system must
to provide security connection
for payment;

%payment%

$perform processing$ - The system must
to perform the process of provide an image.

#security and reliability# - It needs
security of users' data and
reliability images processed

%perform image processing%

!resource! - restriction on image
data format.

DESCRIPTION - the @image must
be a ".png" or ".pdf".

$perform processing$ - After the
image be processed the user may
download the result.

#availability and reliability# -
The results should always
be available for download.

%perform image processing%

!time constraint! - the user has
restriction of time for response.

DESCRIPTION - the user need a
response in 5 seconds.

!authentication! - the user may
have the informations preserved.

DESCRIPTION - The user must provide
a @id and @password.

Figure 74: π-UseCase: Perform Image Processing.

Besides the constraints, the model details the non-functional attributes related to each con-

straint, for example, the response time constraint. For value constraints, it is necessary identify

candidates variables to be verified, through the use of @. For example, the authentication con-

straint, has the @id and @password identifiers that must be verified.

The main feature of our approach is the association of non-functional requirements with

use cases. For example, the user can identify that the quality requirement related to a payment

process is transactional or data privacy. So, through the process, it is possible to refine this

information, considering other details provided.

5.3 Case Study 3: GesIMED Application 136

<<assertion>>
authenticate

proceed service payments provide images perform processing get results

download results

<<assertion>>
verify payment data

and value

<<assertion>>
payment confirmation

<<assertion>>
image data format

<<assertion>>
response time

<<assertion>>
verify data format

$pre-condition$

id == ?? &&
password == ??#

$pre-condition$

#results <= 2 #

// 2MB

$pre-condition$

#card_name == ?? &&
user_name == ?? &&
value == ?? #

$post-condition$

isPaid == true

$post-condition$

#imageExtension == '.png' ||
imageExtension == '.pdf' #

$post-condition$

#responseTime <= 5 #

Figure 75: π-ServiceProcess: Perform Image Processing.

The result of the π-UseCase model is a detailed list of constraints, its respective use case,

system requirement information and non-functional attributes required for each service.

5.3.2 π-ServiceProcess Model

Figure 75 shows the π-ServiceProcess model. This model transforms the use cases into

actions, and constraints into assertions. The resulting workflow describes pre or post-conditions

on workflow execution. The assertions are wrappers around the action. All the assertions related

to a specific action become a contract. For example, the proceed payments service action has a

pre- and a post-condition. The pre-condition is a restriction over the payment information (card

number, name and value), while the post-condition defines the final state after the payment. The

other assertions of this model are the result of the transformation of each constraint described

in the π-UseCase model.

5.3.3 π-ServiceComposition Model

The π-ServiceComposition model presented in figure 76 refines the π-ServiceProcess

model. This model describes the real services and their associated collaborators. The infor-

mation of the business collaborator comes from the package description. Contracts with the

same non-functional requirements become service policies. The policies define rules, which

are a direct transformation of the assertions in the previous model.

Listing 5.3 shows the π-PEWS specification that was generated from the π-

ServiceComposition model. This specification considers the operations (lines 6-16), its busi-

ness collaborators (namespaces in the lines 1-4), the main workflow (lines 18-20) and services

restrictions (described as contracts in the lines 21-40). The final result of our approach is the

specification that describes the structure and sequence of execution to be performed by an or-

chestrator. π-PEWS specification defines a set of contracts to represent the application restric-

5.4 Lessons Learned 137

authenticate proceed service payments provide images perform processing get results

download results

<<Application | false>>

<<SACim | true>>

<<LAIM | true>>

<<SPim | true>>

<<service>>
verify user id
and password

<<service>>
payment

<<servcice>>
receive image

<<service>>
verify image format

and result

<<service>>
process data

<<service>>
verify execution

time

<<Policy>>

$reliabilityPolicy$
% Reliability %

Rule R1{
@POST@
#imageExtension == '.png' ||
imageExtension == '.pdf'#

!callService(getResults)!
} Rule R2{
@POST@
results > 2#

!abortProcess()!
}

<<Policy>>
$securityPolicy$
% Security %

Rule R1{
@PRE@
#id =?? && password == ??#

!Scope.httpRequest.Credentials =
newNetworkCredential(id,password)!
} Rule R2{
@PRE@
#card_name =?? && user_name == ??
&& value == ??#

! Scope.httpRequest.Payment =
newNetworkPay(card_name, user_name,
value) !
} Rule R3{
@POST@
#isPaid == true#

!callService(provideImage) !
}

<<Policy>>

$performancePolicy$
% Performance %

Rule R1{
@PRE@
#responseTime > 5#

!callService(getResults)!
}

<<service>>
download files

Figure 76: π-ServiceComposition: Perform Image Processing.

tions. Thus, using πSOD-M it is possible to refine the models until the code generation.

5.4 Lessons Learned

This section summarizes the experience we obtained after the use of πSOD-M for the three

case studies.

5.4.1 Case Study 1: To Publish Music

In this case study we can see that the restrictions on web services can be modeled from the

early stages of development, not leaving it to the programming language, or to the programmer

to resolve this type of problem. More specifically, this case study had restrictions performance

and security. Since the π-UseCase model to the π-ServiceComposition model, non-functional

requirements and their attributes might be described without serious impact on the modeling of

other application requirements.

The restrictions on the functions provided by the Spotify service was basically performance.

This type of restriction is not easy to represent in the implementation, because it relies on the

network available to the user. We described the constraints and refined them into a performance

policy for updating the music. The security restrictions have been described for the service that

provides banking information. The security policy generated was described for two functions of

5.4 Lessons Learned 138

Listing 5.3: pi-PEWS Specification: Perform Image Processing

1 ns app = " h t t p : \ \ www. neuro . l a im . org "
2 ns LAIM = " h t t p : \ \ www. neuro . l a im . org / la im´s e r v i c e . wsdl "
3 ns SACim = " h t t p : \ \ www. neuro . l a im . org / sacim´s e r v i c e . wsdl "
4 ns SPim = " h t t p : \ \ www. neuro . l a im . org / spim´s e r v i c e . wsdl "

6 a l i a s a u t h e n t i c a t e = p o r t T y p e / v e r i f y U s e r a n d P a s s w o r d i n LAIM
7 a l i a s p r o c e e d S e r v i c e P a y m e n t = p o r t T y p e / payment i n LAIM
8 a l i a s p r o v i d e I m a g e = p o r t T y p e / p r o v i d e I m a g e i n app
9 a l i a s r e c e i v e I m a g e = p o r t T y p e / r e c e i v e I m a g e i n SACim
10 a l i a s p r o c e s s D a t a = p o r t T y p e / p r o c e s s D a t a i n SPim
11 a l i a s v e r i f y I m a g e F o r m a t A n d R e s u l t = p o r t T y p e / v e r i f y I m a g e F o r m a t A n d R e s u l t i n
12 SACim a l i a s g e t R e s u l t s = p o r t T y p e / v e r i f y E x e c u t i o n T i p e i n LAIM
13 a l i a s d o w n l o a d R e s u l t s = p o r t T y p e / d o w n l o a d F i l e s i n SACim

15 s e r v i c e p e r f o r m P r o c e s s i n g =
16 r e c e i v e I m a g e . p r o c e s s D a t a . v e r i f y I m a g e F o r m a t A n d R e s u l t

18 a u t h e n t i c a t e . p r o c e e d S e r v i c e P a y m e n t . p r o v i d e I m a g e .
19 p e r f o r m P r o c e s s i n g . [a c t (g e t R e s u l t s) . t ime > 5] g e t R e s u l t s .
20 { d o w n l o a d R e s u l t s }

21 d e f c o n t r a c t a u t h e n t i c a t e C o n t r a c t {
22 i s A p p l i e d T o : a u t h e n t i c a t e ;
23 r e q u i r e s : i d == ?? && password = ? ? ;
24 (o n F a i l u r e D o : c a l l (a u t h e n t i c a t e))
25 }

27 d e f c o n t r a c t p a y m e n t C o n t r a c t {
28 i s A p p l i e d T o : p r o c e e d S e r v i c e P a y m e n t ;
29 r e q u i r e s : card_name =?? &&
30 user_name == ?? &&
31 v a l u e == ? ? ;
32 e n s u r e s : i s P a i d == t r u e ;
33 }

35 d e f c o n t r a c t p e r f o r m P r o c e s s i n g C o n t r a c t {
36 i s A p p l i e d T o : p e r f o r m P r o c e s s i n g ;
37 r e q u i r e s : i m a g e E x t e n s i o n == ’ . png ’ | | i m a g e E x t e n s i o n == ’ . pdf ’
38 (o n F a i l u r e D o : s k i p) ;
39 e n s u r e s : r e s u l t V a l u e <= 2 ;
40 }

the Bank service, pay and send confirmation functions. This type of specification can be refined

incrementally by applying the modelling steps defined by the πSOD-M methodology.

This case study does not cover all the possible restrictions in an application but it shows

that it is possible to guarantee quality requirements refining information at each iteration of the

modeling, such as constraints of performance and security.

The difficulty in modeling this case study was the definition of policies for each type of

non-functional requirement. For example, the httpAuthPolicy policy for the authentication on

Facebook service has restrictions from both types, performance and security.

5.4.2 Case Study 2: Crime Map

The most important process when designing a system is the requirement analysis process,

especially identifying the non-functional requirements and the system restrictions. In order to

ease the coding process and let the developer focus on technical issues, the system architecture

must be automatically generated, from the system design.

Using πSOD-M has enabled the explicit specification of functional and non-functional re-

5.4 Lessons Learned 139

quirements and their refinement along the different phases of the development process.

In this case study we can see the restrictions on four web services: Police, Google Maps,

Twitter and Post service. As these services are independent, the constraints of the application

being developed must comply with the service APIs. If a restriction is inconsistent with a

function, there is no guarantee that it will be respected. For example, if the police offers crimes

information on a particular region by type or day, it is not possible to present the restrictions of

a particular time of day, for example, crimes that happen in the afternoon.

This case study has two reliability policies and one security policy. Policies on data are

common, because they are restrictions on the service interface. We notice in the development

of this case study that function restrictions, especially the execution time and time response are

more difficult to ensure.

5.4.3 Case Study 3: GesIMED

The πSOD-M methodology helps to define a detailed description of the application, its

restrictions and non-functional requirements associated with each service. The refinement of the

quality requirements of each level helps to improve the development detail in order to produce a

more reliable application. The NFRs are not only described in a general way, but the restrictions

are designed to each service individually.

Considering the modeling of this case study in SOD-M, the first step of the is to list the

global requirements (business case). Figure 77 shows the use case model for the application.

This model is very simple and describes the main application requirements. The actor is rep-

resented as the “neuroscience researcher”, which is the final consumer of the services to be

implemented. Furthermore, the model is represented as use cases, which describes the main

system business services: “perform image processing3”, “perform image view” and “perform

query”.

The next model is the the extended use cases model. This model is used to model the func-

tionality required by the system to perform each business services. Business services described

in the previous model, become more detailed in the extended use case model. In this model are

described both the application’s features such as the possible services to be performed. Figure

78 presents the extended use case model for perform image processing business service. This

model is detailed in 6 use cases that are necessary for the image processing. The use cases are:

3During our analysis, we will detail the perform image processing requirement, as a way to better understand
the particularities of both methods.

5.4 Lessons Learned 140

neuroscience researcher

perform image processing

perform query

perform image views

Figure 77: Use Case Model [36].

(i) perform image processing; (ii) proceed with the service payment; (iii) provide images; (iv)

authenticate; (v) get results; and (vi) download results.

neuroscience researcher

perform image processing

get results

authenticate

<<include>>

proceed with the service payment

provide images

<<include>>

<<include>>

download results

<<extend>>

Figure 78: Extended Use Case Model [36].

Once identified the different functionalities that are required by the system to perform busi-

ness services, the service process model is used to represent the workflow necessary to perform

a business service. SOD-M represents each business service in different diagrams, which are

shown in the following figures. Figure 79, for the business service “ perform image processing”.

The activities represented in these figures are derived from the basic use cases represented in

the model extended use case.

authenticate proceed service payments provide images perform processing get results

download results

Figure 79: Image Processing - Service Process Diagram [36].

5.5 Conclusions 141

The service composition models represent the processes of composition of the various ac-

tions that are necessary to perform each business service, detailing which business collaborator

performing each action.

<<WS>>
validate credit card

<<WS>>
receive images

<<WS>>
perform image processing

<<WS>>
obtain images

validate user

payment record

select images

define search criteria

present results

save resultsLAIM (SWI)

SACim

SPim

images

images

criteria

images result

Figure 80: Image Processing - Service Composition Diagram [36].

Figure 80 present the details of the services composition for the business service we are

modelling. It is important to realize that the service processes described previously, are refined

by the execution of these service. Notice that SOD-M creates a workflow for each business

service, independently. This workflow is a sequence of services that can be run considering the

system features. Figure 80 presents that the workflow uses the services offered by LAIM to

perform each function, according the SACim, SPim and SVim services. It is also important to

note that the external application services are marked with the stereotype «WS».

The result of applying the SOD-M method is a detailed service composition model from

the business use case, in our specific case the “perform image processing” business service.

Notice that the non-functional properties is not modelled by SOD-M, in contract to πSOD-

M models.

5.5 Conclusions

This chapter presented the use of the πSOD-M methodology, as a form of empirical val-

idation. We described, modeled and implemented three case studies to use concepts, model

properties and detail the process development. The methodology and its concepts supported the

development of applications that use service compositions, mainly in the identification and re-

finement of quality requirements. The use of πSOD-M and its environment can help to identify

the non-functional requirements and improve the system modeling and specification process.

5.5 Conclusions 142

The transformations of models enables the semi-automatic development of applications.

Owing to the generation of the system specification code from the service composition model,

the designer and developer can focus on the description and detail of functional and non-

functional requirements. The generated code contains the expression of the interaction with

services and their associated namespaces. This specification can be executed after the model

transformation.

As the process is iterative and incremental, after the generation of each model it is possible

to make adjustments to the generated model. For example, after the π-UseCase model design

and the generation of π-ServiceProcess model, the designer can make adjustments and improve

the model so that it becomes more expressive.

143

6 Conclusions

Today, access to software, hardware and network resources is done more and more through

services. Building applications implies composing these services according to given require-

ments. Applications must ensure a certain level of compliance to specified requirements and

reliability properties to ensure their quality. Ensuring compliance and reliability of applica-

tions composed by services provided under different conditions and with different functions

and properties is not an easy task and imposes challenges for systems developers.

Non-functional requirements are related to business rules associated to the general seman-

tics of the application and in the case of service based applications, they also concern the use

constraints imposed by the services. Having such business rules expressed and then translated

and associated to the service composition can help to ensure that the resulting application fulfills

user requirements and it considers the characteristics of the services it uses.

The main goal of this work is to provide tools for easing the development of reliable service-

based applications. Our work enables the specification and programming of non-functional

aspects (i.e., atomicity, security, exception handling, persistence). In contrast to approaches

such as WS-*, our work specifies policies for a service composition in an orthogonal way.

Besides, these approaches suppose that non-functional requirements are implemented according

a the knowledge that a programmer has of a specific application requirements but they are not

derived in a methodological way, leading to ad-hoc solutions that can be difficult to reuse. In our

approach, once defined policies for a given application they can be reused and/or specialized for

another one with the same requirements or that uses services that impose the same constraints.

6.1 Main Contributions

This thesis presented a methodology for specifying and designing reliable service based

applications. We model and associate policies to service-based applications that represent both

systems’ cross-cutting aspects and use constraints stemming from the services used for imple-

6.2 Future Work 144

menting them.

We provide a platform for implementing the methodology, implemented through an Eclipse

plugin environment.

πSOD-M is proposed for the developing of service-oriented applications, helping to en-

sure quality requirements. This work also proposes a set of concepts for the modeling and

refinement of non-functional properties, such as, constraint, contract, assertion, policy, rules,

non-functional requirement and non-functional attribute.

Evaluations were made, showing that the development process based on πSOD-M produces

satisfactory results with respect to the modeling and refinement of quality requirements. We also

noticed that grouping contracts with non-functional attributes into a single policy, produces a

more effective result in the generation of the specification, and therefore in the verification of

these properties.

Another contribution of our proposal is the integration of the methodology concepts in a

MDA-based development. πSOD-M is a method that proposes meta-models at different levels

(CIM, PIM and PSM) and extending the PSM meta-models. It enables the design and develop-

ment of service-based applications that can be reused.

We also extended the PEWS language [80] (into π-PEWS) to add the contract specification

and temporal modeling restrictions for services. We also extended the plugin for specification

and generation of XML representation of PEWS [27]. The plugin also supports the verification

of each service functions [39], whether it is active or not. This tool supports the methodology

after the generation of the specification from the models described.

6.2 Future Work

This thesis proposes a comprehensive methodology that can offer a range of possibilities for

extension in future work. Future work is organized into validation, development and research

tasks:

• Validation:

– Validate πSOD-M to perform a more quantitative analysis;

– Compare the generated code and implementation specifications with different lan-

guages;

6.2 Future Work 145

– Describe software product lines related with reliable services applications that could

be generated from the use of πSOD-M;

– Analyze the variability of non-functional requirements proposed by πSOD-M.

• Development:

– Develop the π-PEWS environment (back-end) and then run validation experiments

again;

– Improve development environment that support the methodology, with visual tools

and with execution environment, running in different platforms.

• Research tasks:

– Define meta-models at the PSM level for generating code in other languages;

– Formalize the transformation rules at different levels of the methodology;

– Define of meta-models in the CIM level to represent business and system require-

ments, despite the original proposal offer e-value and BPMN models. It would be

important to do a more thorough search in regarding these requirements to represent

the independent level computing.

146

References

[1] The Rational Unified Process Made Easy: A Practitioner’s Guide to the RUP: A Practi-
tioner’s Guide to the RUP. Addison-Wesley, 2003.

[2] Business Process Management, Second Edition: Practical Guidelines to Successful Im-
plementations. Elsevier, 2008.

[3] Arsanjani A., Ghosh S., Allam A., Abdollah T., Ganapathy S., and Holley K. SOMA: A
method for developing service-oriented solutions. IBM System Journal, 47(3), 2008.

[4] Brown et. al A. SOA Development Using the IBM Rational Software Development Plat-
form: A Practical Guide. In Rational Software, 2005.

[5] S. Abiteboul, O. Benjelloun, and T. Milo. Towards a flexible model for data and web
services integration. In proc. Internat. Workshop on Foundations of Models and Languages
for Data and Objects, 2001.

[6] Jean-Raymond Abrial, Matthew K. O. Lee, David Neilson, P. N. Scharbach, and Ib Holm
Sï¿½rensen. The b-method. In Sï¿½ren Prehn and W. J. Toetenel, editors, VDM Europe
(2), volume 552 of Lecture Notes in Computer Science, pages 398–405. Springer, 1991.

[7] Sudhir Agarwal, Steffen Lamparter, and Rudi Studer. Making web services tradable: A
policy-based approach for specifying preferences on web service properties. J. Web Sem.,
7(1):11–20, 2009.

[8] James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.

[9] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank
Leymann, Kevin Liu, Didier Roller, Doug Smith, Satish Thatte, Ivana Trickovic, and San-
jiva Weeranwarana. Bussiness process execution language for web services. Available at
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/, 2003.

[10] Assaf Arkin, Sid Askary, Scott Fordin, Wolfgang Jekeli, Kohsuke Kawaguchi, David Or-
chard, Stefano Pogliani, Karsten Riemer, Susan Struble, Pal Takacsi-Nagy, Ivana Trick-
ovic, and Sinisa Zimek. Web service choreography interface. Technical report, World
Wide Web Consortium, 2002.

[11] Ali Arsanjani. SOMA: Service-Oriented Modeling and Architecture. Technical report,
IBM, DisponÃvel em <http://www.ibm.com/developerworks/library/ws-soa-design1/>,
2004.

[12] Daniel Austin, Abbie Barbir, Ed Peters, and Steve Ross-Talbot. Web services chore-
ography requirements. Available at http://www.w3.org/TR/2004/WD-ws-chor-reqs-
20040311/, March 2004. W3C Working Draft.

References 147

[13] Cheikh Ba, Mirian Halfeld Ferrari, and Martin A. Musicante. Composing web services
with PEWS: A trace-theoretical approach. In IEEE European Conference on Web Services
(ECOWS), pages 65–74, 2006.

[14] S.M. Babamir, S. Karimi, and M.R. Shishechi. A broker-based architecture for quality-
driven web services composition. In Computational Intelligence and Software Engineer-
ing (CiSE), 2010 International Conference on, pages 1 –4, dec. 2010.

[15] Arindam Banerji, Claudio Bartolini, Dorothea Beringer, Venkatesh Chopella, Kannan
Govindarajan, Alan Karp, Harumi Kuno, Mike Lemon, Gregory Pogossiants, Shamik
Sharma, and Scott Williams. Web services conversation language (wscl) 1.0. Available at
http://www.w3.org/TR/2002/NOTE-wscl10-20020314/, 2002.

[16] David A. Basin, Jürgen Doser, and Torsten Lodderstedt. Model driven security: From uml
models to access control infrastructures. ACM Trans. Softw. Eng. Methodol., 15(1):39–91,
2006.

[17] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L. McGuin-
ness, Peter F. Patel-Schneider, and Lynn Andrea Stein. Owl web ontology language. Tech-
nical report, W3C - http://www.w3.org/TR/owl-ref/, 2004.

[18] Khalid Belhajjame, Christine Collet, and Genoveva Vargas-Solar. A flexible workflow
model for process-oriented applications. In WISE (1), pages 72–, 2001.

[19] M. Bell. Service-Oriented Modeling: Service Analysis, Design, and Architecture. 2008.

[20] Michael Bell. Service-Oriented Modeling (SOA): Service Analysis, Design, and Architec-
ture. John Wiley, 2008.

[21] Domenico Bianculli, Carlo Ghezzi, Paola Spoletini, Luciano Baresi, and Sam Guinea. A
guided tour through savvy-ws: A methodology for specifying and validating web service
compositions. In Lipari Summer School, pages 131–160, 2007.

[22] Egon Börger and Antonio Cisternino, editors. Advances in Software Engineering, Lipari
Summer School 2007, Lipari Island, Italy, July 8-21, 2007, Revised Tutorial Lectures,
volume 5316 of Lecture Notes in Computer Science. Springer, 2008.

[23] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Hen-
rik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple object access protocol (soap).
Technical report, World Wide Web Consortium, 2000.

[24] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications. Int. J. Softw. Tools Technol.
Transf., 7(3):212–232, 2005.

[25] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web
services. In POPL, pages 261–272, 2008.

[26] Stefano Ceri, Florian Daniel, Maristella Matera, and Federico Michele Facca. Model-
driven development of context-aware web applications. ACM Trans. Internet Techn., 7(1),
2007.

References 148

[27] Ba Cheikh, Aurélio Carrero Marcos, Halfeld-Ferrari Mirian, and Musicante Martin Ale-
jandro. PEWS: A New Language for Building Web Service Interfaces. J. UCS,
11(7):1215–1233, 2005.

[28] Ba Cheikh, Halfeld-Ferrari Mirian, and Musicante Martin Alejandro. Composing Web
Services with PEWS: A Trace-Theoretical Approach. In ECOWS, pages 65–74, 2006.

[29] Stéphanie Chollet and Philippe Lalanda. An extensible abstract service orchestration
framework. In ICWS, pages 831–838, 2009.

[30] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web
services description language (wsdl) 1.1. Technical report, World Wide Web Consortium,
2001. DisponÃvel em http://www.w3.org/TR/wsdl.

[31] Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Peter Solc. The detection and
classification of non-functional requirements with application to early aspects. In RE,
pages 36–45, 2006.

[32] Standards Committee. Ieee recommended practice for software requirements specifica-
tions. Practice, 1998(October):37.

[33] Luiz Marcio Cysneiros, Julio Cesar Sampaio do Prado Leite, and Jaime de Melo
Sabat Neto. A framework for integrating non-functional requirements into conceptual
models. Requir. Eng., 6(2):97–115, 2001.

[34] Andrea D’Ambrogio. A model-driven wsdl extension for describing the qos ofweb ser-
vices. In ICWS, pages 789–796, 2006.

[35] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In ESEC / SIGSOFT FSE,
pages 109–120, 2001.

[36] María Valeria de Castro. Aproximacíon MDA para el Desarrollo Orientado a Servicios
de Sistemas de Informacíon Web: Del Modelo de Negocio al Modelo de Composicíon de
Servicios Web. PhD thesis, Universidad Rey Juan Carlos - Escuela Técnica Superior de
Ingeniería de Telecomunicación, 2007.

[37] Valeria de Castro, Esperanza Marcos, and Juan M. Vara. Applying cim-to-pim model
transformations for the service-oriented development of information systems. Information
& Software Technology, 53(1):87–105, 2011.

[38] Valeria de Castro, Esperanza Marcos, and Roel Wieringa. Towards a service-oriented
mda-based approach to the alignment of business processes with it systems: From the
business model to a web service composition model. International Journal of Cooperative
Information Systems, 18(2), 2009.

[39] Plácido A. de Souza Neto, Handerson Bezerra Medeiros, and Roberto Hallais Neto. Plugin
extrator para verificação de composições pews. HOLOS, V.3:84–106, 2012. Avaiable in
«http://www2.ifrn.edu.br/ojs/index.php/HOLOS/».

[40] N. Dhyanesh, G. C. Vineel, and S. V. Raghavan. Devise: A methodology for building web
services based infrastructure for collaborative enterprises. In Proceedings of the Twelfth
International Workshop on Enabling Technologies: Infrastructure for Collaborative En-
terprises, WETICE ’03, pages 12–, Washington, DC, USA, 2003. IEEE Computer Society.

References 149

[41] Vassiliki Diamadopoulou, Christos Makris, Yannis Panagis, and Evangelos Sakkopoulos.
Techniques to support web service selection and consumption with qos characteristics. J.
Network and Computer Applications, 31(2):108–130, 2008.

[42] Javier-Alfonso Espinosa-Oviedo, Genoveva Vargas-Solar, José-Luis Zechinelli-Martini,
and Christine Collet. Non-functional properties and services coordination using contracts.
In IDEAS, pages 307–310, 2009.

[43] J. Fabra, V. De Castro, P. ï¿½lvarez, and E. Marcos. Automatic execution of business
process models: Exploiting the benefits of model-driven engineering approaches. Journal
of Systems and Software, (0):–, 2011.

[44] George Feuerlicht and Sooksathit Meesathit. Towards software development methodology
for web services. In SoMeT, pages 263–277, 2005.

[45] Hamido Fujita and Mohamed Mejri, editors. New Trends in Software Methodologies,
Tools and Techniques - Proceedings of the Fifth SoMeT 2005, September 28-30, 2005,
Tokyo, Japan, volume 129 of Frontiers in Artificial Intelligence and Applications. IOS
Press, 2005.

[46] Marie-Pierre Gervais. Towards an mda-oriented methodology. In COMPSAC, pages 265–
270, 2002.

[47] Martin Glinz. Rethinking the notion of non-functional requirements. In in Proceedings of
the Third World Congress for Software Quality (3WCSQ’05, pages 55–64, 2005.

[48] Jaap Gordijn and Hans Akkermans. Value based requirements engineering: Exploring
innovative e-commerce ideas. REQUIREMENTS ENGINEERING JOURNAL, 8:114–134,
2002.

[49] ATLAS Group. Atl: Atlas transformation language. Technical report, ATLAS Group,
LINA & INRIA, February, 2006.

[50] Carlos Gutiérrez, David G. Rosado, and Eduardo Fernández-Medina. The practical appli-
cation of a process for eliciting and designing security in web service systems. In JISBD,
pages 143–143, 2010.

[51] Rachid Hamadi and Boualem Benatallah. A petri net-based model for web service com-
position. In ADC, pages 191–200, 2003.

[52] R. Heckel and M. Lohmann. Towards contract-based testing of web services. In Mauro
Pezzé, editor, Proceedings of the International Workshop on Test and Analysis of Compo-
nent Based Systems (TACoS 2004), volume 116, pages 145–156, 2005.

[53] IEEE. Ieee standard computer dictionary. a compilation of ieee standard computer glos-
saries. IEEE Std 610, 1991.

[54] Ariba Inc., IBM Corp., , and Microsoft Corp. Universal description, discovery, and inte-
gration (uddi). Technical report, UDDI.org, 2000.

[55] Espinosa-Oviedo Javier-Alfonso, Vargas-Solar Genoveva, Zechinelli-Martini José-Luis,
and Collet Christine. Policy driven services coordination for building social networks
based applications. In In Proc. of the 8th Int. Conference on Services Computing (SCC’11),
Work-in-Progress Track, Washington, DC, USA, July 2011. IEEE.

References 150

[56] Buhwan Jeong, Hyunbo Cho, and Choonghyun Lee. On the functional quality of ser-
vice (fqos) to discover and compose interoperable web services. Expert Syst. Appl.,
36(3):5411–5418, 2009.

[57] Barbara A. Kitchenham, Hiyam Al-Kilidar, Muhammad Ali Babar, Mike Berry, Karl Cox,
Jacky Keung, Felicia Kurniawati, Mark Staples, He Zhang, and Liming Zhu. Evaluating
guidelines for reporting empirical software engineering studies. Empirical Software En-
gineering, 13(1):97–121, 2008.

[58] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and David R. Cok. How
the design of jml accomodates both runtime assertion checking and formal verification. In
FMCO, pages 262–284, 2002.

[59] Dewi Mairiza, Didar Zowghi, and Nur Nurmuliani. An investigation into the notion of
non-functional requirements. In SAC, pages 311–317, 2010.

[60] D Martin, M Burstein, J Hobbs, O Lassila, D McDermott, S McIlraith, S Narayanan,
M Paolucci, B Parsia, T Payne, et al. Owl-s: Semantic markup for web services. W3C
Member Submission 22, 2004.

[61] Reginaldo Mendes, Paulo F. Pires, Flávia Coimbra Delicato, and Thaís Vasconcelos
Batista. Webflowah: an environment for ad-hoc specification and execution of web
services-based processes. In SAC, pages 692–693, 2009.

[62] Nikola Milanovic. Contract-based web service composition framework with correctness
guarantees. In ISAS, pages 52–67, 2005.

[63] Nikola Milanovic. Contract-based Web Service Composition. PhD thesis, Humboldt-
Universitat - Berlin, 2006.

[64] Nikola Milanovic. Service engineering design patterns. In SOSE, pages 19–26, 2006.

[65] Nikola Milanovic and Miroslaw Malek. Architectural support for automatic service com-
position. In IEEE SCC, pages 133–140, 2005.

[66] Nikola Milanovic and Miroslaw Malek. Search strategies for automatic web service com-
position. Int. J. Web Service Res., 3(2):1–32, 2006.

[67] J. Miller and J. Mukerji. Mda guide. 2003.

[68] Giuseppe Di Modica, Orazio Tomarchio, and Lorenzo Vita. Dynamic slas management in
service oriented environments. Journal of Systems and Software, 82(5):759–771, 2009.

[69] Ramakanta Mohanty, V. Ravi, and Manas Ranjan Patra. Web-services classification using
intelligent techniques. Expert Syst. Appl., 37(7):5484–5490, 2010.

[70] M. Musicante and E. Potrich. Expressing workflow patterns for web services: The case of
PEWS. 12(9), september 2006.

[71] Martin A. Musicante, Edinardo Potrich, and Marcos Aurélio Carrero. A programming
environment for web services. In SAC, pages 2363–2367, 2008.

[72] Jonathan Musset, Etienne Juliot, and Stéphane Lacrampe. Acceleo référence. Technical
report, Obeo et Acceleo, 2006.

References 151

[73] Eila Ovaska, Antti Evesti, Katja Henttonen, Marko Palviainen, and Pekka Aho. Knowl-
edge based quality-driven architecture design and evaluation. Information & Software
Technology, 52(6):577–601, 2010.

[74] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented Computing:
State of the Art and Research Challenges. IEEE Computer, 40(11), 2007.

[75] Mike P. Papazoglou. Service-Oriented Computing: Concepts, Characteristics and Direc-
tions. In WISE, pages 3–12, 2003.

[76] Mike P. Papazoglou, Klaus Pohl, Michael Parkin, and Andreas Metzger, editors. Service
Research Challenges and Solutions for the Future Internet - S-Cube - Towards Engineer-
ing, Managing and Adapting Service-Based Systems, volume 6500 of Lecture Notes in
Computer Science. Springer, 2010.

[77] Mike P. Papazoglou and Willem-Jan van den Heuvel. Service-oriented design and devel-
opment methodology. Int. J. Web Eng. Technol., 2(4):412–442, 2006.

[78] Jose Luis Pastrana, Ernesto Pimentel, and Miguel Katrib. Qos-enabled and self-adaptive
connectors for web services composition and coordination. Computer Languages, Systems
& Structures, 37(1):2–23, 2011.

[79] Paulo F. Pires, Mario R. F. Benevides, and Marta Mattoso. Building reliable web services
compositions. In Web, Web-Services, and Database Systems, pages 59–72, 2002.

[80] Souza Neto Plácido A., Musicante Martin Alejandro, Vargas-Solar Genoveva, and
Zechinelli-Martini José-Luis. Adding Contracts to a Web Service Composition Language.
LTPD - 4th Workshop on Languages and Tools for Multithreaded, Parallel and Distributed
Programming, September 2010.

[81] Alberto Portilla, Tan Hanh, and Javier-Alfonso Espinosa-Oviedo. Building reliable mobile
services based applications. In ICDE Workshops, pages 121–128, 2008.

[82] Ervin Ramollari, Dimitris Dranidis, and Anthony J. H. Simons. A survey of service ori-
ented development methodologies.

[83] Gwen Salaün, Lucas Bordeaux, and Marco Schaerf. Describing and reasoning on web
services using process algebra. In Proceeding of the 2nd International Conference on Web
Services, IEEE, 2004.

[84] Benjamin Schmeling, Anis Charfi, and Mira Mezini. Composing non-functional concerns
in composite web services. In ICWS, pages 331–338, 2011.

[85] Ian Sommerville. Software Engineering 6th Edition. Addison Wesley, 2008.

[86] Andrew Stellman and Jennifer Greene. Applied software project management. O’Reilly,
2005.

[87] S. Thatte. Xlang: Web services for business process design. Technical report, 2001.

[88] Dirk Thißen and Pimjai Wesnarat. Considering qos aspects in web service composition.
In ISCC, pages 371–377, 2006.

References 152

[89] Rachatrin Tongrungrojana and David Lowe. Wied: A web modelling language for mod-
elling architectural-level information flows. J. Digit. Inf., 5(2), 2004.

[90] Anargyros Tsadimas, Mara Nikolaidou, and Dimosthenis Anagnostopoulos. Extending
sysml to explore non-functional requirements: the case of information system design. In
SAC, pages 1057–1062, 2012.

[91] W. M. P. van der Aalst. Don’t go with the flow: Web services compositions standards
exposed. Issue of IEEE Inteligent System, Jan/Feb 2003.

[92] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Alistair P.
Barros. Workflow patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[93] H. M. W. Verbeek and W. M. P. van der Aalst. Analyzing BPEL processes using Petri nets.
In D. Marinescu, editor, Proceedings of the Second International Workshop on Applica-
tions of Petri Nets to Coordination, Workflow and Business Process Management, pages
59–78, Miami, Florida, USA, 2005. Florida International University.

[94] A. Watson. A brief history of MDA, 2008.

[95] Hua Xiao, Brian Chan, Ying Zou, Jay W. Benayon, Bill O’Farrell, Elena Litani, and Jen
Hawkins. A framework for verifying sla compliance in composed services. In ICWS,
pages 457–464, 2008.

[96] Gwyduk Yeom, Taewoong Yun, and Dugki Min. Qos model and testing mechanism for
quality-driven web services selection. In Proceedings of the The Fourth IEEE Workshop
on Software Technologies for Future Embedded and Ubiquitous Systems, and the Second
International Workshop on Collaborative Computing, Integration, and Assurance (SEUS-
WCCIA’06), pages 199–204, Washington, DC, USA, 2006. IEEE Computer Society.

[97] Xinwen Zhang, Francesco Parisi-Presicce, Ravi S. Sandhu, and Jaehong Park. Formal
model and policy specification of usage control. ACM Trans. Inf. Syst. Secur., 8(4):351–
387, 2005.

153

APPENDIX A -- Source Selection and Analysis
Method: Non-Functional
Requirements for Service-Based
Applications

We selected the sources proposed by [57] for searching primary studies. These sources

contain the works published in journals, conferences and workshops which are of recognized

quality within the research community. The search for bibliography was performed in the en-

gines are: (i) IEEE Computer; (ii) ACM Digital Library; and (iii) Science Direct. For each of

the the selected sources, we used the following search query criteria:

(((“non functional properties”) OR (“non functional

requirements”)) AND “web service” AND “composition”))

After define the sources’ selection, we identify those works that provided direct evidence

with regard to the research questions. Deciding for the inclusion and exclusion criteria for filter-

ing the corpus works selection, we selected those related to non-functional requirements/prop-

erties, and quality for web service based applications. Initially, the selection criteria were inter-

preted liberally and clear exclusions were only made with regard to title, abstract and introduc-

tion.

Based on the guidelines mentioned in [57], we established a three-step with different selec-

tion criteria:

• Step 1 - the search string must be run on the selected search engine. An initial set of

studies was obtained by filtering of title, abstract, and if necessary, introduction. All the

studies were selected according to the inclusion and exclusion criteria. Studies which

were not clearly related to any aspect of the research questions were excluded.

Appendix A -- Source Selection and Analysis Method: Non-Functional Requirements for Service-Based Applications 154

IEEE Explorer ACM Library Science Direct Total
Total results 65 271 (75 1) 166 502 (306 2)
Step one - results selected 19 10 20 49
Step one - results selected (%) 29.23% 13.33% 12% 16%
Step two - results selected 7 3 9 19
Step two - results selected (%) 10.76% 4% 5.42% 6.20%

Table 8: Summary of the studies selected at each step.

• Step 2, the exclusion criteria were based on the following practical issues: non-English

papers, non- International Conference papers and non-International Workshop papers.

Specifically in the case of ACM library, we considered only the transaction journal works.

• Step 3, the papers selection process was based on detailed research questions (RQ1 to

RQ7).

The information for each step was collected considering the 3 searchers and the the query

presented previously. the results of each step were: (i) for each source a list of all the studies

that fulfilled the query; (ii) a list of studies for each source which contained all the works that

did not fulfill the second stage inclusion criteria; and (iii) the last step produced a list of works

for each source which contained all the studies that fulfilled the second step (table 8).

The extraction of information was based on the research questions, and each work extrac-

tion question included the following items: (i) where the paper was found; (ii) identification of

the title and main subjects; (iii) summary of the research; (iv) inclusion and exclusion criteria;

(v) objective and result; and (vi) subjective results.

Table 8 shows a summary of the studies selected in each stage of the selection procedure

for each source. The “Total results” were obtained by running the search string on the selected

sources. The next four rows show the results obtained after applying stages one (2 first rows)

and two (2 last rows) of the studies selection procedure.

In the first step, respecting the filters described, the 65 articles collected from IEEE, only

29.23% of them were in accordance with the criteria described early, representing 19 articles. In

ACM Library, from 75 works collected, only 13.33% passed in the first stage filter, representing

10 articles. In Science Direct had the lowest percentage, totaling 20 of the 166 articles collected

by the query, thus representing 12% of the total. Despite being the lowest relative value, the

Science Direct had the largest absolute result, with 20 works in the first step. In the second stage,

the percentage dropped further, and the relevant works and with accordance to the criteria have

been collected as the final result. The results were respectively, 10.76%, 4% and 5.42% of total

Appendix A -- Source Selection and Analysis Method: Non-Functional Requirements for Service-Based Applications 155

Figure 81: Publications per year.

from the IEEE, ACM and Science Direct. The highest percentage was among the works from

IEEE, while the largest number od results, in absolute terms, was collected from Science Direct.

The approaches resulting from this last stage were studied in depth and information concerning

the detailed research questions and other fields of the extraction forms was extracted from each

eork we selected. 49 works were selected in the first stage, and, only 19 works in the second

stage. It represents 6.20% of the total amount of works.

Figure 81 shows the publications per year, from 2005 to 2011. 12 of 19 articles were

selected in the systematic review published in 2006, 2009 and 2010, being four in each year and

6 in Science Direct source, 5 in IEEE, and only 1 at the ACM. All nine of Science Direct were

published in the last 4 years. Figure also shows that the number of publications that consider

classification of NFR once again increased from 2008.

156

APPENDIX B -- Service-Based Non-Functional
Requirement Concepts

• NON-FUNCTIONAL (NF) ATTRIBUTE - An attribute that describes the quality or char-

acteristics of a functional requirement. For example confidentiality and privacy may be

non-functional attributes for the functional requirement user registration.

• NON-FUNCTIONAL (NF) REQUIREMENT - A group of semantically correlated non-

functional attributes (NFA). For example, security is an NF Requirement that comprises

attributes such as confidentiality and integrity.

• CONSTRAINT - A constraint prevents the system from achieving more than its goal. With

the definition of constraints, the system can be more robust, and unexpected problems can

be solved before they happen. For example, in a banking system, the customer can only

withdraw money if they have positive balance in the account.

• CONSTRAINT TYPE - Represents the types of constraints that could be expressed, the

types are: business and data (*value) constraints. When modeling a system requirement

the analyst can identify if there are restrictions on business, or data, or both.

• CONTRACT - Is the formalization of obligations (requires) and benefits (ensures) of a

function, service activity or component. The following questions can be used to define

contracts: What does it expect? What does it guarantee? Contract can be crucial to

software correctness that they should be part of the design process.

• EXCEPTIONAL BEHAVIOUR - Are alternative execution paths if any condition or restric-

tion is not respected. For example, if a user’s password is not correct after three attempts,

the user’s account is locked for security.

• POLICY - A policy is a set of rules applied to a particular scope. This scope can be defined

as an action, an activity, a function or a workflow. A policy is a composition of contracts

Appendix B -- Service-Based Non-Functional Requirement Concepts 157

applied to a non-functional application requirement. For example, a security policy of a

system constraint includes authentication, access, data privacy, and so on.

• USE CASE - Represents a behavior that can be executed in order to realize (parts of) a

functional requirement.

• REQUIREMENT - A requirement is a super type for functional and non-functional require-

ments. Thus, the use cases can be related to both types of requirements.

• SERVICE ACTIVITY - Represents a function of a software system or its component that

are implemented through services. A Service Activity may be calculations, technical de-

tails, data manipulation and processing and other specific functionality that are available

to be accessed on the Internet.

158

APPENDIX C -- π-PEWS Language

π-PEWS specifies assertions that are checked during the execution of a program. These

assertions describe pre- and post-conditions for a given operation or compound service. In the

case these conditions are not verified, the contract defines correcting actions (described as a

PEWS path expression). The grammar defining the new language is defined as follows: A

π-PEWS program is similar to a PEWS program, but with the possibility of adding contract

definitions at the end of the program. Path expressions, defining the service workflow, are

described by the Service non-terminal of the grammar below. Since contracts and workflow are

separate concerns, the syntax of path expressions remain unchanged, from the original version

of the language.

(1) Program ::= v p“var” id ““”ArithExpq˚ p“service” id ““”Serviceq˚Service Contract˚ w

(2) Service ::= v id w | v Service “.” Service w | v Service“`” Service w | v Service“}” Service w

| v Service“˚” w | v “r” BooleanCondition “s” Service w | v “t” Service “u” w

The definition of contracts is given below. It includes a name for the contract, as well as its

four component sections:

‚ Target service of the contract: This section specifies the service to which the contract applies.

This can be an operation or a compound service (which also defines a scope for the contract).

‚ Preconditions and their actions. This section defines the assertions that will be verified before

the target service is executed.

‚ Post-conditions and their actions. This section defines the assertions that will be verified at the

end of the target service execution.

‚ Time constraints for the services on the contract scope.

(3) Contract ::= v “def” “Contract” Id “{” IsAppliedTo Requires* Ensures* (TimeConstraint)? “}” w

Appendix C -- π-PEWS Language 159

The directive “isAppliedTo:” defines the target service and scope of the contract. This

service is given by the identifier appearing next to the keyword. The target service can be a

simple operation or a compound service. In the former case, the contract cannot contain any

time restriction. In the case of a contract defined for a compound service, the operations and

services that form the contract can participate of the time constraint expressions defined by the

contract.

(4) isAppliedTo ::= v “isAppliedTo” “:” ident “;” w

The “requires” and “ensures” parts of a contract define the pre-conditions (resp. post-

conditions) to be checked for each contract. In the case of pre-conditions, they will be verified

before the service is executed. Post-conditions will be checked after the execution of the service.

In both cases, when the assertion fails, the associated action will be executed. Actions are

defined as services, and written as PEWS path expressions.

(5) Requires ::= v “requires” BooleanCondition (“(” onFailureDo “)”)? “;” w

(6) ensures ::= v ‘ensures’ BooleanCondition (“(” onFailureDo “)”)? “;” w

(7) onFailureDo ::= v ‘onFailureDo’ Service w

Time Constraints are defined as relational expressions build from the operators.

(8) timeConstraint ::= v ‘timeConstraint’ ‘:’ (v “meet” w | v “start” w | v “overlap” w)

‘(’ (opName | timeConstraint) ‘,’ (opName | timeConstraint) ‘)’ w

The model of temporal relations proposed here follows the main ideas presented in [8,

18]. The model is used to impose additional restrictions to the order in which operations of

a web service are performed at execution time. For example, the confirmation of the bank

authorization request must arrive at most one minute after the service call.

A service composition time relation is represented by the following model: Let Ω be a

set of web services (ω1, . . ., ωn) to be composed and Θ, a set of temporal relations rt
that can be applied to Ω. Temporal relations are defined by predicates rt : Ω x Ω, where

rt P t meet, overlap, start u.

For example, the expression meet(ω1, ω2) states that the execution of operation ω2 will

begin as soon as ω1 finishes. The temporal relations are described below:

Meet. The restriction specified by meet(ω1, ω2) specifies that ω2 will be executed immediately

after ω1 finishes.

Appendix C -- π-PEWS Language 160

Overlap. The constraint given by overlap(ω1, ω2) states that execution of the two services

overlap in time. The restriction also states that the service ω1 initiates before ω2.

Start. The specification of start(ω1, ω2) states that the two services have their execution in

parallel and that they start at the same time.

161

APPENDIX D -- To Publish Music Case Study
Diagrams

listen music

buy music

download music

search music select music

buy? no

<<assertion>>
verify user data

<<assertion>>
verify payment data

and check value

<<assertion>>
payment confirmation

<<assertion>>
authorization to

download

$pre-condition$

nameSpotify == ?? &&
passwordSpotify == ?? #

$pre-condition$
(bankBalance > ?value) &&
cardName == ?? &&
cardNumber == ?? &&
cardValid >= ??#

$post-condition$
(paymentOk == true) ==>
numVaucher == ?? #

$ post-condition$
(authozationOk == true) ==>
messageUser == 'download ok' #

buy? yes

<<assertion>>
verify song data

format

<<assertion>>
check user and

password
publish twitter

<<assertion>>
check spotify

user data
publish facebook

<<assertion>>
send notification

publish? yes, twitter

publish? yes, facebook

$pre-condition$

#songFormat == ??#

$pre-condition$

name == ?? &&
password == ??#

$pre-condition$

spotifyLogin == facebookLogin &&
spotifyPassw == facebookPassw #

$post-condition$

notification == 'published'

Figure 82: π-ServiceProcess - To Publish Music.

A
ppendix

D
--To

P
ublish

M
usic

C
ase

Study
D

iagram
s

162

app

app.bank

pay by cardpay by paypal

pay

<<extend>>
<<extend>>

app.spotify

listen music

spotify

receivePaimentdownload music

buy music

<<include>>

<<include>>

app.twitter

publish twitter
update music

<<extend>>

user

app.facebook

publish facebook

<<extend>>

user must authenticate

<<constraint>>
<<value>>

!authentication! - the user must proceed
with login.
DESCRIPTION - To update a @song,
the user must log in to social
networking. The user must provide @id,
@password, and pass the @song data.

user login

<<constraint>>
<<value>>

The User must be
logged in and the
connection should
be secure

security http

<<constraint>>
<<business>>

transaction

<<constraint>>
<<value>>

- The minimum payment
value is 2 euros;
- It needs the card or paypal
user data so that the
payment is made.

$publish music$ - The user can publish
the song in a social network;

#security# - The system must to provide
security of data for publish the music;

%publish music%

Figure 83: π-UseCase - To Publish Music.

A
ppendix

D
--To

P
ublish

M
usic

C
ase

Study
D

iagram
s

163

Figure 84: π-ServiceComposition - To Publish Music.

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Objectives and Main Results
	1.3 Document Organization

	2 State of the Art
	2.1 Non-Functional Requirements for Service-Based Applications
	2.1.1 Concepts and Works
	2.1.2 Analysis

	2.2 Methodologies for Service Oriented Development
	2.2.1 Concepts and Works
	2.2.2 Analysis

	2.3 Classification of Non-Functional Requirements for Service-Based Applications
	2.3.1 NFR Meta-Model
	2.3.2 NFR Classification

	2.4 Conclusions

	3 SOD-M: A Methodology for Building Reliable Service Based Applications
	3.1 SOD-M
	3.1.1 General Overview
	3.1.2 Development Process
	3.1.3 Methodology Concepts
	3.1.4 Case Study

	3.2 Platform Independent Models
	3.2.1 -UseCase Model
	3.2.1.1 -UseCase Diagram, Terms and Concepts
	3.2.1.2 Meta-model
	3.2.1.3 UML Concepts Representation
	3.2.1.4 To Publish Music Use Case

	3.2.2 -ServiceProcess Model
	3.2.2.1 -ServiceProcess Diagram, Terms and Concepts
	3.2.2.2 Meta-model
	3.2.2.3 UML Concepts Representation
	3.2.2.4 To Publish Music Process

	3.2.3 -ServiceComposition Model
	3.2.3.1 -ServiceComposition Diagram, Terms and Concepts
	3.2.3.2 Meta-model
	3.2.3.3 UML Concepts Representation
	3.2.3.4 Publish Music Service Composition

	3.3 -PEWS Platform Specific Models
	3.3.1 -PEWS Specification, Terms and Concepts
	3.3.2 Meta-model

	3.4 Model Transformations
	3.4.1 From -UseCase to -ServiceProcess
	3.4.2 From -ServiceProcess to -ServiceComposition
	3.4.3 From -ServiceComposition to -PEWS

	3.5 Conclusions

	4 SOD-M Environment
	4.1 General Architecture
	4.1.1 Ecore Meta-models (Models Plugin Module)
	4.1.2 Model Transformation (Mapping Plugin Module)
	4.1.2.1 -UseCase2ServiceProcess Transformation Rules
	4.1.2.2 -ServiceComposition2-PEWS Transformation Rules

	4.1.3 Code Generation (Code Generation Module)

	4.2 Defining Reliable Service Based Applications
	4.2.1 -UseCase Model
	4.2.2 -ServiceProcess Models
	4.2.3 -ServiceComposition Models
	4.2.4 -PEWS Models

	4.3 Extending the Environment
	4.4 Conclusion

	5 Validation
	5.1 Case Study 1: To Publish Music
	5.1.1 -UseCase Model
	5.1.2 -ServiceProcess Model
	5.1.3 -ServiceComposition Model

	5.2 Case Study 2: Crime Map
	5.2.1 -UseCase Model
	5.2.2 -ServiceProcess Model
	5.2.3 -ServiceComposition Model

	5.3 Case Study 3: GesIMED Application
	5.3.1 -UseCase Model
	5.3.2 -ServiceProcess Model
	5.3.3 -ServiceComposition Model

	5.4 Lessons Learned
	5.4.1 Case Study 1: To Publish Music
	5.4.2 Case Study 2: Crime Map
	5.4.3 Case Study 3: GesIMED

	5.5 Conclusions

	6 Conclusions
	6.1 Main Contributions
	6.2 Future Work

	References
	Appendix A – Source Selection and Analysis Method: Non-Functional Requirements for Service-Based Applications
	Appendix B – Service-Based Non-Functional Requirement Concepts
	Appendix C – -PEWS Language
	Appendix D – To Publish Music Case Study Diagrams

