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PROBLEM TO SOLVE

= Simple queries on huge amount of data.

= Distribution needed, which Complicate the problem.






EXAMPLE

To be or not to The head is not
be that is the more native
cuestion than the heart

m  Count number of occurrences of each word in the
given literature

Brevity is the

soul of wit




SIMPLIFIED EXAMPLE

To be or not

to be that is
the question

= For Simplicity, Consider counting words in one
documen t.




FIRST STEP - MAP

{(" TO" I ) ("be" I ) ("OI""
y ’ ) ’ )
reduce (String key, Iterator values) : I " n I n n I
// key: a word )’ ( nOt ’ 9 to ’ ’
(/tvaluei; a é_lst of Eounts ("b " I) ("th t" I) (". "
111111 = 0;
for each v in values: e ’ ) a‘ ’ ) IS ’
result += Parselnt (v) ; n n
Emit (AsString(result)) ; I )’ ( the ’ I )’

("question”, 1)}




SECOND STEP - REDUCE

reduce (String key, Iterator values): {("tO",Z), ("be",2), ("Or"’

// key: a word

e 1), ("not", 1), ("that", 1),

int result = O0;

for each v in values: e N n "
result += ParselInt (v); ( IS ’ I ), ( the ’ I )’
Emit (AsString(result)) ; " o "
("question", 1)}




BACK TO THE ORIGINAL EXAMPLE

To be or not to The head is not
be that is the more native

question than the heart

= {("the”,3), ...}

Brevity is the
soul of wit
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EXPERIMENT

= Cluster of approximately 1800 machine.

= Two Benchmarks:
= Grep
= Sort



L] ] | | | I
20 40 60 80 100
Seconds



PERFORMANCE
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OPTIMIZATIONS

Combiner function.

Skipping bad records.

Local execution.

Status Information.



CONCLUSION

= MapReduce provides a convenience level of abstraction.

= Supports scalability and fault-tolerance.

= Preserves network bandwidth.



BIGTABLE: A DISTRIBUTED STORAGE
SYSTEM FOR STRUCTURED DATA
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INTRODUCTION

m BigTable is a distributed storage system for managing structured data.
® Designed to scale to a very large size
m Petabytes of data across thousands of servers

m Used for many Google projects

= Web indexing, Personalized Search, Google Earth, Google Analytics, Google
Finance, ...

= Flexible, high-performance solution for all of Google’s products



MOTIVATION

® | ots of (semi-)structured data at Google
= URLs:
= Contents, crawl metadata, links, anchors, pagerank, ...
® Per-user data:
m User preference settings, recent queries/search results, ...
®  Geographic locations:
= Physical entities (shops, restaurants, etc.), roads, satellite image data, user annotations, ...
m Scale is large
= Billions of URLs, many versions/page (~20K/version)
® Hundreds of millions of users, thousands or g/sec
= |O0TB+ of satellite image data



WHY NOT JUST USE COMMERCIAL DB?

® Scale is too large for most commercial databases
= Even if it weren’t, cost would be very high

® Building internally means system can be applied across many
projects for low incremental cost

m | ow-level storage optimizations help performance
significantly

® Much harder to do when running on top of a database layer



GOALS

8 V}/%Int asynchronous processes to be continuously updating different pieces
of data

= Want access to most current data at any time
= Need to support:

® Very high read/write rates (millions of ops per second)

= Efficient scans over all or interesting subsets of data

= Efficient joins of large one-to-one and one-to-many datasets
= Often want to examine data changes over time

m E.g. Contents of a web page over multiple crawls



BIGTABLE

® Distributed multi-level map
® Fault-tolerant, persistent

m Scalable
Thousands of servers

Terabytes of in-memory data
Petabyte of disk-based data
Millions of reads/writes per second, efficient scans

® Self-managing
= Servers can be added/removed dynamically
m Servers adjust to load imbalance



BUILDING BLOCKS

= Building blocks:
® Google File System (GFS): Raw storage
m Scheduler: schedules jobs onto machines
® Lock service: distributed lock manager
= MapReduce: simplified large-scale data processing

= BigTable uses of building blocks:
m GFS: stores persistent data (SSTable file format for storage of data)
m Scheduler: schedules jobs involved in BigTable serving
® Lock service: master election, location bootstrapping
® Map Reduce: often used to read/write BigTable data



BASIC DATA MODEL

= A BigTable is a sparse, distributed persistent multi-dimensional sorted map
(row. column_ timestamb) -> cell contents
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= Want to keep copy of a large collection of web pages and related information
m Use URLs as row keys
= Various aspects of web page as column names

= Store contents of web pages in the contents: column under the timestamps when
they were fetched.
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= Name is an arbitrary string

m  Access to data in a row is atomic

®=  Row creation is implicit upon storing data

m  Rows ordered lexicographically

= Rows close together lexicographically usually on one or a small number of machines



ROWS (CONT,)

Reads of short row ranges are efficient and typically require communication with a small number of machines.
= Can exploit this property by selecting row keys so they get good locality for data access.
= Example:

math.gatech.edu, math.uga.edu, phys.gatech.edu, phys.uga.edu

VS

edu.gatech.math, edu.gatech.phys, edu.uga.math, edu.uga.phys
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®  Columns have two-level name structure:

= family:optional_qualifier
= Column family
= Unit of access control
®  Has associated type information
®  Qualifier gives unbounded columns
= Additional levels of indexing, if desired
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= Used to store different versions of data in a cell

= New writes default to current time, but timestamps for writes can also be set explicitly by clients
= Lookup options:

m  “Return most recent K values”

m  “Return all values in timestamp range (or all values)”
= Column families can be marked w/ attributes:

m  “Only retain most recent K values in a cell”

= “Keep values until they are older than K seconds”



IMPLEMENTATION —THREE MAJOR COMPONENTS

® |ibrary linked into every client

= One master server
= Responsible for:
= Assigning tablets to tablet servers
® Detecting addition and expiration of tablet servers
= Balancing tablet-server load
m  Garbage collection
= Many tablet servers
® Tablet servers handle read and write requests to its table
= Splits tablets that have grown too large



IMPLEMENTATION (CONT))

= Client data doesn’t move through master server. Clients communicate directly with tablet servers for reads
and writes.

®  Most clients never communicate with the master server, leaving it lightly loaded in practice.



TABLETS

® |arge tables broken into tablets at row boundaries
= Tablet holds contiguous range of rows

m  Clients can often choose row keys to achieve locality

= Aim for ~100MB to 200MB of data per tablet

= Serving machine responsible for ~100 tablets
= Fast recovery:
= |00 machines each pick up | tablet for failed machine
® Fine-grained load balancing:

= Migrate tablets away from overloaded machine
®  Master makes load-balancing decisions



TABLET LOCATION

= Since tablets move around from server to server, given a row, how do clients find the right machine?

®  Need to find tablet whose row ranse covers the tarset row
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TABLET ASSIGNMENT

m  Each tablet is assigned to one tablet server at a time.

= Master server keeps track of the set of live tablet servers and current assignments of tablets to servers. Also
keeps track of unassigned tablets.

= When a tablet is unassigned, master assigns the tablet to an tablet server with sufficient room.



API

= Metadata operations

®  Create/delete tables, column families, change metadata
= Writes (atomic)

®  Set(): write cells in a row

= DeleteCells(): delete cells in a row

m  DeleteRow(): delete all cells in a row
= Reads

®  Scanner: read arbitrary cells in a bigtable

= Each row read is atomic

= Can restrict returned rows to a particular range

®  Can ask for just data from | row,all rows, etc.

= Can ask for all columns, just certain column families, or specific columns



REFINEMENTS: LOCALITY GROUPS

= Can group multiple column families into a locality group

m  Separate SSTable is created for each locality group in each tablet.

m  Segregating columns families that are not typically accessed together enables more efficient reads.

= |nWebTable, page metadata can be in one group and contents of the page in another group.



REFINEMENTS: COMPRESSION

= Many opportunities for compression
® Similar values in the same row/column at different timestamps
® Similar values in different columns
® Similar values across adjacent rows
® Two-pass custom compressions scheme
® First pass: compress long common strings across a large window
m Second pass: look for repetitions in small window

® Speed emphasized, but good space reduction (10-to-1)



REFINEMENTS: BLOOM FILTERS

= Read operation has to read from disk when desired SSTable isn’t in
memory

® Reduce number of accesses by specifying a Bloom filter.
= Allows us ask if an SSTable might contain data for a specified row/column pair.

= Small amount of memory for Bloom filters drastically reduces the number of
disk seeks for read operations

® Use implies that most lookups for non-existent rows or columns do not need
to touch disk



THE FUTURE OF HIGH PERFORMANCE DATABASE
SYSTEMS




OUTLINE

= Why Parallel Databases?

®  Parallel Database Implementation

®  Parallel Database Systems

m  Future Directions and Research Problems



WHY PARALLEL DATABASES?

* Relational Data Model — Relational queries are ideal candidates for parallelization

Multiprocessor systems using inexpensive microprocessors provide more power and scalability than
expensive mainframe counterparts

Why do the relational queries allow for parallelization?



PROPERTIES OF IDEAL PARALLELISM

¢ small_system_elapsed_time
apeedun = . :
= Linear Speedup — An N-times large s big_system_elapsed_time

® Linear Scaleup — An N-times larger system performs an N-times larger job in the same elapsed time as the
original system

small_system_elapsed_time_on_small_problem
big_system_elapsed_time_on_big_problem

Why are linear speedup and linear Scaleup =



TYPES OF SCALEUP

®  Transactional — N-times as many clients submit N-times as many requests against an N-times larger
database.

®  Batch — N-times larger problem requires an N-times larger computer.

Should we look at both transactional scaleup and batch scaleup for all situations when assessing performance?



BARRIERS TO LINEAR SPEEDUP AND

LINEAR SCALEUP

m Startup: The time needed to start a parallel operation dominates the
total execution time

= Interference: A slowdown occurs as new processes are added when
accessing shared resources

= Skew: A slowdown occurs when the variance exceeds the mean in job
service times

Give example situations where you might come across interference and
skew barriers?



SHARED-NOTHING MACHINES

= Shared-memory — All processors have equal access to a global memory and all disks
m  Shared-disk — Each processor has its own private memory, but has equal access to all disks

®  Shared-nothing — Each processor has its own private memory and disk(s)

Why do shared-nothing systems work well for database systems?



PARALLEL DATAFLOW APPROACH

m  Relational data model operators take relations as input and produce relations as output

= Allows operators to be composed into dataflow graphs (operations can be executed in parallel)

How would you compose a set of operations for an SQL query to be done in parallel?



PIPELINED VS. PARTITIONED PARALLELISM

m  Pipelined: The computation of one operator is done at the same time as another as data is streamed into
the system.

®  Partitioned: The same set of operations is performed on tuples partitioned across the disks. The set of
operations are done in parallel on partitions of the data.

Can you give brief examples of each? Which parallelism is generally better for databases?



DATA PARTITIONING

« Round-robin — For n processors, the i*" tuple is assigned to the “i mod n” disk.

« Hash partitioning —Tuples are assigned to the disks using a hashing function applied to select fields of the
tuple.

+ Range partitioning — Clusters tuples with similar attribute values on the same disk.

What operations/situations are ideal (or not ideal) for the above partitioning types!?

What issues to database performance may arise due to partitioning?



SKEW PROBLEMS

®m  Data skew — The number of tuples vary widely across the partitions.

= Execution skew — Due to data skew, more time is spent to execute an operation on partitions that contain
larger numbers of tuples.

How could these skew problems be minimized?



PARALLEL EXECUTION OF RELATIONAL OPERATORS

m  Rather than write new parallel operators, use parallel streams of data to execute existing relational operators
in parallel

m  Relational operators have (1) a set of input ports and (2) an output port

= Parallel dataflow — partitioning and merging of data streams into the operator ports

Are there situations in which parallel dataflow does not work well?



SIMPLE RELATIONAL DATAFLOW GRAPH

insert into C

select * Cl C2 C3
from A, B 4 4 4
where A

X =B Y
@ @ split each join output into 3 streams

merge the 3 join input streams
at each insert node

Perform 173 of the join
split each B scan output into 3 streams

merge the 3 input streams
at each join node



PARALLELIZATION OF HASH-JOIN

* Sort-merge join does not work well if there is data skew
* Hash-join is more resistant to data skew
+ To join 2 relations, we divide the join into a set of smaller joins

* The union of these smaller joins should result in the join of the 2 relations

How might other relational algorithms/operations (like sorting) be parallelized to improve query performance?



PARALLEL DATABASE SYSTEMS

+ Teradata — Shared-nothing systems that use commodity hardware. Near linear speedup and scaleup on
relational queries.

+ Tandem NonStop SQL - Shared-nothing architecture. Near linear speedup and scaleup for large
relational queries.

*  Gamma — Shared-nothing system. Provides hybrid-range partitioning. Near linear speed and scaleup
measured.

* The Super Database Computer — Has special-purpose components. However, is shared-nothing
architecture with dataflow.

* Bubba — Shared-nothing system, but uses shared-memory for message passing. Uses FAD rather than SQL.
Uses single-level storage

Should we focus on the use of commodity hardware to build parallel database systems?



DATABASE MACHINES AND GROSCH'S LAW

= Grosch’s Law — The performance of computer systems increase as the square of their cost. The more
expensive systems have better cost to performance ratios.

®  Less expensive shared-nothing systems like Gamma, Tandem, and Teradata achieve near-linear performance
(compared to mainframes)

m  Suggests that Grosch’s Law no longer applies



FUTURE DIRECTIONS AND RESEARCH PROBLEMS

® Concurrent execution of simple and complex queries
® Problem with locks and large queries
® Priority scheduling (priority inversion scheduling)

= Parallel Query Optimization — Optimizers do not take into account
parallel algorithms. Data skew creates poor query plan cost estimates.

® Application Program Parallelization — Database applications are not
parallelized. No effective way to automate the parallelization of

applications.



FUTURE DIRECTIONS AND RESEARCH PROBLEMS

® Physical Database Desigh — Tools are needed to determine indexing and
partitioning schemes given a database and its workload.

= On-line Data Reorganization — Availability of data for concurrent reads and
writes as database utilities create indices, reorganize data, etc. This process
must be (1) online, (2) incremental, (3) parallel, and (4) recoverable.

Which of these issues may be extremely difficult to resolve?
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