
Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,

Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin,

Scott Shenker, Ion Stoica

Spark
Fast, Interactive, Language-Integrated 
Cluster Computing

UC BERKELEY
www.spark-project.org



+ Project Goals

n Extend the MapReduce model to better support two common 
classes of analytics apps:
n Iterative algorithms (machine learning, graphs)
n Interactive data mining

n Enhance programmability:
n Integrate into Scala programming language
n Allow interactive use from Scala interpreter

18



+ Motivation

Most current cluster programming models 
are based on acyclic data flow from stable 
storage to stable storage

Map

Map

Map

Reduce

Reduce

Input Output

19



+ Motivation

n Most current cluster programming models are based on acyclic 
data flow from stable storage to stable storage

Map

Map

Map

Reduce

Reduce

Input Output

Benefits of data flow: runtime can decide 
where to run tasks and can automatically 

recover from failures

20



+ Motivation

n Acyclic data flow is inefficient for applications that repeatedly 
reuse a working set of data:
n Iterative algorithms (machine learning, graphs)
n Interactive data mining tools (R, Excel, Python)

n With current frameworks, apps reload data from stable storage 
on each query

21



+ Solution: Resilient
Distributed Datasets (RDDs)
n Allow apps to keep working sets in memory for efficient reuse

n Retain the attractive properties of MapReduce
n Fault tolerance, data locality, scalability

n Support a wide range of applications

22



+ Spark Operations 23

Transformations
(define a new 

RDD)

map
filter

sample
groupByKey
reduceByKey

sortByKey

flatMap
union
join

cogroup
cross

mapValues

Actions
(return a result to 
driver program)

collect
reduce
count
save

lookupKey



+ Outline

Spark programming model

Implementation

User applications

24



+ Programming Model

Resilient distributed datasets (RDDs)
n Immutable, partitioned collections of objects
n Created through parallel transformations (map, filter, groupBy, join, …) 

on data in stable storage
n Can be cached for efficient reuse

Actions on RDDs
n Count, reduce, collect, save, …

25



+ Example: Log Mining
Load error messages from a log into memory, then interactively 
search for various patterns

26

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1

Block 2

Block 3

Work
er

Work
er

Work
er

Driver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base 
RDD

Transformed 
RDD

Action

Result: full-text search of Wikipedia in <1 
sec (vs 20 sec for on-disk data)

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)



+ RDD Fault Tolerance

RDDs maintain lineage information that can be used to reconstruct 
lost partitions

Ex:

27

messages = textFile(...).filter(_.startsWith(“ERROR”))
.map(_.split(‘\t’)(2))

HDFS File Filtered RDD Mapped 
RDDfilter

(func = _.contains(...))

map
(func = _.split(...))



+ Example: Logistic Regression

Goal: find best line separating two sets of points

28

target

random initial line



+ Example: Logistic Regression 29

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
val gradient = data.map(p =>

(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)

w -= gradient
}

println("Final w: " + w)



+ Logistic Regression Performance

0
1000
2000
3000
4000
5000

1 5 10 20 30

Ru
nn

in
g 

Ti
m

e 
(s

)

Number of Iterations

Hadoop
Spark

30

127 s / iteration

first iteration 174 s

further iterations 6 s

This is for a 29 GB dataset on 20 EC2 m1.xlarge machines (4 cores each)



Spark Scheduler

Dryad-like DAGs

Pipelines functions
within a stage

Cache-aware work
reuse & locality

Partitioning-aware
to avoid shuffles

31

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

= cached data partition



+ Conclusion

n Spark provides a simple, efficient, and powerful programming 
model for a wide range of apps

n Download our open source release:

nwww.spark-project.org

32

matei@berkeley.edu



Related Work
DryadLINQ, FlumeJava

n Similar “distributed collection” API, but cannot reuse datasets 
efficiently across queries

n Relational databases
n Lineage/provenance, logical logging, materialized views

GraphLab, Piccolo, BigTable, RAMCloud
n Fine-grained writes similar to distributed shared memory

n Iterative MapReduce (e.g. Twister, HaLoop)
n Implicit data sharing for a fixed computation pattern

n Caching systems (e.g. Nectar)
n Store data in files, no explicit control over what is cached

33



34

Let’s dive on Spark for executing and analyzing K-Means

https://databricks.com/blog/2015/01/28/introducing-streaming-k-means-in-spark-1-2.html



35


