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"Design the next generation of  data processing systems & architectures 
guided by scientific requirements" 



CLOUD DATA MANAGEMENT: SERVICES VIEWS
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• Storage (persistency)
• Efficient retrieval (indexing, caching)
• Fault tolerance (recovery, replication)
• Maintenance

• Definition
• Querying and exploiting
• Manipulation

RAID



DBMS EVOLUTION

No more monolithic DBMS

Extensible, lightweight DBMS

Unbundled technology*

Component-based architectures* (thick-
grain vs. fine-grain)

OO Frameworks 

Components are providing Services 

Blur the boundaries between OS & 
DBMS

Self-adaptive Systems 

Multi-tier architectures, Web, P2P, GRID, 
CLOUD,…
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* See Dittrich, Geppert, Eds, “Component Database Systems”, MK 2000

* Chaudhuri & Weikum, Rethinking Database System Architecture: Towards a Self-tuning RISC-style Database System, VLDB 2000



DATA MANAGEMENT WITH RESOURCES 
CONSTRAINTS
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STORAGE
SUPPORT

Systems

ARCHITECTURE &
RESOURCES AWARE

RAM

Algorithms

Efficiently manage and exploit data sets according to given specific storage, 
memory and computation resources



CLOUD DATA MANAGEMENT: SERVICES VIEWS
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DATA MANAGEMENT WITHOUT RESOURCES 
CONSTRAINTS
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Reduce the cost to manage and exploit data sets according to unlimited storage, 
memory and computation resources

Systems

Algorithms
COSTAWARE

ELASTIC



CLOUD DATA MANAGEMENT WISH LIST
Scalability and elasticity are the keys in cloud data management
­ Quality: efficiency, economic cost, provenance, user preferences and constraints
­ Multi-tenancy: managing large number of small tenants
­ Consistency and replication

Fault Tolerance
­ If a query must restart each time a node fails, then long, complex queries are difficult to complete

Run in heterogeneous environments
­ Should prevent the slowest node from making a disproportionate affect on total query performance

Operate on encrypted data

Interface with data analytics and exploitation services
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CLOUD DATA MANAGEMENT: ASPECTS TO 
CONSIDER
Security [Agrawal2] 
­ Confidentiality
­ Privacy

Data Analytics
­ Large scale processing of complex queries
­ Machine learning and data mining at large 

scale

Multi-tenancy
­ For OLTP [Agrawal1]
­ For OLAP [Wong 2013]

Consistency, scalability and elasticity 
[Agrawal1]
­ Replication and consistency models 
­ Elasticity
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SQL AS A SERVICE
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Relational 
DBMS

Relational Cloud storage service
Relational model and SQL as a
Service e.g. Amazon relational
database service (RDS), MS SQL Azure

Implemented on top of
parallel clusters of common
DBMS servers e.g., MySQL
MS SQL Server

User applications



CLOUD DATA MANAGEMENT: FUNCTIONS VIEW
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Distributed storage system

Structured data system

Distributed processing system

Query language

Performance for data access
fault tolerance, availability, scalability

Performance for complex operations 
(SQL like joins & grouping, data 

analysis)

Simple & flexible data model (key-value), 
basic access operations (lookup API)

High level languages for 
accessing data and controlling 

processing

Individual users & applications



CLOUD DATA MANAGEMENT: FUNCTIONS VIEW
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Distributed storage system

Structured data system

Distributed processing system

Query language

Individual users & applications

Distributed file systems:
Google file system, Hadoop Distributed File System, CloudStore
Cloud-based file Service: Amazon S3
P2P-like file service: Amazon Dynamo

Google BigTable & other BigTable implementations like Hbase, Cassandra, Amazon SimpleDB

Google/Hadoop MapReduce

HiveQL, JaQL, Pig on top of Hadoop Map-Reduce



DATABASE LANDSCAPE
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Data 
services

Access
services

Storage
services

Additional
extension
services

Other
services

Extension services
Streaming, XML, procedures, queries, 

replication

1 Ionut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business, Technologie und Web (BTW 2007)
Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000.

SERVICE ORIENTED DBMS
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Service level agreement: the contracted delivery time of the service or performance

Required SLA: agreements between the user and SDBMS expressed as a combination of weighted 
measures associated to a query 

Data 
services

Access
services

Storage
services

Additional
extension
services

Other
services

Extension services
Streaming, XML, procedures, queries, 

replication

1 Ionut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business, Technologie und Web (BTW 2007)
Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000.

Service Level Agreement
• In the event of a corruption, or other disaster

• the maximum amount of data loss is the last 15 minutes of transactions
• the maximum amount of downtime the application can tolerate is 20 minutes

SERVICE ORIENTED DBMS
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Service level agreement: the contracted delivery time of the service or performance

Required SLA: agreements between the user and SDBMS expressed as a combination of weighted 
measures associated to a query 

Data 
services

Access
services

Storage
services

Additional
extension
services

Other
services

Extension services
Streaming, XML, procedures, queries, 

replication

1 Ionut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business, Technologie und Web (BTW 2007)
Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000.

SERVICE ORIENTED DBMS



17

How to combine, deploy, and deliver DBMS functionalities:
­ Compliant to application/user requirements
­ Optimizing the consumption of computing resources in the presence of greedy data 
processing tasks

­ Delivered according to Service Level Agreement (SLA) contracts
­ Deployed in elastic and distributed platforms

* See Dittrich, Geppert, Eds, “Component Database Systems”, MK 2000

* Chaudhuri & Weikum, Rethinking Database System Architecture: Towards a Self-tuning RISC-style Database System, VLDB 2000

CHALLENGES AND OBJECTIVE
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Notes:
• Giant	byte	sequence	at	

the	bottom
• Map,	sort,	shuffle,	reduce	

layer	in	middle
• Possible	storage	layer	in	

middle	as	well
• HLLs	now	at	the	top

From Mike Carey

OPEN SOURCE BIG DATA STACKS



http://asterixdb.ics.uci.edu

“One	Size	Fits	a	Bunch”

Semi-
structured

Data 
Management

Parallel
Database 
Systems

Data-
Intensive
Computing

•Inside “Big Data Management”: Ogres, Onions, or Parfaits?, Vinayak Borkar, Michael J. Carey, Chen Li, EDBT/ICDT 2012 Joint Conference Berlin

•Data Services, Michael J. Carey, Nicola Onose, Michalis Petropoulos
CACM June 2012, (Vol55, N.6)

ASTERIX DB @ UCI



#ASTERIXDB

Other HLL
Compilers

Algebricks
Algebra Layer

Hyracks Data-parallel Platform

Piglet ...

Hadoop
M/R Job

Hadoop M/R
Compatibility

Hyracks Job

AsterixQL

Asterix
Data

Mgmt.
System Hivesterix

HiveQL

Pregel
Job

Pregelix

IMRU
Job

IMRU

ASTERIX SOFTWARE STACK
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GOOGLE BIG QUERY
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Next generation of analytics data stack
• Berkeley data analytics stack (BADS)
• Release as open source
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BERKELEY DATA ANALYTICS STACKS



TERALAB

Big Data platform for research and experimentation

FSN Big Data Call for academia and start ups

Target infrastructure
­ Storage: 1,5 Peta octets
­ RAM: 16 Tera octets
­ Computing power [SPECint_rate2006]: 28000

Software as a Service: R(evolution), MapReduce, Impala, Hive, Pig, GRAPHLAB, 
KNIME, Rapid Miner, Alpine miner, Python tools (Pandas, IPython...) 

Public data collections
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https://www.teralab-datascience.fr



27http://fr.hortonworks.com

HORTONWORKS
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Stage 1: Apply a user-specified computation over all input records in a dataset. 
­ These operations occur in parallel and yield intermediate output  (key-value pairs)

Stage 2: Aggregate intermediate output by another user-specified computation
­ Recursively applies a function on every pair of the list

PRINCIPLE
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(URI, document) à (term, count)

see bob throw
see spot run

bob <1>
run <1>
see <1,1> 
spot <1> 
throw <1>

see
1 

bob 1
throw 1
see

1 
spot 1 
run

1

bob 1
run

1
see

2 
spot 1 
throw 1

Map Shuffle/Sort Reduce

COUNTING WORDS
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Basic data structure in MapReduce, keys and values may be 
­ primitive such as integers, floating point values, strings, and raw bytes
­ arbitrarily complex structures (lists, tuples, associative arrays, etc.)

Part of the design of MapReduce algorithms involves imposing the key-value structure on 
arbitrary datasets
­ For a collection of web pages, keys may be URLs and values may be the actual HTML content. 
­ For a graph, keys may represent node ids and values may contain the adjacency lists of those nodes 

KEY VALUE PAIRS
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MAP REDUCE EXAMPLE
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Initialisation

Map: record reader, mapper, combiner, and partitioner

Reduce: shuffle, sort, reducer, and output format

Partition input (key, value) pairs into chunks run 
map() tasks in parallel

After all map()’s have been completed 
consolidate the values for each unique emitted 
key

Partition space of output map keys, and run 
reduce() in parallel

MAP REDUCE PHASES
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Partitioners are responsible for dividing up the intermediate key space and assigning 
intermediate key-value pairs to reducers
­ the partitioner species the task to which an intermediate key-value pair must be copied

Combiners are an optimization in MapReduce that allow for local aggregation before the 
shuffle and sort phase

MAP REDUCE ADDITIONAL ELEMENTS
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the mapper emits an intermediate key-
value pair for each term observed, with 
the term itself as the key and a value of 
one

reducers sum up the partial counts to 
arrive at the final count

COUNTING WORDS: BASIC ALGORITHM
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Combiner technique
­ Aggregate term counts across the documents 

processed by each map task
­ Provide a general mechanism within the 

MapReduce framework to reduce the amount of 
intermediate data generated by the mappers

­ Reduction in the number of intermediate key-
value pairs that need to be shuffled across the 
network
­ from the order of total number of terms in the collection to 

the order of the number of unique terms in the collection

LOCAL AGGREGATION
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The workings of this algorithm critically depends on the 
details of how map and reduce tasks in Hadoop are 
executed

Prior to processing any input key-value pairs, the 
mapper’s Initialize method is called 
­ which is an API hook for user-specified code
­ We initialize an associative array for holding term counts
­ Since it is possible to preserve state across multiple calls of the 
Map method (for each input key-value pair), we can 
­ continue to accumulate partial term counts in the associative array across 

multiple documents, 
­ emit key-value pairs only when the mapper has processed all documents

Transmission of intermediate data is deferred until the 
Close method in the pseudo-code

IN-MAPPER COMBINING PATTERN: ONE STEP FURTHER
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Provides control over when local aggregation occurs and how it exactly takes place
­ Hadoop makes no guarantees on how many times the combiner is applied, or that it is even applied at all
­ The execution framework has the option of using it, perhaps multiple times, or not at all
­ Such indeterminism is unacceptable, which is exactly why programmers often choose to perform their own local 

aggregation in the mappers

In-mapper combining will typically be more efficient than using actual combiners. 
­ One reason for this is the additional overhead associated with actually materializing the key-value pairs

­ Combiners reduce the amount of intermediate data that is shuffled across the network, but don’t actually reduce the number of key-value pairs 
that are emitted by the mappers in the first place

­ The mappers will generate only those key-value pairs that need to be shuffled across the network to the reducers

­ Avoid unnecessary object creation and destruction (garbage collection takes time), and, object serialization and deserialization (when 
intermediate key-value pairs fill the in-memory buffer holding map outputs and need to be temporarily spilled to disk)

IN-MAPPER COMBINING PATTERN: ADVANTAGES
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Breaks the functional programming underpinnings of MapReduce, since state is being preserved 
across multiple input key-value pairs

There is a fundamental scalability bottleneck associated with the in-mapper combining pattern
­ It critically depends on having sufficient memory to store intermediate results until the mapper has completely 

processed all key-value pairs in an input split
­ One common solution to limiting memory usage is to “block” input key-value pairs and “flush” in-memory data 

structures periodically
­ Instead of emitting intermediate data only after every key-value pair has been processed, emit partial results after 

processing every n key-value pairs
­ Implemented with a counter variable that keeps track of the number of input key-value pairs that have been processed
­ The mapper could keep track of its own memory footprint and flush intermediate key-value pairs once memory usage has crossed a certain 

threshold

­ Memory size empirically determined: difficult due to concurrent access to memory

IN-MAPPER COMBINING PATTERN: LIMITATIONS



MAP REDUCE PATTERNS MapReduce design patterns, 
O’Relly
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MAP – REDUCE DESIGN PATTERNS

40

SUMMARIZATION
Numerical

Inverted index

Counting 
with counters

FILTERING
Filtering

Bloom

Top ten

Distinct

DATA ORGANIZATION
Structured to hierarchical

Partitioning

Binning

Total order sorting

Shuffling

JOIN
Reduce side join

Reduce side join with 
bloom filter

Replicated join

Composite join

Cartesian product

• Minimum, maximum, count, 
average, median-standard 
deviation

• Wikipedia inverted index

• Count number of records, a small 
number of unique instances, 
summations

• Number of users per state 

• Remove most of nonwatched values, 
prefiltering data for a set 
membership check

• Hot list, Hbase query

• Closer view of data, tracking event 
threads, distributed grep, data 
cleansing, simple random sampling, 
remove low scoring data

• Outlier analysis, select interesting 
data, catchy dashbords

• Top ten users by reputation

• Deduplicate data, getting distinct 
values, protecting from inner join 
explosion

• Distinct user ids

• Prejoining data, preparing data for Hbase
or MongoDB

• Post/comment building for StackOverflow, 
Question/Answer building

• Partitioning users by last access date

• Binning by Hadoop-related tags

• Sort users by last visit

• Anonymizing StackOverflow comments

• Multiple large data sets joined by 
foreign key

• User – comment join

• Reputable user – comment join

• Replicated user – comment join

• Composite user – comment join

• Comment comparison



NUMERICAL SUMMARIZATION PATTERN

The numerical summarizations pattern is a general pattern for calculating aggregate 
statistical values over a data collection

Intent
­ Group records together by a key field and calculate a numerical aggregate per group to get a top-

level view of the larger data set
­ θbe a generic numerical summarization function we wish to execute over some list of values (v1, v2, 
v3, ..., vn) to find a value λ, i.e. λ = θ(v1, v2, v3, ..., vn). Examples of θ include a 
minimum, maximum, average, median, and standard deviation

Motivation and applicability
­ Group logins by the hour of the day and perform a count of the number of records in each group, 

group advertisements by types to determine how affective ads are for better targeting
­ Dealing with numerical data or counting
­ The data can be grouped by specific fields

41

SUMMARIZATION
Numerical
Inverted index
Counting with counters



STRUCTURE

The mapper outputs keys that consist of each 
field to group by, and values consisting of any 
pertinent numerical items

The combiner can greatly reduce the number of 
intermediate key/value pairs to be sent across 
the network to the reducers for some numerical 
summarization functions
­ If the function θ is an associative and commutative 

operation, it can be used for this purpose
­ If you can arbitrarily change the order of the values and 

you can group the computation arbitrarily 

The reducer 
­ receives a set of numerical values (v1, v2, v3, ..., vn) associated with a group-by key records to perform 

the functionλ = θ(v1, v2, v3, ..., vn) 
­ The value of λ is output with the given input key

42



RESEMBLANCES AND PERFORMANCE ANALYSIS

Resemblances Performance analysis

Aggregations performed by jobs using 
this pattern typically perform well when 
the combiner is properly used

These types of operations are what 
MapReduce was built for

43



Source: http://indoos.wordpress.com/2010/08/16/hadoop-ecosystem-world-map/
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Conclusions & Perspectives



CONCLUSIONS

Data collections
­ New scales: bronto scale due to emerging IoT
­ New types: thick, long hot, cold
­ New quality measures: QoS, QoE, SLA

Data processing & analytics
­ Complex jobs, stream analytics are still open issues
­ Economic cost model & business models (Big Data value & pay-as-U-go)

Multi-cloud: elasticity, quality, SLA
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TODO LIST

482009      2011        2013       2014 …

Cloud
services 

Big data
NoSQL Data science

Autonomous DaaS

No off the shelf DBMSMap reduce

Pivot NoSQL data model
Distributed polyglot (big) 

database engineering
Extended YSCB NoSQL

stores benchmark 

QoS based event flow 
composition

Economy based data 
delivery

SLA guided data 
integration

Coordination based 
parallel data processing
Optimization of different 

types of queries
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Genoveva Vargas-Solar
CR1, CNRS, LIG-LAFMIA
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DISTRIBUTED FILE SYSTEM

Abandons the separation of computation and storage as distinct components in a 
cluster
­ Google File System (GFS) supports Google’s proprietary implementation of MapReduce; 
­ In the open-source world, HDFS (Hadoop Distributed File System) is an open-source implementation of 

GFS that supports Hadoop

The main idea is to divide user data into blocks and replicate those blocks across the 
local disks of nodes in the cluster

Adopts a master–slave architecture 
­ Master (namenode HDFS) maintains the file namespace (metadata, directory structure, file to block 

mapping, location of blocks, and access permissions) 
­ Slaves (datanode HDFS) manage the actual data blocks

50



HDFS GENERAL ARCHITECTURE

An application client wishing to read a 
file (or a portion thereof) must  first 
contact the namenode to determine 
where the actual data is stored

The namenode returns the relevant 
block id and the location where 
the block is held (i.e., which datanode)

The client then contacts the datanode to 
retrieve the data. 

HDFS lies on top of the standard OS 
stack (e.g., Linux): blocks are stored on 
standard single-machine file systems 
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HADOOP CLUSTER ARCHITECTURE

The HDFS namenode runs the namenode daemon

The job submission node runs the jobtracker, which is the single point of contact for a client 
wishing to execute a MapReduce job

The jobtracker
­ Monitors the progress of running MapReduce jobs 
­ Is responsible for coordinating the execution of the mappers and reducers
­ Tries to take advantage of data locality in scheduling map tasks
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HADOOP CLUSTER ARCHITECTURE

Tasktracker
­ It accepts tasks (Map, Reduce, Shuffle, etc.) from JobTracker
­ Each TaskTracker has a number of slots for the tasks: these are execution slots available on the 

machine or machines on the same rack
­ It spawns a separate JVM for execution of the tasks
­ It indicates the number of available slots through the hearbeat message to the JobTracker
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HDFS PROPERTIES
HDFS stores three separate copies of each data block to ensure both reliability, availability, and 
performance

In large clusters, the three replicas are spread across different physical racks, 
­ HDFS is resilient towards two common failure scenarios individual datanode crashes and failures in networking 

equipment that bring an entire rack offline. 
­ Replicating blocks across physical machines also increases opportunities to co-locate data and processing in the 

scheduling of MapReduce jobs, since multiple copies yield more opportunities to exploit locality

To create a new file and write data to HDFS
­ The application client contacts the namenode
­ The namenode

­ updates the file namespace after checking permissions and making sure the file doesn’t already exist

­ allocates a new block on a suitable datanode

­ The application is directed to stream data directly to it
­ From the initial datanode, data is further propagated to additional replicas
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NOSQL STORES CHARACTERISTICS
Simple operations

­ Key lookups reads and writes of one record or a small 

number of records

­ No complex queries or joins

­ Ability to dynamically add new attributes to data 

records

­ Horizontal scalability

­ Distribute data and operations over many servers

­ Replicate and distribute data over many servers

­ No shared memory or disk

High performance

­ Efficient use of distributed indexes and RAM for data 

storage

­ Weak consistency model

­ Limited transactions

56

Next generation databases mostly addressing some of the points: being non-relational, distributed, 
open-source and horizontally scalable [http://nosql-database.org]
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Data	stores	designed		to	scale	simple	
OLTP-style	application	loads	

• Data model 
• Consistency 
• Storage 
• Durability 
• Availability
• Query support

Read/Write operations 
by thousands/millions of users



IMPORTANT DESIGN GOALS

Scale out: designed for scale 
­ Commodity hardware
­ Low latency updates
­ Sustain high update/insert throughput

Elasticity – scale up and down with load

High availability – downtime implies lost revenue
­ Replication (with multi-mastering) 
­ Geographic replication
­ Automated failure recovery
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LOWER PRIORITIES

No Complex querying functionality
­ No support for SQL
­ CRUD operations through database specific API

No support for joins
­ Materialize simple join results in the relevant row 
­ Give up normalization of data?

No support for transactions
­ Most data stores support single row transactions
­ Tunable consistency and availability (e.g., Dynamo) 
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à Achieve high scalability



NON FUNCTIONAL PROPERTIES

CAP theorem1: a system can have two of the three properties   

NoSQL systems sacrifice consistency

60

ConsistencyAvailability

Fault-tolerant 
partitioning

1 Eric Brewer, "Towards robust distributed systems." PODC. 2000 http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf



VISUAL GUIDE TO NOSQL SYSTEMS
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C

A

P

C - A A - P

C - P

Data models

- Relational
- Key-Value
- Column oriented Tabular
- Document oriented

- Dynamo
- Voldemort
- Tokyo Cabinet
- KAI

- Cassandra
- SimpleDB
- CouchDB
- Riak

- BigTable
- HyperTable
- Hbase

- MongoDB
- TerraStore
- Scalaris

- BerkeleyDB
- MemcacheDB
- Redis

- RDBM’s
- MySQL
- Postgres
- etc

- Aster Data
- GreenPlum
- Vertica

Availability: 
each client can 

always read & write

Partition tolerance: 
The system works well despite 
physical network partitions

Consistency: 
all clients always have 

the same view of de data



DATA MODELS

Tuple
­ Row in a relational table, where attributes are pre-defined in a schema, and the values are scalar

Document
­ Allows values to be nested documents or lists, as well as scalar values. 
­ Attributes are not defined in a global schema

Extensible record
­ Hybrid between tuple and document, where families of attributes are defined in a schema, but new 

attributes can be added on a per-record basis
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DATA STORES

Key-value
­ Systems that store values and an index to find them, based on a key

Document
­ Systems that store documents, providing index and simple query mechanisms

Extensible record
­ Systems that store extensible records that can be partitioned vertically and horizontally across nodes

Graph 
­ Systems that store model data as graphs where nodes can represent content modelled as document or 

key-value structures and arcs represent a relation between the data modelled by the node

Relational
­ Systems that store, index and query tuples

63



KEY-VALUE STORES

“Simplest data stores” use a data model 
similar to the memcached distributed in-
memory cache

Single key-value index for all data

Provide a persistence mechanism 

Replication, versioning, locking, 
transactions, sorting

API: inserts, deletes, index lookups

No secondary indices or keys

64

SYSTEM ADDRESS

Redis code.google.com/p/redis

Scalaris code.google.com/p/scalaris

Tokyo tokyocabinet.sourceforge.net

Voldemort project-voldemort.com

Riak riak.basho.com

Membrain schoonerinfotech.com/products

Membase membase.com



SELECT  name
FROM    group
WHERE   gid IN ( SELECT  gid

FROM    group_member
WHERE   uid = me() )
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SELECT  name, pic, profile_url
FROM    user
WHERE   uid = me()

SELECT  name, pic
FROM    user
WHERE   online_presence = "active" 

AND
uid IN ( SELECT  uid2

FROM    friend
WHERE   uid1 = me() )

SELECT  name
FROM    friendlist
WHERE   owner = me()

SELECT  message, attachment
FROM    stream
WHERE   source_id = me() AND type = 80

https://developers.facebook.com/docs/reference/fql/
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<805114856,

>



DOCUMENT STORES

Support more complex data: pointerless
objects, i.e., documents

Secondary indexes, multiple types of 
documents (objects) per database, nested 
documents and lists, e.g. B-trees

Automatic sharding (scale writes), no explicit 
locks, weaker concurrency (eventual for 
scaling reads) and atomicity properties

API: select, delete, 
getAttributes, putAttributes on 
documents

Queries can be distributed in parallel over 
multiple nodes using a map-reduce 
mechanism
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SYSTEM ADDRESS

SimpleDB amazon.com/simpledb

Couch DB couchdb.apache.org

Mongo DB mongodb.org

Terrastore code.google.com/terrastore
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DOCUMENT STORES



EXTENSIBLE RECORD STORES

Basic data model is rows and columns

Basic scalability model is splitting rows and 
columns over multiple nodes
­ Rows split across nodes through sharding on the 

primary key
­ Split by range rather than hash function
­ Rows analogous to documents: variable number of attributes, 

attribute names must be unique
­ Grouped into collections (tables)
­ Queries on ranges of values do not go to every node

Columns are distributed over multiple nodes 
using “column groups” 
­ Which columns are best stored together
­ Column groups must be pre-defined with the 

extensible record stores
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SYSTEM ADDRESS

HBase hbase.apache.com

HyperTable hypertable.org

Cassandra incubator.apache.org/cassandra



SCALABLE RELATIONAL SYSTEMS

SQL: rich declarative query language

Databases reinforce referential integrity

ACID semantics

Well understood operations: 
­ Configuration, Care and feeding, Backups, Tuning, Failure 

and recovery, Performance characteristics

Use small-scope operations
­ Challenge: joins that do not scale with sharding

Use small-scope transactions
­ ACID transactions inefficient with communication and 2PC 

overhead

Shared nothing architecture for scalability

Avoid cross-node operations
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SYSTEM ADDRESS

MySQL C mysql.com/cluster

Volt DB voltdb.com

Clustrix clustrix.com

ScaleDB scaledb.com

Scale Base scalebase.com

Nimbus DB nimbusdb.com



NOSQL STORES CHARACTERISTICS
Simple operations
­ Key lookups reads and writes of one record or a small number of 

records
­ No complex queries or joins
­ Ability to dynamically add new attributes to data records

Horizontal scalability
­ Distribute data and operations over many servers
­ Replicate and distribute data over many servers
­ No shared memory or disk

High performance
­ Efficient use of distributed indexes and RAM for data storage
­ Weak consistency model
­ Limited transactions

71

Next generation databases mostly addressing some of the points: being non-relational, 
distributed, open-source and horizontally scalable [http://nosql-database.org]



DATA MANAGEMENT SYSTEMS ARCHITECTURES

Physical model

Logic model

External model

ANSI/SPARC

Storage
Manager

Schema
Manager

Query
Engine

Transaction
Manager

DBMS

Customisable points

Custom components

Glue 
code

Data 
services

Access
services

Storage
services

Additional
Extension
services

Other
services

Extension services
Streaming, XML, procedures,
queries, replication

Physical model

Logic model

External model

Physical model

Logic model
External model
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COMPARING NOSQL & NEWSQL SYSTEMS

SYSTEM CONCURRENCY

CONTROL

DATA

STORAGE

REPLICATION TRANSACTION

Redis Locks RAM Asynchronous No

Scalaris Locks RAM Synchronous Local

Tokyo Locks RAM/Disk Asynchronous Local

Voldemort MVCC RAM/BDB Asynchronous No

Riak MVCC Plug in Asynchronous No

Membrain Locks Flash+Disk Synchronous Local

Membase Locks Disk Synchronous Local

Dynamo MVCC Plug in Asynchronous No

SimpleDB Non S3 Asynchronous No

MongoDB Locks Disk Asynchronous No

CouchDB MVCC Disk Asynchronous No
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SYSTEM CONCURRENCY

CONTROL

DATA

STORAGE

REPLICATION TRANSACTION

Terrastore Locks RAM+ Synchronous L

Hbase Locks HADOOP Asynchronous L

HyperTabl
e

Locks Files Synchronous L

Cassandra MVCC Disk Asynchronous L

BigTable Locs+stamps GFS Both L

PNuts MVCC Disk Asynchronous L

MySQL-C ACID Disk Synchronous Y

VoltDB ACID/no Lock RAM Synchronous Y

Clustrix ACID/no Lock Disk Synchronous Y

ScaleDB ACID Disk Synchronous Y

ScaleBase ACID Disk Asynchronous Y

NimbusDB ACID/no Lock Disk Synchronous Y
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y-

Va
lu

e
Do

cu
me

nt

Ex
te

nd
ed

 r
ec

or
ds
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Cattell, Rick. "Scalable SQL and NoSQL data stores." ACM SIGMOD Record 39.4 (2011): 12-27
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THIS TALK IS NOT ABOUT
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http://nosql-database.org

Debate on whether NoSQL stores and relational systems are better or worse … 
that is not the point

Of  course we can surf  on these waves 
at the end of  the talk and during EDBT School!



THIS TALK IS ABOUT
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alternative for managing multiform and multimedia data collections
according to different properties and requirements
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POLYGLOT PERSISTENCE

Polyglot Programming: applications should be written in a mix of languages to 
take advantage of different languages are suitable for tackling different 
problems

Polyglot persistence: any decent sized enterprise will have a variety of 
different data storage technologies for different kinds of data
­ a new strategic enterprise application should no longer be built assuming a relational 
persistence support 

­ the relational option might be the right one - but you should seriously look at other 
alternatives
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M. Fowler and P. Sadalage. NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence. Pearson Education, Limited, 2012



(Katsov-2012)

Use the right tool for the right job…

How do I know which is the 
right tool for the right job?
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WHY SACRIFICE CONSISTENCY?

It is a simple solution 
­ nobody understands what sacrificing P means
­ sacrificing A is unacceptable in the Web 
­ possible to push the problem to app developer

C not needed in many applications 
­ Banks do not implement ACID (classic example wrong) 
­ Airline reservation only transacts reads (Huh?) 
­ MySQL et al. ship by default in lower isolation level

Data is noisy and inconsistent anyway
­ making it, say, 1% worse does not matter
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CONSISTENCY MODEL

ACID semantics (transaction semantics in RDBMS)
­ Atomicity: either the operation (e.g., write) is performed on all replicas or is not performed on any of 

them
­ Consistency: after each operation all replicas reach the same state
­ Isolation: no operation (e.g., read) can see the data from another operation (e.g., write) in an 

intermediate state
­ Durability: once a write has been successful, that write will persist indefinitely

BASE semantics (modern Internet systems)
­ Basically Available
­ Soft-state (or scalable)
­ Eventually consistent

82



CONSISTENCY MODELS

Strong consistency:
­ After the update completes, every subsequent access from A, B, C will return D1

Weak consistency:
­ Does not guaranty that any subsequent accesses return D1 -> a number of conditions need to be met before 

D1 is returned

Eventual consistency: Special form of weak consistency
­ Guaranty that if no new updates are made, eventually all accesses will return D1
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D0

A B C

Distributed
Storage system

read(D)update(D)
D0 à D1



VARIATIONS OF EVENTUAL CONSISTENCY

Causal consistency:
­ If A notifies B about the update, B will read D1 (but not C!) 

Read your writes:
­ A will always read D1 after its own update 

Sessionconsistency:
­ Read your writes inside a session 

Monotonic reads:
­ If a process has seen Dk, any subsequent access will never return any Di with i < k 

Monotonic writes:
­ Guaranty to seiralize the writes of the same process
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ACID VS BASE

Strong consistency for transactions 
highest priority

Availability less important 

Pessimistic 

Rigorous analysis 

Complex mechanisms 

Availability and scaling highest priorities

Weak consistency

Optimistic

Best effort

Simple and fast
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ACID BASE
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MAP-REDUCE

Programming model for expressing distributed computations on massive amounts of 
data 

Execution framework for large-scale data processing on clusters of commodity 
servers

Market: any organization built around gathering, analyzing, monitoring, filtering, 
searching, or organizing content must tackle large-data problems
­ data- intensive processing is beyond the capability of any individual machine and requires clusters
­ large-data problems are fundamentally about organizing computations on dozens, hundreds, or even 

thousands of  machines
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MAP REDUCE JOB

Stage 1: Apply a user-specified computation over all input records in a dataset. 
­ These operations occur in parallel and yield intermediate output  (key-value pairs)

Stage 2: Aggregate intermediate output by another user-specified computation
­ Recursively applies a function on every pair of the list

88



MAP REDUCE COMPLEX JOBS

89

Mapper1 Mapper2 Mapper3 Mappern

Reducer1 Reducer2 Reducern

Shuffling & Sorting

…

…

⋈ ⋈ ⋈

HDFS stores
data blocks

Each mapper 
processes one block

Each mapper  produces
the join key & the record

pairs

Reducers perform
the actual join



MAP REDUCE SUMMARY

Highly fault tolerant

Relatively easy to write “arbitrary” 
distributed computations over very large 
amounts of data 

MR framework removes burden of 
dealing with failures from programmer 

Schema embedded in application code 

A lack of shared schema

Makes sharing data between
applications difficult

Makes lots of DBMS “goodies” such as 
indices, integrity constraints, views, ... 
impossible 

No declarative query language
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PIG

“Pig Latin: A Not-So-Foreign Language for Data Processing” 
­ Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, Andrew Tomkins (Yahoo! Research)
­ http://www.sigmod08.org/program_glance.shtml#sigmod_industrial_program
­ http://infolab.stanford.edu/~usriv/papers/pig-latin.pdf
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PIG

High level data flow language for exploring 
very large datasets

Compiler that produces sequences of 
MapReduce programs

Structure is amenable to substantial 
parallelization

Operates on files in HDFS

Metadata not required, but used when 
available

Provides an engine for executing data flows in 
parallel on Hadoop

Ease of programming
­ Trivial to achieve parallel execution of simple 

and parallel data analysis tasks

Optimization opportunities
­ Allows the user to focus on semantics rather than 

efficiency

Extensibility 
­ Users can create their own functions to do 

special-purpose processing
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General description Key properties



Top 5 pages accessed by users between 18 and 25 year
EXAMPLE
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Filter by Age

Load Users Load Pages

Join on Name

Group on url

Count Clicks

Order by 
Clicks

Take Top 5

Save results



EQUIVALENT JAVA MAP REDUCE CODE
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QUERYING WITH RESOURCES CONSTRAINTS

98

Q1: Which are the most popular products 
at Starbucks ?

Q2: Which are the consumption rules of
Starbucks clients ? 

Distribution and organization of
data on disk

Query and data processing
on server

Swap memory– disk
Data transfer

• Efficiency => time cost
• Optimizing memory and computing 

cost

Efficiently manage and exploit data sets according to given specific storage, 
memory and computation resources



QUERYING WITHOUT RESOURCES CONSTRAINTS

­ Query evaluationà How and under which limits ?
­ Is not longer completely constraint by resources availability: computing, RAM, storage, network services
­ Decision making process determined by resources consumption and consumer requirements

Data involved in the query, particularly in the result can have different costs: top 5 gratis and the rest 
available in return to a credit card number

Results storage and exploitation demands more resources
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Costly => minimizing cost, energy 
consumption
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Genoveva Vargas-Solar
CR1, CNRS, LIG-LAFMIA
Genoveva.Vargas@imag.fr

http://vargas-solar.com/datascience
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Provide data storage, fetching and delivery 
strategies
­ Architecture: distributed file system across nodes
­ Data sharding and replication: on storage and 

memory
­ Fetch to fulfil multi-facetig application requirements
­ Prefetching
­ Memory indexing
­ Reduce impedance mismatch

Greedy data
processing

MULTIMODEL DATA MANAGEMENT



DATA SHARDING

Sharded & colocated
Input data

Distributed File SystemMultimedia multiform data
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DATA SHARDING

Sharded & colocated
Input data

Distributed File SystemMultimedia multiform data

Factors:
- RAM - Disk
- CPU - Network

Sharded data architecture
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Sharded & colocated
Input data

Distributed File System

Classification

Data 
transformation

Tagged opus execution

Multimedia 
multiform data

Indexing classes

INDEXING & STORING 

• the precise time of  each note every recording, 
• the instrument that plays each note, 
• the note's position in the metrical structure of  the composition

MusicNet: 330 classical music recordings, 1 million annotated labels indicating http://homes.cs.washington.edu/~thickstn/musicnet.html
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Data analytics
operations

LOADING

•Identify the notes performed at specific times in a recording
•Classify the instruments that perform in a recording
•Classify the composer of  a recording
•Identify precise onset times of  the notes in a recording
•Predict the next note in a recording, conditioned on history

Music information retrieval
- Automatic music transcription
- Inferring a musical score from a recording
Generative models that can fabricate performances under various constraints
- Can we learn to synthesize a performance given a score? 
- Can we generate a fugue in the style of  Bach using a melody by Brahms?

105



GREEDY DATA PROCESSING
“Multi-view computational problem”

Iterative data processing and visualization tasks need to share CPU cycles 

Data is a bottleneck

APPLICATION

DRAM

DISK/DATABASE

CPU
Multiples Cores

GPU
Thousands of Cores

1-5GBps1-10GBps

106



107



108

ACCESS METHODS

Read Optimized

Update Optimized
(write)

Memory Optimized
(space)

Adaptive structures
• Cracking
• Merging Approximate indexes

• Sparse index
• Bloom filter
• Bitmap

Differential structures
• PDT1
• LSM
• PBT
• MaSM

Point & Tree indexes
• Hash
• B-Tree
• Trie
• Skiplist

R U M
adaptive

Hardware

Requirements

Operations

Predefined Data Types, Log-structured Merge Tree, the Partitioned B-tree, the Materialized Sort-Merge algorithm
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How to combine, deploy, and deliver data management functionalities:
­Compliant to application/user requirements
­Optimizing the consumption of computing resources in the presence of greedy data processing

tasks
­Delivered according to Service Level Agreement (SLA) contracts
­Deployed in elastic and distributed platforms

CHALLENGES & OBJECTIVE


