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‘ CLOUD DATA MANAGEMENT: SERVICES VIEWS

* Definition » Storage (persistency)
* Querying and exploiting » Efficient retrieval (indexing, caching)
* Manipulation * Fault tolerance (recovery, replication)

* Maintenance
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DBMS EVOLUTION

No more monolithic DBMS Components are providing Services

Extensible, lightweight DBMS Blur the boundaries between OS &

Unbundled technology* DBMS

|f- ti t
Component-based architectures™ (thick- Self-adaptive Systems

grain vs. fine-grain) Multi-tier architectures, Web, P2P, GRID,

OO Frameworks CLOUD....

* See Dittrich, Geppert, Eds, “Component Database Systems”, MK 2000
* Chaudhuri & Weikum, Rethinking Database System Architecture: Towards a Self-tuning RISC-style Database System, VLDB 2000
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‘ CLOUD DATA MANAGEMENT: SERVICES VIEWS

* Definition » Storage (persistency)
* Querying and exploiting » Efficient retrieval (indexing, caching)
* Manipulation * Fault tolerance (recovery, replication)
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DATA MANAGEMENT WITHOUT RESOURCES
CONSTRAINIS_

ELASTIC

COSTAWARE

Algorithms = |

Systems

-

Reduce the cost to manage and exploit data sets according to unlimited storage,

memory and computation resources



‘ CLOUD DATA MANAGEMENT WISH LIST

Scalability and elasticity are the keys in cloud data management
* Quality: efficiency, economic cost, provenance, user preferences and constraints
* Multi-tenancy: managing large number of small tenants

* Consistency and replication

Fault Tolerance
* If a query must restart each time a node fails, then long, complex queries are difficult to complete

Run in heterogeneous environments
* Should prevent the slowest node from making a disproportionate affect on total query performance

Operate on encrypted data

Interface with data analytics and exploitation services



CLOUD DATA MANAGEMENT: ASPECTS TO

CONSIDER

Security [Agrawal2]
* Confidentiality

* Privacy

Data Analytics
* Large scale processing of complex queries

* Machine learning and data mining at large
scale

Multi-tenancy
* For OLTP [Agrawal1]
* For OLAP [Wong 201 3]

Consistency, scalability and elasticity
[Agrawall]
* Replication and consistency models

* Elasticity



User applications

Relational Cloud storage service

Relational
DBMS

Relational model and SQL as a

Service e.g. Amazon relational
database service (RDS), MS SQL Azure

Implemented on top of
parallel clusters of common
DBMS servers e.qg., MySQL
MS SQL Server



‘ CLOUD DATA MANAGEMENT: FUNCTIONS VIEW

Individual users & applications

High level languages for

accessing data and controlling
[ Query language ] rocousing
1 |

r . . . Performance for complex operations

l Distributed processing system } (SQL like joins & grouping, data

. analysis)

Simple & flexible data model (key-value),

[ Structured data system ] basic access operations (lookup API)

i i Perf for dat
[ Distributed storage system ]7 erformance Tor data access

fault tolerance, availability, scalability

11



‘ CLOUD DATA MANAGEMENT: FUNCTIONS VIEW

Individual users & applications

Query language
HiveQL, JaQL, Pig on top of Hadoop Map-Reduce

.!! Distributed processing system
Google/Hadoop MapReduce

l Structured data system .

Google BigTable & other BigTable implementations like Hbase, Cassandra, Amazon SimpleDB
Distributed storage system

Distributed file systems:

Google file system, Hadoop Distributed File System, CloudStore
Cloud-based file Service: Amazon S3

P2P-like file service: Amazon Dynamo




‘ DATABASE LANDSCAPE
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SERVICE ORIENTED DBMS

Extension services
Streaming, XML, procedures, queries,

replication
Data

services Additional
________________ extension
Access services

services
Storage Other
services services

! lonut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business, Technologie und Web (BTW 2007)

Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000. 1



SERVICE ORIENTED DBMS

Extension services
Streaming, XML, procedures, queries,

replication O_[

Service Level Agreement
* In the event of a corruption, or other disaster
* the maximum amount of data loss is the last 15 minutes of transactions
* the maximum amount of downtime the application can tolerate is 20 minutes

services | ( (_)—( ) — "~ A N services Q_| -_.J. .

Service level agreement: the contracted delivery time of the service or performance

Required SLA: agreements between the user and SDBMS expressed as a combination of weighted
measures associated to a query

! lonut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business, Technologie und Web (BTW 2007)
Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000. 15



SERVICE ORIENTED DBMS

Extension services
Streaming, XML, procedures, queries,

replication
Data

services Additional
_______________ extension
Access services

services
Storage | Other
services | { services

Service level agreement: the contracted delivery time of the service or performance

Required SLA: agreements between the user and SDBMS expressed as a combination of weighted
measures associated to a query

! lonut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business, Technologie und Web (BTW 2007)

Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000. 1



CHALLENGES AND OBJECTIVE

How to combine, deploy, and deliver DBMS functionalities:
= Compliant to application/user requirements

* Optimizing the consumption of computing resources in the presence of greedy data
processing tasks

* Delivered according to Service Level Agreement (SLA) contracts

* Deployed in elastic and distributed platforms

* See Dittrich, Geppert, Eds, “Component Database Systems”, MK 2000
* Chaudhuri & Weikum, Rethinking Database System Architecture: Towards a Self-tuning RISC-style Database System, VLDB 2000



OPEN SOURCE BIG DATA STACKS

HiveQL PigLatin Jaqgl script

< L L

HiveQL/Pig/Jaql Hadoop M/R Job

3

(High-level Languages)

Hadoop MapReduce J'
Dataflow Layer

HBase Key-Value Store

Hadoop Distributed File System

(Byte-oriented file abstraction)

From Mike Carey

Get/Put ops.

Notes:

Giant byte sequence at
the bottom

Map, sort, shuffle, reduce
layer in middle

Possible storage layer in
middle as well

HLLs now at the top

18



ASTERIX DB @ UCI

http://isg.ics.uci.edu

Z@ﬁiﬁk@ﬂ%ﬁi\

Data-
Intensive
Computing

“One Size Fits a Bunch”

http://asterixdb.ics.uci.edu

*Inside “Big Data Management”: Ogres, Onions, or Parfaits?, Vinayak Borkar, Michael J. Carey, Chen Li, EDBT/ICDT 2012 Joint Conference Berlin

*Data Services, Michael J. Carey, Nicola Onose, Michalis Petropoulos
CACM June 2012, (Vol55, N.6)



ASTERIX SOFTWARE STACK

AsterixQL

Piglet
Asterix
Data
Mgmt. _ _ Other HLL Hadoop Pregel IMRU
System ||| Hivesterix C . M/R Job Job Job
ompilers . . .

Hyracks Job

$

Hadoop M/R

Algebricks
Compatibility

Algebra Layer

Pregelix IMRU

Hyracks Data-parallel Platform

HASTERIXDB



GOOGLE BIG QUERY

Key Differences

BigQuery

MapReduce

Whatis it?

Query service for large
datasets

Programming model for
processing large datasets

Common use cases

Ad hoc and trial-and- error
interactive query of large
dataset for quick analysis
and troubleshooting

Batch processing of

large dataset for time-
consuming data conversion
or aggregation

Sample use cases

OLAP/BI use case

Yes

No

Data Mining use case

Partially (e.g. preflight data
analysis for data mining)

Yes

Very fast response Yes No (takes minutes - days)
Easy to use for non- Yes No (requires Hive/Tenzing)
programmers (analysts,

tech support, etc)

Programming complex data No Yes

processing logic

Processing unstructured data Partially (regular expression Yes

matching on text)

21



Google BigQuery
Pricing

BigQuery uses a columnar data structure, which means that for a given query,
you are only charged for data processed in each column, not the entire table.
The first 100GB of data processed per month is at no charge

Pricing Table
Resource Pricing Default Limits
Storage $0.12 (per GB/month) 2TB
Interactive Queries $0.035 (per GB Processed) ** 20,000 Queries Per Day (QPD)

20TB of Data Processed Per Day

Batch Queries $0.02 (per GB processed) 20,000 Total Queries Per Day (QPD)

7



Google bigquery

COMPOSE QUERY New Qu... 1
Query History 1 select owrgg) from publicdata:samples.wikipedia
2 where REGEXP_MATCH(title, '[0-9]*") AND wp_namespace = 0;
Job History
testdata R
v publicdata:samples
S [ rm e |
Show previous query results
ii github_timeline
ii gsod
21 natality Quel'y Results 3:13pm, 31 Oct 2¢ Download as CSV  Save as Table Chart View
i shakespeare Row f0_
i trigrams 1 223163387
25 wikipedia

Figure 1 Querying Sample Wikipedia Table on BigQuery
(You can try out BigQuery by simply sign up for it.)



National Science Foundation £
a Expeditions in Computing :

ABOUT PEOPLE PAPERS PROJECTS  SOFTWARE BLOG SPONSORS PHOTOS Login
ALGORITHMS MACHINES PEOPLE Founding Sponsors
e Working at the intersection of three massive trends: powerful machine ee'f,‘sgﬁge'; GO \)816

; 7 learning, cloud computing, and crowdsourcing, the AMPLab is creating

Next generation of analytics data stack

Berkeley data analytics stack (BADS)
* Release as open source

Spark & Tachyon New Features, @
Baidu, Sunnyvale, October 28th,
6:00pm (registration required)

® Mesos making news and vying for

Silicon Valley is Migrating Unicorn” status - 08.19.15 @ s" informatica

AMPCamp 6 Big Data Bootcamp, North - 09.21.15 ® Mike Jordan and BDAS in Science - HUAWE)

Berkeley, CA, Nov 19-20, 2015 07.31.15
(registration required) :I@ Microsoft “
NetApp
Pivotal ™  Schiumberger
Featured Project: Award-Winning Ph.D. Research
Each year the ACM Doctoral Dissertation Award recognizes outstanding Computer Science doctoral dissertations vmware

completed the previous year. We're happy to announce that this year AMPLab Ph.D.s garnered two of the

three nwarde niven warld-wide



BERKELEY DATA ANALYTICS STACKS

In-house Apps Cancer Genomics Energy Debugging Smart Buildings

Sample

Clean G-OLA MLBase
A Spark

EREE Gl pcr' BlinkDB SparkR GraphX Splash MLPipelines
Interfaces Streaming
Velox
SparkSQL MLlib
Processing Engine Apache Spark (Core)
Succinct

Storage Alluxio (formerly Tachyon)

HDFS, S3, Ceph

Resource
Virtualization Apache Mesos Hadoop Yarn

AMPLab Initiated Spark Community 3rd Party In Development

25
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Mines-Télécom

ABOUT

Le GENES

Le groupe des Ecoles Nationales
d'Economie et Statistique est un
établissement public d'enseignement
supérieur et de recherche rattaché au
ministére de I'économie et des finances, et
dont I'INSEE assure ainsi la tutelle

technique.

BIG DATA
Ambition TeralLab

TeralLab est un « Projet d’Investissement
d’Avenir » (PIA) lauréat de I’appel a projet
Big Data de 2012.




HORTONWORKS

GOUVERNANCE ACCES AUX DONNEES SECURITE EXPLOITATION
INTEGREE

Script SQL Java/... NoSQL Stream Reche... In-Mem Autres...

) Pig Hive Cascad...| | HBase Storm Solr Spark Engines
Flux de don.nees, HCatalog Accumulo Authentication, Fournir, gérer et
cycle de vie et Phoenix Authorization, surveiller
gourvernance B B Tez S/ 1] Audit & Data
Protection Ambari
Falcon > [ g z ZooKeeper
YARN : systeme d'exploitation des donnees
Stockage : HDFS
WebHDFS Ressources : YARN )
NFS Acces : Hive Programmation
Flume il
Pipeline : Falcon i
Sqoop . | !-IDFS, ., Cluster : Knox e
Kafka Systeme de fichiers distribué Hadoop

Cluster: Ranger

GESTION DES DONNEES

http://fr.hortonworks.com .



PRINCIPLE

map: (ki1,v1) — [(k2,v2)]

reduce: (ks, [v2]) — [(ks,v3)]

Stage 1: Apply a user-specified computation over all input records in a dataset.

* These operations occur in parallel and yield intermediate output (key-value pairs)

Stage 2: Aggregate intermediate output by another user-specified computation
* Recursively applies a function on every pair of the list

28



COUNTING WORDS

(URI, document) -> (term, count)

see bob throw
see spot run

>

see
1
bob 1
throw 1
see
1
spot 1

PquqEL

o

bob <1>
run <1>
see <1,1>
spot <1>
throw <1>

Shuffle/Sort

»

bob 1
run

1
see

2
spot 1
throw 1

Reduce

29




KEY VALUE PAIRS

Basic data structure in MapReduce, keys and values may be
* primitive such as integers, floating point values, strings, and raw bytes

* arbitrarily complex structures (lists, tuples, associative arrays, etc.)

Part of the design of MapReduce algorithms involves imposing the key-value structure on

arbitrary datasets
* For a collection of web pages, keys may be URLs and values may be the actual HTML content.

* For a graph, keys may represent node ids and values may contain the adjacency lists of those nodes

30



MAP REDUCE EXAMPLE

1: class MAPPER
/ [ \ \ 22 method MAP(docid a, doc d)
3: for all term t € doc d do
[ mapper ] [ mapper ] [ mapper ] [ mapper ] 4: EMiIT(term ¢, count 1)
1: class REDUCER
| Shuffle and Sort: aggregate values by keys 2 methOd RED UCE(term t, counts [Cl’ Cay .. ])
3: sum « 0
I l l 4 for all count ¢ € counts [¢;,¢c,,...] do
[ reducer ] [ reducer ] [ reducer ] 5: sum «— sum + ¢
! . . 6: EMIT(term ¢, count sum)

x B3 a7

31



MAP REDUCE PHASES

Initialisation
Map: record reader, mapper, combiner, and partitioner

Reduce: shuffle, sort, reducer, and output format

Partition input (key, value) pairs into chunks run
map() tasks in parallel

After all map()’s have been completed
consolidate the values for each unique emitted
key

Partition space of output map keys, and run
reduce() in parallel

37



MAP REDUCE ADDITIONAL ELEMENTS

A B U

Copoer ) (mopoer ) (Cmovoer ] (mopoer )

B2

( combiner | combiner | [ combiner | [ combiner |

!
| = | v B

[ partitioner ] [ partitioner ] [ partitioner ] [ partitioner]

I Shuffle and Sort: aggregate values by keys I

l

! !
[ reducer ] [ reducer ] [ reducer ]
! ! !
X v

Partitioners are responsible for dividing up the intermediate key space and assigning
intermediate key-value pairs to reducers

* the partitioner species the task to which an intermediate key-value pair must be copied

Combiners are an optimization in MapReduce that allow for local aggregation before the
shuffle and sort phase

33



1:
2:
3:
4:

1
2
3:
4

S o

COUNTING WORDS: BASIC ALGORITHM

class MAPPER
method MAP(docid a, doc d)
for all term ¢ € doc d do
EMIT(term ¢, count 1)

: class REDUCER

method REDUCE(term ¢, counts [cy, ¢, .. .])
sum «— 0
for all count ¢ € counts [ci,cz,...] do
sum «— sum + ¢
EMIT(term ¢, count sum)

the mapper emits an intermediate key-
value pair for each term observed, with
the term itself as the key and a value of
one

reducers sum up the partial counts to
arrive at the final count

34



LOCAL AGGREGATION

Combiner technique

= Aggregate term counts across the documents
processed by each map task

* Provide a general mechanism within the
MapReduce framework to reduce the amount of
intermediate data generated by the mappers

* Reduction in the number of intermediate key-
value pairs that need to be shuffled across the
network

= from the order of total number of terms in the collection to
the order of the number of unique terms in the collection

class MAPPER
method MAP(docid a, doc d)
H + new ASSOCIATIVEARRAY
for all term ¢t € doc d do
H{t} «— H{t} +1
for all term £ € H do
EMIT(term ¢, count H{t})

35



IN-MAPPER COMBINING PATTERN: ONE STEP FURTHER

The workings of this algorithm critically depends on the
details of how map and reduce tasks in Hadoop are
executed

Prior to processing_any input key-value pairs, the
mapper’'s Initialize method is called

= which is an APl hook for user-specified code
* We initialize an associative array for holding term counts

= Since it is possible to preserve state across multiple calls of the
Map method (for each input key-value pair), we can

* continue to accumulate partial term counts in the associative array across
multiple documents,

= emit key-value pairs only when the mapper has processed all documents

Transmission of intermediate data is deferred until the
Close method in the pseudo-code

class MAPPER
method INITIALIZE
H «— new ASSOCIATIVEARRAY
method MAP(docid a,doc d)
for all term ¢ € doc d do
H{t} «— H{t} +1
method CLOSE
for all term ¢t € H do
EMmiIT(term t, count H{t})

36



IN-MAPPER COMBINING PATTERN: ADVANTAGES

Provides control over when local aggregation occurs and how it exactly takes place
* Hadoop makes no guarantees on how many times the combiner is applied, or that it is even applied at all
* The execution framework has the option of using it, perhaps multiple times, or not at all

* Such indeterminism is unacceptable, which is exactly why programmers often choose to perform their own local
aggregation in the mappers

In-mapper combining will typically be more efficient than using actual combiners.

* One reason for this is the additional overhead associated with actually materializing the key-value pairs

= Combiners reduce the amount of intermediate data that is shuffled across the network, but don’t actually reduce the number of key-value pairs
that are emitted by the mappers in the first place

= The mappers will generate only those key-value pairs that need to be shuffled across the network to the reducers

= Avoid unnecessary object creation and destruction (garbage collection takes time), and, object serialization and deserialization (when
intermediate key-value pairs fill the in-memory buffer holding map outputs and need to be temporarily spilled to disk)

37



IN-MAPPER COMBINING PATTERN: LIMITATIONS

Breaks the functional programming underpinnings of MapReduce, since state is being preserved
across multiple input key-value pairs

There is a fundamental scalability bottleneck associated with the in-mapper combining pattern

* It critically depends on having sufficient memory to store intermediate results until the mapper has completely
processed all key-value pairs in an input split

* One common solution to limiting memory usage is to “block” input key-value pairs and “flush” in-memory data
structures periodically

* Instead of emitting intermediate data only after every key-value pair has been processed, emit partial results after
processing every n key-value pairs
= Implemented with a counter variable that keeps track of the number of input key-value pairs that have been processed

= The mapper could keep track of its own memory footprint and flush intermediate key-value pairs once memory usage has crossed a certain
threshold

= Memory size empirically determined: difficult due to concurrent access to memory

38



Building Effective Algorithms and Analytics
Jfor Hadoop and Other Systems

MapReduce
Design A
Pattems ,

O’REILLY" Donald Mmer G Adam. Shook

M AP REDUCE PATTERNS | Grpjocee cesionpottens
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MAP — REDUCE DESIGN PATTERNS

©® SUMMARIZATION

@ Numerical

¢  Minimum, maximum, count,
average, median-standard
deviation

?

@ Inverted index

*  Wikipedia inverted index

?

Counting
O with counters

*  Count number of records, a small
number of unique instances,
summations

*  Number of users per state

?

@® FILTERING

O Filtering

Closer view of data, tracking event
threads, distributed grep, data
cleansing, simple random sampling,
remove low scoring data

O Bloom

.

Remove most of nonwatched values,
prefiltering data for a set
membership check

Hot list, Hbase query

Top ten

@ Outlier analysis, select interesting

data, catchy dashbords
Top ten users by reputation

O Distinct

Deduplicate data, getting distinct
values, protecting from inner join
explosion

Distinct user ids

® DATA ORGANIZATION

©  Structured to hierarchical

Prejoining data, preparing data for Hbase
or MongoDB

Post/comment building for StackOverflow,
Question/Answer building

©  Partitioning

Partitioning users by last access date

Binning

@ Binning by Hadoop-related tags

©  Total order sorting

Sort users by last visit

©  Shuffling

Anonymizing StackOverflow comments

® JOIN
O Reduce side join

*  Multiple large data sets joined by
foreign key
*  User — comment join

© Reduce side join with
bloom filter

*  Reputable user — comment join

Replicated join

@ Replicated user — comment join

© Composite join

* Composite user — comment join

O Cartesian product

Comment comparison

40



@ SUMMARIZATION
Numerical

Inverted index

OCouang with counters

NUMERICAL SUMMARIZATION PATTERN

The numerical summarizations pattern is a general pattern for calculating aggregate
statistical values over a data collection

* Group records together by a key field and calculate a numerical aggregate per group to get a top-
level view of the larger data set

* Bbe a generic numerical summarization function we wish to execute over some list of values (v, V,,

Vi3, «.., V,) tofind avalue ], ie. A=0(v,, V,, V3, ..., V,).Examples of 8 include a
minimum, maximum, average, median, and standard deviation

Motivation and applicability

= Group logins by the hour of the day and perform a count of the number of records in each group,
group advertisements by types to determine how affective ads are for better targeting

* Dealing with numerical data or counting
* The data can be grouped by specific fields

4



STRUCTURE

The mapper outputs keys that consist of each
field to group by, and values consisting of any
pertinent numerical items

The combiner can greatly reduce the number of

intermediate key/value pairs to be sent across

the network to the reducers for some numerical

summarization functions

= |f the function O is an associative and commutative
operation, it can be used for this purpose

* If you can arbitrarily change the order of the values and
you can group the computation arbitrarily

The reducer

* receives a set of numerical values (v,, V,, V3, ..
V,) associated with a group-by key records to perform
the functionh = B(Vy, Vo, Vi, ..v, V,

* The value of A is output with the given input key

Mapper

(key, summary field)

key, summary field
(key Y ): Partitioner

Mapper

(key, summary field)

(key, summary field) »
»| Partitioner

Mapper

(key, summary field)

key, summary field
(key . )= Partitioner

Reducer

—>

Reducer

>

(group B, summary)
(group D, summary)

(group B, summary)
(group D, summary)

42



RESEMBLANCES AND PERFORMANCE ANALYSIS

Resemblances

SQL
The Numerical Aggregation pattern is analogous to using aggregates after a GROUP
BY in SQL:

SELECT MIN(numericalcoll), MAX(numericalcoll),
COUNT(*) FROM table GROUP BY groupcol2;

Pig
The GROUP ... BY expression, followed by a FOREACH .. GENERATE:

b = GROUP a BY groupcol2;
¢ = FOREACH b GENERATE group, MIN(a.numericalcoll),
MAX(a.numericalcoll), COUNT_STAR(a);

Performance analysis

Aggregations performed by jobs using
this pattern typically perform well when
the combiner is properly used

These types of operations are what
MapReduce was built for

43



Hadoop Ecosystem h
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Conclusions & Perspectives




CONCLUSIONS

Data collections

* New scales: bronto scale due to emerging loT
* New types: thick, long hot, cold

* New quality measures: QoS, QoE, SLA

Data processing & analytics
* Complex jobs, stream analytics are still open issues

* Economic cost model & business models (Big Data value & pay-as-U-go)

Multi-cloud: elasticity, quality, SLA

47
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DISTRIBUTED FILE SYSTEM

Abandons the separation of computation and storage as distinct components in a
cluster
* Google File System (GFS) supports Google’s proprietary implementation of MapReduce;

* In the open-source world, HDFS (Hadoop Distributed File System) is an open-source implementation of
GFS that supports Hadoop

The main idea is to divide user data into blocks and replicate those blocks across the
local disks of nodes in the cluster

Adopts a master—slave architecture

* Master (namenode HDFS) maintains the file namespace (metadata, directory structure, file to block
mapping, location of blocks, and access permissions)

* Slaves (datanode HDFS) manage the actual data blocks
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HDFS GENERAL ARCHITECTURE

An application client wishing to read a

file (or a portion thereof) must first

. Application ) ffoolbar
contact the namenOde to determine Mﬁentl (flle name, block id) File namespace block 3df2
where the actual data is stored 3 F* (block i, block location) /SI\\
The namenode returns the relevant
blOCk id Gnd fhe locathn Whel‘e instructions to datanode
the block is held (i.e., which datanode) datanode siate

(block id, byte range)

HDFS datanode HDFS datanode

The client then contacts the datanode 1 — _ .
Linux file system Linux file system

retrieve the data. , ‘
88 ‘S
HDFS lies on top of the standard OS

stack (e.g., Linux): blocks are stored on
standard single-machine file systems
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‘ HADOOP CLUSTER ARCHITECTURE

=
A PN,
7

—~
-
-
-
-
-
-

datanode daemon
Linux file system

The HDFS namenode runs the namenode daemon S e siave ode siavo ode

The job submission node runs the jobtracker, which is the single point of contact for a client
wishing to execute a MapReduce job

The jobtracker
* Monitors the progress of running MapReduce jobs
* |s responsible for coordinating the execution of the mappers and reducers

= Tries to take advantage of data locality in scheduling map tasks

52



‘ HADOOP CLUSTER ARCHITECTURE

Tasktracker
* It accepts tasks (Map, Reduce, Shuffle, etc.) from JobTracker

* Each TaskTracker has a number of slots for the tasks: these are execution slots available on the
machine or machines on the same rack

* It spawns a separate JVM for execution of the tasks

* It indicates the number of available slots through the hearbeat message to the JobTracker
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\ HDFS PROPERTIES -

HDFS stores three separate copies of each data block to ensure both reliability, availability, and
performance

In large clusters, the three replicas are spread across different physical racks,

= HDFS is resilient towards two common failure scenarios individual datanode crashes and failures in networking
equipment that bring an entire rack offline.

" Replicating blocks across physical machines also increases opportunities to co-locate data and processing in the
scheduling of MapReduce jobs, since multiple copies yield more opportunities to exploit locality

To create a new file and write data to HDFS
= The application client contacts the namenode
* The namenode

= updates the file namespace after checking permissions and making sure the file doesn’t already exist
* allocates a new block on a suitable datanode

* The application is directed to stream data directly to it

* From the initial datanode, data is further propagated to additional replicas
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‘ NOSQL STORES CHARACTERISTICS

Simple operations High performance

Key lookups reads and writes of one record or a small = Efficient use of distributed indexes and RAM for data
number of records storage

No complex queries or joins *  Weak consistency model

Ability to dynamically add new attributes to data " Limited transactions
records

*  Horizontal scalability
Distribute data and operations over many servers
Replicate and distribute data over many servers

No shared memory or disk
Next generation databases mostly addressing some of the points: being non-relational, distributed,
open-source and horizontally scalable [http://nosql-database.org]
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¢o now we have NoS@L- databageg

* Data model examples inclvde
« Consistency

© Storage | CouchDB
© Durability mongODB relax

 Availability

. o
* Query support r WC 4 ﬁrlak
\ assanraﬂpﬁcHE

| Data stores designed |to scale simple ?® Neodj HSASE

@ NOSOL for the Enterprise

(OLTP-style application loads |

Bigtable and Amazon’s SimpleDB. While
these are tied to their host’s cloud

i We should also remember Google’s

service, they certainly fit the general

Read/Write operations operating characteristics
by thousands/millions of users
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IMPORTANT DESIGN GOALS

Scale out: designed for scale
* Commodity hardware
* Low latency updates

= Sustain high update /insert throughput
Elasticity — scale up and down with load

High availability — downtime implies lost revenue
* Replication (with multi-mastering)
* Geographic replication

* Automated failure recovery
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LOWER PRIORITIES

No Complex querying functionality
* No support for SQL

* CRUD operations through database specific API

No support for joins
* Materialize simple join results in the relevant row

* Give up normalization of data?

No support for transactions
* Most data stores support single row transactions

* Tunable consistency and availability (e.g., Dynamo)

-> Achieve high scalability



NON FUNCTIONAL PROPERTIES

Fault-tolerant

Availability

partitioning

Consistency

CAP theorem': a system can have two of the three properties

NoSQL systems sacrifice consistenc

1 Eric Brewer, "Towards robust distributed systems."

Yy

PODC. 2000 http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
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- VISUAL GUIDE,T )OSQL SYSTEMS

each client can Data models
always read & write

Relational

Key-Value
Column oriented Tabular

C - A A - P
- RDBM’ s - Aster Data - Dynamo - Cassandra
- MySQL - GreenPlum - Voldemort
- Postgres - Vertica - Tokyo Cabinet
_ etc - KAI
Consistency: C PPartition tolerance:
all clients always have o ———— The system works well despite
the same view of de data C -P physical network partitions
- BigTable - BerkeleyDB
- HyperTable - MemcacheDB

- Hbase - Scalaris - Redis
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DATA MODELS

Tuple

* Row in a relational table, where attributes are pre-defined in a schema, and the values are scalar

Document
= Allows values to be nested documents or lists, as well as scalar values.

* Attributes are not defined in a global schema

Extensible record

* Hybrid between tuple and document, where families of attributes are defined in a schema, but new
attributes can be added on a per-record basis
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\ DATA STORES

Key-value
* Systems that store values and an index to find them, based on a key

Document
= Systems that store documents, providing index and simple query mechanisms

Extensible record
* Systems that store extensible records that can be partitioned vertically and horizontally across nodes

Graph

= Systems that store model data as graphs where nodes can represent content modelled as document or
key-value structures and arcs represent a relation between the data modelled by the node

Relational
* Systems that store, index and query tuples
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KEY-VALUE STORES

“Simplest data stores” use a data model
similar to the memcached distributed in-
memory cache

Single key-value index for all data
Provide a persistence mechanism

Replication, versioning, locking,
transactions, sorting

API: inserts, deletes, index lookups

No secondary indices or keys

SYSTEM ADDRESS

Redis code.google.com/p/redis
Scalaris code.google.com/p/scalaris
Tokyo tokyocabinet.sourceforge.net
Voldemort project-voldemort.com

Riak riak.basho.com

Membrain schoonerinfotech.com/products
Membase membase.com
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Edit Profile
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F Close Friends

[ Family

[ National Laboratory on ...
[ UDLA, Universidad de la.
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FROM
WHERE

name
friendlist
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[@ Fundacién Universidad d.
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DOCUMENT STORES

Support more complex data: pointerless
objects, i.e., documents

Secondary indexes, multiple types of
documents (objects) per database, nested
documents and lists, e.g. B-trees

Automatic sharding (scale writes), no explicit
locks, weaker concurrency (eventual for
scaling reads) and atomicity properties

APl: select, delete, .
getAttributes, putAttributes on

documents

Queries can be distributed in parallel over
multiple nodes using a map-reduce
mechanism

SYSTEM ADDRESS

SimpleDB amazon.com/simpledb
Couch DB couchdb.apache.org
Mongo DB mongodb.org

Terrastore

code.google.com/terrastore
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EXTENSIBLE RECORD STORES

Basic data model is rows and columns

Basic scalability model is splitting rows and
columns over multiple nodes
* Rows split across nodes through sharding on the
primary key
Split by range rather than hash function

= Rows analogous to documents: variable number of attributes,
attribute names must be unique

= Grouped into collections (tables)

= Queries on ranges of values do not go to every node

Columns are distributed over multiple nodes
using “column groups”

* Which columns are best stored together

* Column groups must be pre-defined with the
extensible record stores

SYSTEM

ADDRESS

HBase hbase.apache.com
HyperTable hypertable.org
Cassandra incubator.apache.org/cassandra
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SCALABLE RELATIONAL SYSTEMS

SQL: rich declarative query language
Databases reinforce referential integrity

ACID semantics

Well understood operations:

= Configuration, Care and feeding, Backups, Tuning, Failure

and recovery, Performance characteristics

Use small-scope operations
* Challenge: joins that do not scale with sharding

Use small-scope transactions
= ACID transactions inefficient with communication and 2PC
overhead

Shared nothing architecture for scalability

Avoid cross-node operations

SYSTEM

ADDRESS

MySQL C mysql.com/cluster
Volt DB voltdb.com

Clustrix clustrix.com
ScaleDB scaledb.com

Scale Base scalebase.com
Nimbus DB nimbusdb.com
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‘ NOSQL STORES CHARACTERISTICS

There is no standard definition of what NOSQL Simple operations

haielion Th? term began with d workshop = Key lookups reads and writes of one record or a small number of
organized in 2009, but there is much records

argument about what databases can truly be - No complex queries or joins

called NoSQL. = Ability to dynamically add new attributes to data records

But while there is no formal definition, there
are some common characteristics of NOSQL
databases

D they dont use the relational data model,
and thus don’t use the SQL language

Horizontal scalability

* Distribute data and operations over many servers
* Replicate and distribute data over many servers
* No shared memory or disk

{1 they tend to be designed to run on a High performance
cluster = Efficient use of distributed indexes and RAM for data storage
D they tend to be Open Source * Weak consistency model

[0 they don't have a fixed schema, allowing * Limited transactions

you to store any data in any record

Next generation databases mostly addressing some of the points: being non-relational,
distributed, open-source and horizontally scalable [http://nosql-database.org]
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‘ DATA MANAGEMENT SYSTEMS ARCHITECTURES

ANSI/SPARC

External model

Logic model

Physical model

1

1
1
\

External model

S
Logic model

Physical model
/’F\

- ~
i \i

Custom components

a |m

Storage
Transaction Manager
Manager T
I
Schema
Manager
Query
Engine

Customisable points

DBMS

External model
Logic model

=
Physical model

~N <
// \

.}\
\
-

Extension services
Streaming, XML, procedures,

queries, replication

Data
services

Access
services

Additional
.) Extension

services

Storage
services

Other
services




Key-Value

Document

‘ COMPARING NOSQL & NEWSQL SYSTEMS

Cattell, Rick.

SYSTEM CONCURRENCY DATA REPLICATION TRANSACTION SYSTEM CONCURRENCY DATA REPLICATION TRANSACTION
CONTROL STORAGE CONTROL STORAGE
Redis RAM Asynchronous Terrastore Locks RAMT gynchronous L
Scalaris Locks RAM Synchronous Local Hbase Locks HADOOP Asynchronous L
Tokyo Locks RAM /Disk Asynchronous Local HyperTabl Locks Files Synchronous L
Voldemort MvCC RAM/BDB Asynchronous No :

Cassandra MVCC Disk Asynchronous L
Riak MVCC Plug in Asynchronous No BiaT, locetaamo: GES Both L
Membrain Locks Flash+Disk Synchronous Local PNuts MVCC Disk Asynchronous L
Membase Locks Disk Synchronous Local MySQL-C ACID Disk Synchronous Y
Dynamo Asynchronous VoltDB ACID/no Lock RAM Synchronous Y
SimpleDB Non S3 Asynchronous No Clustrix ACID/no Lock Disk Synchronous Y
MongoDB Locks Disk Asynchronous No ScaleDB ACID Disk Synchronous Y
CouchDB MVCC Disk Asynchronous No ScaleBase ACID Disk Asynchronous Y
NimbusDB ACID/no Lock Disk Synchronous Y

"Scalable SQL and NoSQL data stores." ACM SIGMOD Record 39.4 (2011): 12-27

Extended records

Relational



Rapid access for reads
and writes. No need to

be durable

User sessions

Product Catalog

Lots of reads, infrequent

Needs high availability across Rapidly traverse links

Needs transactional multiple locations. Can merge between friends, product
updates. Tabular inconsistent writes purchases, and ratings
structure fits data

Speculative Retailers Web Application

Financial Data Shopping Cart Recomendations

Thig i€ a very
hypothetical example,

we would not make
‘l’cohnofoﬁ
recommendationg
withovt more
contextval informaﬁon

Reporting Analytics User activity logs

writes. Products make Large-scale analytics on

natural aggregate

large cluster High volume of writes on
multiple nodes

SQL interfaces well with
reporting tools
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\ THIS TALK IS NOT ABOUT

[including a historic Archive 2009-2011]

N*S Q L Yﬁll:)rn?;:g;:)enaelu&ieiv?rg: News Feed covering some changes here ! h tt p : / / nos q l - d a t a b ase.o rng

.—% Debate on whether NoSQL stores and relational systems are better or worse ...
that is not the point

G
I
@ BigData &

Of course we can surf on these waves
t the end of the talk and during EDBT School!

&
P
%
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\ THIS TALK IS ABOUT

Pol 7510‘? Fersictence

alternative for managing multiform and multimedia data collections
according to different properties and requirements




Fol 11510‘!‘ Fergictence

using multiple data storage technologies, chosen
based upon the way data is being used by
individual applications. Why store binary images
in relational database, when there are better

storage systems?

Polyglot persistence will occur over the enterprise
as different applications use different data storage
technologies. It will also occur within a single
application as different parts of an application’s

data store have different access characteristics. http://martinfowler.com/bliki/PolyglotPersistence_htril




POLYGLOT PERSISTENCE

Polyglot Programming: applications should be written in a mix of languages to

take advantage of different languages are suitable for tackling different
problems

Polyglot persistence: any decent sized enterprise will have a variety of
different data storage technologies for different kinds of data

" a new strategic enterprise application should no longer be built assuming a relational
persistence support

" the relational option might be the right one - but you should seriously look at other
alternatives

M. Fowler and P. Sadalage. NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence. Pearson Education, Limited, 2012
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Use the right tool for the right job...

Key-Value Ordered Key-Value Big Table Document, Graph sQL
Full-Text Search

i1

HH[[H]

1 How do | know which is the
right tool for the right job?

v

|

i
|

||
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‘ WHY SACRIFICE CONSISTENCY?

It is a simple solution
* nobody understands what sacrificing P means
* sacrificing A is unacceptable in the Web

* possible to push the problem to app developer

C not needed in many applications
* Banks do not implement ACID (classic example wrong)

* Airline reservation only transacts reads (Huh?)

* MySQL et al. ship by default in lower isolation level

Data is noisy and inconsistent anyway

* making it, say, 1% worse does not matter
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CONSISTENCY MODEL

ACID semantics (transaction semantics in RDBMS)

= Atomicity: either the operation (e.g., write) is performed on all replicas or is not performed on any of
them

= Consistency: after each operation all replicas reach the same state

* Isolation: no operation (e.g., read) can see the data from another operation (e.g., write) in an
intermediate state

= Durability: once a write has been successful, that write will persist indefinitely

BASE semantics (modern Internet systems)
* Basically Available
= Soft-state (or scalable)

* Eventually consistent
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read(D)

 CONSISTENCY MODELS s

Distributed

Strong consistency: Storage system

" After the update completes, every subsequent access from A, B, C will return D,

Weak consistency:

* Does not guaranty that any subsequent accesses return D; -> a number of conditions need to be met before
D, is returned

Eventual consistency: Special form of weak consistency

* Guaranty that if no new updates are made, eventually all accesses will return D,
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VARIATIONS OF EVENTUAL CONSISTENCY

Causal consistency:
* If A notifies B about the update, B will read D1 (but not Cl)

Read your writes:

= A will always read D1 after its own update

Sessionconsistency:

* Read your writes inside a session

Monotonic reads:

* If a process has seen Dk, any subsequent access will never return any Di with i < k

Monotonic writes:

* Guaranty to seiralize the writes of the same process
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ACID VS BASE

ACID

Strong consistency for transactions
highest priority

Availability less important
Pessimistic
Rigorous analysis

Complex mechanisms

BASE

Availability and scaling highest priorities
Weak consistency

Optimistic

Best effort

Simple and fast
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MAP-REDUCE

Programming model for expressing distributed computations on massive amounts of
data

Execution framework for large-scale data processing on clusters of commodity
servers

Market: any organization built around gathering, analyzing, monitoring, filtering,
searching, or organizing content must tackle large-data problems
= data- intensive processing is beyond the capability of any individual machine and requires clusters

* large-data problems are fundamentally about organizing computations on dozens, hundreds, or even
thousands of machines
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MAP REDUCE JOB

map() > reducel()

combpine & reduce
(‘,ov\,q,uu covdinality

Stage 1: Apply a user-specified computation over all input records in a dataset.

* These operations occur in parallel and yield intermediate output (key-value pairs)

Stage 2: Aggregate intermediate output by another user-specified computation

" Recursively applies a function on every pair of the list
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MAP REDUCE COMPLEX JOBS

the actual join

O
°
2| 3
I Y
°
: ° e ® Each mapper produces
A : A x the join key & the record
[ ] ﬁ pairs
My Each mapper

processes one block

(@ |[Sa) Ao
o AlAA e A HDEFS stores

data blocks
o
e 24



MAP REDUCE SUMMARY

Highly fault tolerant

Relatively easy to write “arbitrary”
distributed computations over very large
amounts of data

MR framework removes burden of
dealing with failures from programmer

Schema embedded in application code
A lack of shared schema

Makes sharing data between
applications difficult

Makes lots of DBMS “goodies” such as
indices, integrity constraints, views, ...
impossible

No declarative query language
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PIG

“Pig Latin: A Not-So-Foreign Language for Data Processing”
* Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, Andrew Tomkins (Yahoo! Research)
* http://www.sigmod08.org /program_glance.shtml#sigmod_industrial_program
* http:/ /infolab.stanford.edu/~usriv/papers/pig-latin.pdf
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PIG

High level data flow language for exploring
very large datasets

Compiler that produces sequences of
MapReduce programs

Structure is amenable to substantial
parallelization

Operates on files in HDFS

Metadata not required, but used when
available

Provides an engine for executing data flows in
parallel on Hadoop

Ease of programming

* Trivial to achieve parallel execution of simple
and parallel data analysis tasks

Optimization opportunities

= Allows the user to focus on semantics rather than
efficiency

Extensibility

* Users can create their own functions to do
special-purpose processing
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EXAMPLE

Top 5 pages accessed by users between 18 and 25 year

File Edit Selection Find View Gote Tools Project Preferences Help
top_5_sites.pig x ’
1 lusers = load 'users.csv' as (username:chararray, age:int);
2 users_1825 = filter users by age >= 18 and age <= 25;
= pages = load 'pages.csv' as (username:chararray, url:chararray);
S5
6 joined = join users_1825 by username, pages by username;
7 grouped = group joined by url;
8 summed = foreach grouped generate group as url, COUNT(joined) as views;
9 sorted = order summed by views desc;
1@ top_ 5 = limit sorted 5;
11
12 store top_5 into 'top_5_sites.csv’';
13




Load Users

Load Pages

Filter by Age

Jusers = load "users.csv' as |
yusers_ 1825 =

—3U = filter users by
\ages = load 'pages.csv' as |
Join on Name —>joined join users_1825 by
1 rouped = group joined by ur:
/umed = foreach grouped gent
sorted = order summed by vie

Group on url op_5 = limit sorted 5;

\L7/

store top_S into "top_5_site:

Count Clicks

\Ls/

Order by
Clicks

Take Top 5

Save results



EQUIVALENT JAVA MAP REDUCE CODE
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QUERYING WITH RESOURCES CONSTRAINTS

3 Distribution and organization of
Swap memory— disk data on disk

Data frcmsferfj Ej Ej

Query and data processing

LS - —
on server - Ej Ej Ej
& & * Efficiency => time cost
g ' Q : * Optimizing memory and computing
cost
QT: Which are the most popular products Q2: Which are the consumption rules of
at Starbucks € Starbucks clients ¢

Efficiently manage and exploit data sets according to given specific storage,
memory and computation resources

98



‘ QUERYING WITHOUT RESOURCES CONSTRAINTS

Costly => minimizing cost, energy
consumption

Informix

* Query evaluation> How and under which limits 2
* Is not longer completely constraint by resources availability: computing, RAM, storage, network services

* Decision making process determined by resources consumption and consumer requirements

Data involved in the query, particularly in the result can have different costs: top 5 gratis and the rest
available in return to a credit card number

Results storage and exploitation demands more resources
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Genoveva Vargas-Solar
CRT, CNRS, LIG-LAFMIA
Genoveva.Vargas(@imag.fr

http://vargas-solar.com/datascience
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MULTIMODEL DATA MANAGEMENT

Greedy data Provide data storage, fetching and delivery
processing strategies

* Architecture: distributed file system across nodes

* Data sharding and replication: on storage and
memory

* Fetch to fulfil multi-facetig application requirements

* Prefetching

* Memory indexing

. * Reduce impedance mismatch

;ﬁ le/l"' 101



DATA SHARDING

Toceata and Fugue in D Minor

Multimedia multiform data Distributed File System

Sharded & colocated
Input data
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DATA SHARDING

Toceata and Fugue in D Minor

Sharded data architecture

. Multimedia multiform data Distributed File Sys§1

o
ﬂ;;.':-rrmr.- ‘ 5 _’_l.—ﬁ—.wﬂ]‘mmp—:—-
pras==: =

22t

—

P

Shald{ Shard 3 Shard N

Secondary Secondary Secondary o Secondary
Secondary : Secondary Secondary Secondary
Input data
Factors:
- RAM - Disk
- (PU - Network
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INDEXING & STORING

Multimedia

Distributed File System Indexing classes multiform data

@ @ Data
transformation
?
¢ oooo:o
“‘é___ #t ()
= 2
Sharded & colocated
Input data

]
[
it

— Tagged opus execution
--" - * the precise time of each note every recording,
* the instrument that plays each note,

* the note's position in the metrical structure,af the compositiol
MusicNet: 330 classical music recordings, 1 million annotated labels indicating http://homes.cs.washington.edu/~thickstn/musicnet.html
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LOADING

Music information retrieval
Automatic music transcription
Inferring a musical score from a recording
Generative models that can fabricate performances under various constraints
Can we learn to synthesize a performance given a score?
Can we generate a fugue in the style of Bach using a melody by Brahms?

. A

oooo:o .
° operations

Data analytics

*|dentify the notes performed at specific times in a recording
*(lassify the instruments that perform in a recording
*(lassify the composer of a recording

*|dentify precise onsettimes of the notes in a recording
*Predict the next notein a recording, conditioned on history
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GREEDY DATA PROCESSING

“Multi-view computational problem”

lterative data processing and visualization tasks need to share CPU cycles

Data is a bottleneck

1-10GBps APPLICATION 1-5GBps
09
> &  __
DRAM
CPU GPU
Multiples Cores .—t—. Thousands of Cores
—1_ =
S
'

DISK /DATABASE
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what can go wrong?

not enough space to index all data

not enough idle time to finish proper tuning

by the time we finish tuning, the workload changes

not enough money - energy - resources




ACCESS METHODS

Read Optimized
. . Requirements
Point & Tree indexes

Hash

B-Tree

Trie
Skiplist

Adapti RUM 'ures 0 :
Differential structures ) ) . perations
. ppTl adaptive Approximate indexes

* Sparse index

: ;;? . B}oom filter
) el . Bitmap
Update Optimized Memory Optimized
A i3 Hardware

DATA

Predefined Data Types, Log-structured Merge Tree, the Partitioned B-tree, the Materialized Sort-Merge algorithmyg



CHALLENGES & OBJECTIVE

How to combine, deploy, and deliver data management functionalities:
* Compliant to application/user requirements

* Optimizing the consumption of computing resources in the presence of greedy data processing
tasks

“Delivered according to Service Level Agreement (SLA) contracts
“Deployed in elastic and distributed platforms
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