
BIG DATA ANALYTICS ENVIRONMENTS
Architectures, systems and properties

Genoveva Vargas-Solar
Senior Scientist, French Council of Scientific Research

Javier A. Espinosa Oviedo
Postdoctoral fellow, Barcelona Super Computing Centre

I N F O R M A T I Q U E
UFRN, Natal, October – November 2017
http://vargas-solar.com/datacentric-sciences/

2

"Design the next generation of data processing systems & architectures
guided by scientific requirements"

CLOUD DATA MANAGEMENT: SERVICES VIEWS

3

Data	Volume

Peta
1015

Exa
1018Zetta

1021Yota
1024

Hardware

Cloud

tape
magnetic

• Storage (persistency)
• Efficient retrieval (indexing, caching)
• Fault tolerance (recovery, replication)
• Maintenance

• Definition
• Querying and exploiting
• Manipulation

RAID

DBMS EVOLUTION

No more monolithic DBMS

Extensible, lightweight DBMS

Unbundled technology*

Component-based architectures* (thick-
grain vs. fine-grain)

OO Frameworks

Components are providing Services

Blur the boundaries between OS &
DBMS

Self-adaptive Systems

Multi-tier architectures, Web, P2P, GRID,
CLOUD,…

4

* See Dittrich, Geppert, Eds, “Component Database Systems”, MK 2000

* Chaudhuri & Weikum, Rethinking Database System Architecture: Towards a Self-tuning RISC-style Database System, VLDB 2000

DATA MANAGEMENT WITH RESOURCES
CONSTRAINTS

5

STORAGE
SUPPORT

Systems

ARCHITECTURE &
RESOURCES AWARE

RAM

Algorithms

Efficiently manage and exploit data sets according to given specific storage,
memory and computation resources

CLOUD DATA MANAGEMENT: SERVICES VIEWS

6

Data	Volume

Peta
1015

Exa
1018Zetta

1021Yota
1024

Hardware

Cloud

tape
magnetic

• Storage (persistency)
• Efficient retrieval (indexing, caching)
• Fault tolerance (recovery, replication)
• Maintenance

• Definition
• Querying and exploiting
• Manipulation

RAID

DATA MANAGEMENT WITHOUT RESOURCES
CONSTRAINTS

7

Reduce the cost to manage and exploit data sets according to unlimited storage,
memory and computation resources

Systems

Algorithms
COSTAWARE

ELASTIC

CLOUD DATA MANAGEMENT WISH LIST
Scalability and elasticity are the keys in cloud data management
­ Quality: efficiency, economic cost, provenance, user preferences and constraints
­ Multi-tenancy: managing large number of small tenants
­ Consistency and replication

Fault Tolerance
­ If a query must restart each time a node fails, then long, complex queries are difficult to complete

Run in heterogeneous environments
­ Should prevent the slowest node from making a disproportionate affect on total query performance

Operate on encrypted data

Interface with data analytics and exploitation services

8

CLOUD DATA MANAGEMENT: ASPECTS TO
CONSIDER
Security [Agrawal2]
­ Confidentiality
­ Privacy

Data Analytics
­ Large scale processing of complex queries
­ Machine learning and data mining at large

scale

Multi-tenancy
­ For OLTP [Agrawal1]
­ For OLAP [Wong 2013]

Consistency, scalability and elasticity
[Agrawal1]
­ Replication and consistency models
­ Elasticity

9

SQL AS A SERVICE

10

Relational
DBMS

Relational Cloud storage service
Relational model and SQL as a
Service e.g. Amazon relational
database service (RDS), MS SQL Azure

Implemented on top of
parallel clusters of common
DBMS servers e.g., MySQL
MS SQL Server

User applications

CLOUD DATA MANAGEMENT: FUNCTIONS VIEW

11

Distributed storage system

Structured data system

Distributed processing system

Query language

Performance for data access
fault tolerance, availability, scalability

Performance for complex operations
(SQL like joins & grouping, data

analysis)

Simple & flexible data model (key-value),
basic access operations (lookup API)

High level languages for
accessing data and controlling

processing

Individual users & applications

CLOUD DATA MANAGEMENT: FUNCTIONS VIEW

12

Distributed storage system

Structured data system

Distributed processing system

Query language

Individual users & applications

Distributed file systems:
Google file system, Hadoop Distributed File System, CloudStore
Cloud-based file Service: Amazon S3
P2P-like file service: Amazon Dynamo

Google BigTable & other BigTable implementations like Hbase, Cassandra, Amazon SimpleDB

Google/Hadoop MapReduce

HiveQL, JaQL, Pig on top of Hadoop Map-Reduce

DATABASE LANDSCAPE

13

14

Data
services

Access
services

Storage
services

Additional
extension
services

Other
services

Extension services
Streaming, XML, procedures, queries,

replication

1 Ionut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business, Technologie und Web (BTW 2007)
Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000.

SERVICE ORIENTED DBMS

15

Service level agreement: the contracted delivery time of the service or performance

Required SLA: agreements between the user and SDBMS expressed as a combination of weighted
measures associated to a query

Data
services

Access
services

Storage
services

Additional
extension
services

Other
services

Extension services
Streaming, XML, procedures, queries,

replication

1 Ionut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business, Technologie und Web (BTW 2007)
Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000.

Service Level Agreement
• In the event of a corruption, or other disaster

• the maximum amount of data loss is the last 15 minutes of transactions
• the maximum amount of downtime the application can tolerate is 20 minutes

SERVICE ORIENTED DBMS

16

Service level agreement: the contracted delivery time of the service or performance

Required SLA: agreements between the user and SDBMS expressed as a combination of weighted
measures associated to a query

Data
services

Access
services

Storage
services

Additional
extension
services

Other
services

Extension services
Streaming, XML, procedures, queries,

replication

1 Ionut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business, Technologie und Web (BTW 2007)
Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000.

SERVICE ORIENTED DBMS

17

How to combine, deploy, and deliver DBMS functionalities:
­ Compliant to application/user requirements
­ Optimizing the consumption of computing resources in the presence of greedy data
processing tasks

­ Delivered according to Service Level Agreement (SLA) contracts
­ Deployed in elastic and distributed platforms

* See Dittrich, Geppert, Eds, “Component Database Systems”, MK 2000

* Chaudhuri & Weikum, Rethinking Database System Architecture: Towards a Self-tuning RISC-style Database System, VLDB 2000

CHALLENGES AND OBJECTIVE

18

Notes:
• Giant	byte	sequence	at	

the	bottom
• Map,	sort,	shuffle,	reduce	

layer	in	middle
• Possible	storage	layer	in	

middle	as	well
• HLLs	now	at	the	top

From Mike Carey

OPEN SOURCE BIG DATA STACKS

http://asterixdb.ics.uci.edu

“One	Size	Fits	a	Bunch”

Semi-
structured

Data
Management

Parallel
Database
Systems

Data-
Intensive
Computing

•Inside “Big Data Management”: Ogres, Onions, or Parfaits?, Vinayak Borkar, Michael J. Carey, Chen Li, EDBT/ICDT 2012 Joint Conference Berlin

•Data Services, Michael J. Carey, Nicola Onose, Michalis Petropoulos
CACM June 2012, (Vol55, N.6)

ASTERIX DB @ UCI

#ASTERIXDB

Other HLL
Compilers

Algebricks
Algebra Layer

Hyracks Data-parallel Platform

Piglet ...

Hadoop
M/R Job

Hadoop M/R
Compatibility

Hyracks Job

AsterixQL

Asterix
Data

Mgmt.
System Hivesterix

HiveQL

Pregel
Job

Pregelix

IMRU
Job

IMRU

ASTERIX SOFTWARE STACK

21

GOOGLE BIG QUERY

22

23

24

Next generation of analytics data stack
• Berkeley data analytics stack (BADS)
• Release as open source

25

BERKELEY DATA ANALYTICS STACKS

TERALAB

Big Data platform for research and experimentation

FSN Big Data Call for academia and start ups

Target infrastructure
­ Storage: 1,5 Peta octets
­ RAM: 16 Tera octets
­ Computing power [SPECint_rate2006]: 28000

Software as a Service: R(evolution), MapReduce, Impala, Hive, Pig, GRAPHLAB,
KNIME, Rapid Miner, Alpine miner, Python tools (Pandas, IPython...)

Public data collections

26

https://www.teralab-datascience.fr

27http://fr.hortonworks.com

HORTONWORKS

28

Stage 1: Apply a user-specified computation over all input records in a dataset.
­ These operations occur in parallel and yield intermediate output (key-value pairs)

Stage 2: Aggregate intermediate output by another user-specified computation
­ Recursively applies a function on every pair of the list

PRINCIPLE

29

(URI, document) à (term, count)

see bob throw
see spot run

bob <1>
run <1>
see <1,1>
spot <1>
throw <1>

see
1

bob 1
throw 1
see

1
spot 1
run

1

bob 1
run

1
see

2
spot 1
throw 1

Map Shuffle/Sort Reduce

COUNTING WORDS

30

Basic data structure in MapReduce, keys and values may be
­ primitive such as integers, floating point values, strings, and raw bytes
­ arbitrarily complex structures (lists, tuples, associative arrays, etc.)

Part of the design of MapReduce algorithms involves imposing the key-value structure on
arbitrary datasets
­ For a collection of web pages, keys may be URLs and values may be the actual HTML content.
­ For a graph, keys may represent node ids and values may contain the adjacency lists of those nodes

KEY VALUE PAIRS

31

MAP REDUCE EXAMPLE

32

Initialisation

Map: record reader, mapper, combiner, and partitioner

Reduce: shuffle, sort, reducer, and output format

Partition input (key, value) pairs into chunks run
map() tasks in parallel

After all map()’s have been completed
consolidate the values for each unique emitted
key

Partition space of output map keys, and run
reduce() in parallel

MAP REDUCE PHASES

33

Partitioners are responsible for dividing up the intermediate key space and assigning
intermediate key-value pairs to reducers
­ the partitioner species the task to which an intermediate key-value pair must be copied

Combiners are an optimization in MapReduce that allow for local aggregation before the
shuffle and sort phase

MAP REDUCE ADDITIONAL ELEMENTS

34

the mapper emits an intermediate key-
value pair for each term observed, with
the term itself as the key and a value of
one

reducers sum up the partial counts to
arrive at the final count

COUNTING WORDS: BASIC ALGORITHM

35

Combiner technique
­ Aggregate term counts across the documents

processed by each map task
­ Provide a general mechanism within the

MapReduce framework to reduce the amount of
intermediate data generated by the mappers

­ Reduction in the number of intermediate key-
value pairs that need to be shuffled across the
network
­ from the order of total number of terms in the collection to

the order of the number of unique terms in the collection

LOCAL AGGREGATION

36

The workings of this algorithm critically depends on the
details of how map and reduce tasks in Hadoop are
executed

Prior to processing any input key-value pairs, the
mapper’s Initialize method is called
­ which is an API hook for user-specified code
­ We initialize an associative array for holding term counts
­ Since it is possible to preserve state across multiple calls of the
Map method (for each input key-value pair), we can
­ continue to accumulate partial term counts in the associative array across

multiple documents,
­ emit key-value pairs only when the mapper has processed all documents

Transmission of intermediate data is deferred until the
Close method in the pseudo-code

IN-MAPPER COMBINING PATTERN: ONE STEP FURTHER

37

Provides control over when local aggregation occurs and how it exactly takes place
­ Hadoop makes no guarantees on how many times the combiner is applied, or that it is even applied at all
­ The execution framework has the option of using it, perhaps multiple times, or not at all
­ Such indeterminism is unacceptable, which is exactly why programmers often choose to perform their own local

aggregation in the mappers

In-mapper combining will typically be more efficient than using actual combiners.
­ One reason for this is the additional overhead associated with actually materializing the key-value pairs

­ Combiners reduce the amount of intermediate data that is shuffled across the network, but don’t actually reduce the number of key-value pairs
that are emitted by the mappers in the first place

­ The mappers will generate only those key-value pairs that need to be shuffled across the network to the reducers

­ Avoid unnecessary object creation and destruction (garbage collection takes time), and, object serialization and deserialization (when
intermediate key-value pairs fill the in-memory buffer holding map outputs and need to be temporarily spilled to disk)

IN-MAPPER COMBINING PATTERN: ADVANTAGES

38

Breaks the functional programming underpinnings of MapReduce, since state is being preserved
across multiple input key-value pairs

There is a fundamental scalability bottleneck associated with the in-mapper combining pattern
­ It critically depends on having sufficient memory to store intermediate results until the mapper has completely

processed all key-value pairs in an input split
­ One common solution to limiting memory usage is to “block” input key-value pairs and “flush” in-memory data

structures periodically
­ Instead of emitting intermediate data only after every key-value pair has been processed, emit partial results after

processing every n key-value pairs
­ Implemented with a counter variable that keeps track of the number of input key-value pairs that have been processed
­ The mapper could keep track of its own memory footprint and flush intermediate key-value pairs once memory usage has crossed a certain

threshold

­ Memory size empirically determined: difficult due to concurrent access to memory

IN-MAPPER COMBINING PATTERN: LIMITATIONS

MAP REDUCE PATTERNS MapReduce design patterns,
O’Relly

39

MAP – REDUCE DESIGN PATTERNS

40

SUMMARIZATION
Numerical

Inverted index

Counting
with counters

FILTERING
Filtering

Bloom

Top ten

Distinct

DATA ORGANIZATION
Structured to hierarchical

Partitioning

Binning

Total order sorting

Shuffling

JOIN
Reduce side join

Reduce side join with
bloom filter

Replicated join

Composite join

Cartesian product

• Minimum, maximum, count,
average, median-standard
deviation

• Wikipedia inverted index

• Count number of records, a small
number of unique instances,
summations

• Number of users per state

• Remove most of nonwatched values,
prefiltering data for a set
membership check

• Hot list, Hbase query

• Closer view of data, tracking event
threads, distributed grep, data
cleansing, simple random sampling,
remove low scoring data

• Outlier analysis, select interesting
data, catchy dashbords

• Top ten users by reputation

• Deduplicate data, getting distinct
values, protecting from inner join
explosion

• Distinct user ids

• Prejoining data, preparing data for Hbase
or MongoDB

• Post/comment building for StackOverflow,
Question/Answer building

• Partitioning users by last access date

• Binning by Hadoop-related tags

• Sort users by last visit

• Anonymizing StackOverflow comments

• Multiple large data sets joined by
foreign key

• User – comment join

• Reputable user – comment join

• Replicated user – comment join

• Composite user – comment join

• Comment comparison

NUMERICAL SUMMARIZATION PATTERN

The numerical summarizations pattern is a general pattern for calculating aggregate
statistical values over a data collection

Intent
­ Group records together by a key field and calculate a numerical aggregate per group to get a top-

level view of the larger data set
­ θbe a generic numerical summarization function we wish to execute over some list of values (v1, v2,
v3, ..., vn) to find a value λ, i.e. λ = θ(v1, v2, v3, ..., vn). Examples of θ include a
minimum, maximum, average, median, and standard deviation

Motivation and applicability
­ Group logins by the hour of the day and perform a count of the number of records in each group,

group advertisements by types to determine how affective ads are for better targeting
­ Dealing with numerical data or counting
­ The data can be grouped by specific fields

41

SUMMARIZATION
Numerical
Inverted index
Counting with counters

STRUCTURE

The mapper outputs keys that consist of each
field to group by, and values consisting of any
pertinent numerical items

The combiner can greatly reduce the number of
intermediate key/value pairs to be sent across
the network to the reducers for some numerical
summarization functions
­ If the function θ is an associative and commutative

operation, it can be used for this purpose
­ If you can arbitrarily change the order of the values and

you can group the computation arbitrarily

The reducer
­ receives a set of numerical values (v1, v2, v3, ..., vn) associated with a group-by key records to perform

the functionλ = θ(v1, v2, v3, ..., vn)
­ The value of λ is output with the given input key

42

RESEMBLANCES AND PERFORMANCE ANALYSIS

Resemblances Performance analysis

Aggregations performed by jobs using
this pattern typically perform well when
the combiner is properly used

These types of operations are what
MapReduce was built for

43

Source: http://indoos.wordpress.com/2010/08/16/hadoop-ecosystem-world-map/

45

46

Conclusions & Perspectives

CONCLUSIONS

Data collections
­ New scales: bronto scale due to emerging IoT
­ New types: thick, long hot, cold
­ New quality measures: QoS, QoE, SLA

Data processing & analytics
­ Complex jobs, stream analytics are still open issues
­ Economic cost model & business models (Big Data value & pay-as-U-go)

Multi-cloud: elasticity, quality, SLA

47

TODO LIST

482009 2011 2013 2014 …

Cloud
services

Big data
NoSQL Data science

Autonomous DaaS

No off the shelf DBMSMap reduce

Pivot NoSQL data model
Distributed polyglot (big)

database engineering
Extended YSCB NoSQL

stores benchmark

QoS based event flow
composition

Economy based data
delivery

SLA guided data
integration

Coordination based
parallel data processing
Optimization of different

types of queries

49

Genoveva Vargas-Solar
CR1, CNRS, LIG-LAFMIA
Genoveva.Vargas@imag.fr

http://vargas-solar.com/datascience

DISTRIBUTED FILE SYSTEM

Abandons the separation of computation and storage as distinct components in a
cluster
­ Google File System (GFS) supports Google’s proprietary implementation of MapReduce;
­ In the open-source world, HDFS (Hadoop Distributed File System) is an open-source implementation of

GFS that supports Hadoop

The main idea is to divide user data into blocks and replicate those blocks across the
local disks of nodes in the cluster

Adopts a master–slave architecture
­ Master (namenode HDFS) maintains the file namespace (metadata, directory structure, file to block

mapping, location of blocks, and access permissions)
­ Slaves (datanode HDFS) manage the actual data blocks

50

HDFS GENERAL ARCHITECTURE

An application client wishing to read a
file (or a portion thereof) must first
contact the namenode to determine
where the actual data is stored

The namenode returns the relevant
block id and the location where
the block is held (i.e., which datanode)

The client then contacts the datanode to
retrieve the data.

HDFS lies on top of the standard OS
stack (e.g., Linux): blocks are stored on
standard single-machine file systems

51

HADOOP CLUSTER ARCHITECTURE

The HDFS namenode runs the namenode daemon

The job submission node runs the jobtracker, which is the single point of contact for a client
wishing to execute a MapReduce job

The jobtracker
­ Monitors the progress of running MapReduce jobs
­ Is responsible for coordinating the execution of the mappers and reducers
­ Tries to take advantage of data locality in scheduling map tasks

52

HADOOP CLUSTER ARCHITECTURE

Tasktracker
­ It accepts tasks (Map, Reduce, Shuffle, etc.) from JobTracker
­ Each TaskTracker has a number of slots for the tasks: these are execution slots available on the

machine or machines on the same rack
­ It spawns a separate JVM for execution of the tasks
­ It indicates the number of available slots through the hearbeat message to the JobTracker

53

HDFS PROPERTIES
HDFS stores three separate copies of each data block to ensure both reliability, availability, and
performance

In large clusters, the three replicas are spread across different physical racks,
­ HDFS is resilient towards two common failure scenarios individual datanode crashes and failures in networking

equipment that bring an entire rack offline.
­ Replicating blocks across physical machines also increases opportunities to co-locate data and processing in the

scheduling of MapReduce jobs, since multiple copies yield more opportunities to exploit locality

To create a new file and write data to HDFS
­ The application client contacts the namenode
­ The namenode

­ updates the file namespace after checking permissions and making sure the file doesn’t already exist

­ allocates a new block on a suitable datanode

­ The application is directed to stream data directly to it
­ From the initial datanode, data is further propagated to additional replicas

54

55

NOSQL STORES CHARACTERISTICS
Simple operations

­ Key lookups reads and writes of one record or a small

number of records

­ No complex queries or joins

­ Ability to dynamically add new attributes to data

records

­ Horizontal scalability

­ Distribute data and operations over many servers

­ Replicate and distribute data over many servers

­ No shared memory or disk

High performance

­ Efficient use of distributed indexes and RAM for data

storage

­ Weak consistency model

­ Limited transactions

56

Next generation databases mostly addressing some of the points: being non-relational, distributed,
open-source and horizontally scalable [http://nosql-database.org]

57

Data	stores	designed		to	scale	simple	
OLTP-style	application	loads	

• Data model
• Consistency
• Storage
• Durability
• Availability
• Query support

Read/Write operations
by thousands/millions of users

IMPORTANT DESIGN GOALS

Scale out: designed for scale
­ Commodity hardware
­ Low latency updates
­ Sustain high update/insert throughput

Elasticity – scale up and down with load

High availability – downtime implies lost revenue
­ Replication (with multi-mastering)
­ Geographic replication
­ Automated failure recovery

58

LOWER PRIORITIES

No Complex querying functionality
­ No support for SQL
­ CRUD operations through database specific API

No support for joins
­ Materialize simple join results in the relevant row
­ Give up normalization of data?

No support for transactions
­ Most data stores support single row transactions
­ Tunable consistency and availability (e.g., Dynamo)

59

à Achieve high scalability

NON FUNCTIONAL PROPERTIES

CAP theorem1: a system can have two of the three properties

NoSQL systems sacrifice consistency

60

ConsistencyAvailability

Fault-tolerant
partitioning

1 Eric Brewer, "Towards robust distributed systems." PODC. 2000 http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

VISUAL GUIDE TO NOSQL SYSTEMS

61

C

A

P

C - A A - P

C - P

Data models

- Relational
- Key-Value
- Column oriented Tabular
- Document oriented

- Dynamo
- Voldemort
- Tokyo Cabinet
- KAI

- Cassandra
- SimpleDB
- CouchDB
- Riak

- BigTable
- HyperTable
- Hbase

- MongoDB
- TerraStore
- Scalaris

- BerkeleyDB
- MemcacheDB
- Redis

- RDBM’s
- MySQL
- Postgres
- etc

- Aster Data
- GreenPlum
- Vertica

Availability:
each client can

always read & write

Partition tolerance:
The system works well despite
physical network partitions

Consistency:
all clients always have

the same view of de data

DATA MODELS

Tuple
­ Row in a relational table, where attributes are pre-defined in a schema, and the values are scalar

Document
­ Allows values to be nested documents or lists, as well as scalar values.
­ Attributes are not defined in a global schema

Extensible record
­ Hybrid between tuple and document, where families of attributes are defined in a schema, but new

attributes can be added on a per-record basis

62

DATA STORES

Key-value
­ Systems that store values and an index to find them, based on a key

Document
­ Systems that store documents, providing index and simple query mechanisms

Extensible record
­ Systems that store extensible records that can be partitioned vertically and horizontally across nodes

Graph
­ Systems that store model data as graphs where nodes can represent content modelled as document or

key-value structures and arcs represent a relation between the data modelled by the node

Relational
­ Systems that store, index and query tuples

63

KEY-VALUE STORES

“Simplest data stores” use a data model
similar to the memcached distributed in-
memory cache

Single key-value index for all data

Provide a persistence mechanism

Replication, versioning, locking,
transactions, sorting

API: inserts, deletes, index lookups

No secondary indices or keys

64

SYSTEM ADDRESS

Redis code.google.com/p/redis

Scalaris code.google.com/p/scalaris

Tokyo tokyocabinet.sourceforge.net

Voldemort project-voldemort.com

Riak riak.basho.com

Membrain schoonerinfotech.com/products

Membase membase.com

SELECT name
FROM group
WHERE gid IN (SELECT gid

FROM group_member
WHERE uid = me())

65

SELECT name, pic, profile_url
FROM user
WHERE uid = me()

SELECT name, pic
FROM user
WHERE online_presence = "active"

AND
uid IN (SELECT uid2

FROM friend
WHERE uid1 = me())

SELECT name
FROM friendlist
WHERE owner = me()

SELECT message, attachment
FROM stream
WHERE source_id = me() AND type = 80

https://developers.facebook.com/docs/reference/fql/

66

<805114856,

>

DOCUMENT STORES

Support more complex data: pointerless
objects, i.e., documents

Secondary indexes, multiple types of
documents (objects) per database, nested
documents and lists, e.g. B-trees

Automatic sharding (scale writes), no explicit
locks, weaker concurrency (eventual for
scaling reads) and atomicity properties

API: select, delete,
getAttributes, putAttributes on
documents

Queries can be distributed in parallel over
multiple nodes using a map-reduce
mechanism

67

SYSTEM ADDRESS

SimpleDB amazon.com/simpledb

Couch DB couchdb.apache.org

Mongo DB mongodb.org

Terrastore code.google.com/terrastore

68

DOCUMENT STORES

EXTENSIBLE RECORD STORES

Basic data model is rows and columns

Basic scalability model is splitting rows and
columns over multiple nodes
­ Rows split across nodes through sharding on the

primary key
­ Split by range rather than hash function
­ Rows analogous to documents: variable number of attributes,

attribute names must be unique
­ Grouped into collections (tables)
­ Queries on ranges of values do not go to every node

Columns are distributed over multiple nodes
using “column groups”
­ Which columns are best stored together
­ Column groups must be pre-defined with the

extensible record stores

69

SYSTEM ADDRESS

HBase hbase.apache.com

HyperTable hypertable.org

Cassandra incubator.apache.org/cassandra

SCALABLE RELATIONAL SYSTEMS

SQL: rich declarative query language

Databases reinforce referential integrity

ACID semantics

Well understood operations:
­ Configuration, Care and feeding, Backups, Tuning, Failure

and recovery, Performance characteristics

Use small-scope operations
­ Challenge: joins that do not scale with sharding

Use small-scope transactions
­ ACID transactions inefficient with communication and 2PC

overhead

Shared nothing architecture for scalability

Avoid cross-node operations

70

SYSTEM ADDRESS

MySQL C mysql.com/cluster

Volt DB voltdb.com

Clustrix clustrix.com

ScaleDB scaledb.com

Scale Base scalebase.com

Nimbus DB nimbusdb.com

NOSQL STORES CHARACTERISTICS
Simple operations
­ Key lookups reads and writes of one record or a small number of

records
­ No complex queries or joins
­ Ability to dynamically add new attributes to data records

Horizontal scalability
­ Distribute data and operations over many servers
­ Replicate and distribute data over many servers
­ No shared memory or disk

High performance
­ Efficient use of distributed indexes and RAM for data storage
­ Weak consistency model
­ Limited transactions

71

Next generation databases mostly addressing some of the points: being non-relational,
distributed, open-source and horizontally scalable [http://nosql-database.org]

DATA MANAGEMENT SYSTEMS ARCHITECTURES

Physical model

Logic model

External model

ANSI/SPARC

Storage
Manager

Schema
Manager

Query
Engine

Transaction
Manager

DBMS

Customisable points

Custom components

Glue
code

Data
services

Access
services

Storage
services

Additional
Extension
services

Other
services

Extension services
Streaming, XML, procedures,
queries, replication

Physical model

Logic model

External model

Physical model

Logic model
External model

72

COMPARING NOSQL & NEWSQL SYSTEMS

SYSTEM CONCURRENCY

CONTROL

DATA

STORAGE

REPLICATION TRANSACTION

Redis Locks RAM Asynchronous No

Scalaris Locks RAM Synchronous Local

Tokyo Locks RAM/Disk Asynchronous Local

Voldemort MVCC RAM/BDB Asynchronous No

Riak MVCC Plug in Asynchronous No

Membrain Locks Flash+Disk Synchronous Local

Membase Locks Disk Synchronous Local

Dynamo MVCC Plug in Asynchronous No

SimpleDB Non S3 Asynchronous No

MongoDB Locks Disk Asynchronous No

CouchDB MVCC Disk Asynchronous No

73

SYSTEM CONCURRENCY

CONTROL

DATA

STORAGE

REPLICATION TRANSACTION

Terrastore Locks RAM+ Synchronous L

Hbase Locks HADOOP Asynchronous L

HyperTabl
e

Locks Files Synchronous L

Cassandra MVCC Disk Asynchronous L

BigTable Locs+stamps GFS Both L

PNuts MVCC Disk Asynchronous L

MySQL-C ACID Disk Synchronous Y

VoltDB ACID/no Lock RAM Synchronous Y

Clustrix ACID/no Lock Disk Synchronous Y

ScaleDB ACID Disk Synchronous Y

ScaleBase ACID Disk Asynchronous Y

NimbusDB ACID/no Lock Disk Synchronous Y

Ke
y-

Va
lu

e
Do

cu
me

nt

Ex
te

nd
ed

 r
ec

or
ds

Re
la

ti
on

al

Cattell, Rick. "Scalable SQL and NoSQL data stores." ACM SIGMOD Record 39.4 (2011): 12-27

74

THIS TALK IS NOT ABOUT

75

http://nosql-database.org

Debate on whether NoSQL stores and relational systems are better or worse …
that is not the point

Of course we can surf on these waves
at the end of the talk and during EDBT School!

THIS TALK IS ABOUT

76

alternative for managing multiform and multimedia data collections
according to different properties and requirements

77

POLYGLOT PERSISTENCE

Polyglot Programming: applications should be written in a mix of languages to
take advantage of different languages are suitable for tackling different
problems

Polyglot persistence: any decent sized enterprise will have a variety of
different data storage technologies for different kinds of data
­ a new strategic enterprise application should no longer be built assuming a relational
persistence support

­ the relational option might be the right one - but you should seriously look at other
alternatives

78

M. Fowler and P. Sadalage. NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence. Pearson Education, Limited, 2012

(Katsov-2012)

Use the right tool for the right job…

How do I know which is the
right tool for the right job?

79

80

WHY SACRIFICE CONSISTENCY?

It is a simple solution
­ nobody understands what sacrificing P means
­ sacrificing A is unacceptable in the Web
­ possible to push the problem to app developer

C not needed in many applications
­ Banks do not implement ACID (classic example wrong)
­ Airline reservation only transacts reads (Huh?)
­ MySQL et al. ship by default in lower isolation level

Data is noisy and inconsistent anyway
­ making it, say, 1% worse does not matter

81

CONSISTENCY MODEL

ACID semantics (transaction semantics in RDBMS)
­ Atomicity: either the operation (e.g., write) is performed on all replicas or is not performed on any of

them
­ Consistency: after each operation all replicas reach the same state
­ Isolation: no operation (e.g., read) can see the data from another operation (e.g., write) in an

intermediate state
­ Durability: once a write has been successful, that write will persist indefinitely

BASE semantics (modern Internet systems)
­ Basically Available
­ Soft-state (or scalable)
­ Eventually consistent

82

CONSISTENCY MODELS

Strong consistency:
­ After the update completes, every subsequent access from A, B, C will return D1

Weak consistency:
­ Does not guaranty that any subsequent accesses return D1 -> a number of conditions need to be met before

D1 is returned

Eventual consistency: Special form of weak consistency
­ Guaranty that if no new updates are made, eventually all accesses will return D1

83

D0

A B C

Distributed
Storage system

read(D)update(D)
D0 à D1

VARIATIONS OF EVENTUAL CONSISTENCY

Causal consistency:
­ If A notifies B about the update, B will read D1 (but not C!)

Read your writes:
­ A will always read D1 after its own update

Sessionconsistency:
­ Read your writes inside a session

Monotonic reads:
­ If a process has seen Dk, any subsequent access will never return any Di with i < k

Monotonic writes:
­ Guaranty to seiralize the writes of the same process

84

ACID VS BASE

Strong consistency for transactions
highest priority

Availability less important

Pessimistic

Rigorous analysis

Complex mechanisms

Availability and scaling highest priorities

Weak consistency

Optimistic

Best effort

Simple and fast

85

ACID BASE

86

MAP-REDUCE

Programming model for expressing distributed computations on massive amounts of
data

Execution framework for large-scale data processing on clusters of commodity
servers

Market: any organization built around gathering, analyzing, monitoring, filtering,
searching, or organizing content must tackle large-data problems
­ data- intensive processing is beyond the capability of any individual machine and requires clusters
­ large-data problems are fundamentally about organizing computations on dozens, hundreds, or even

thousands of machines

87

MAP REDUCE JOB

Stage 1: Apply a user-specified computation over all input records in a dataset.
­ These operations occur in parallel and yield intermediate output (key-value pairs)

Stage 2: Aggregate intermediate output by another user-specified computation
­ Recursively applies a function on every pair of the list

88

MAP REDUCE COMPLEX JOBS

89

Mapper1 Mapper2 Mapper3 Mappern

Reducer1 Reducer2 Reducern

Shuffling & Sorting

…

…

⋈ ⋈ ⋈

HDFS stores
data blocks

Each mapper
processes one block

Each mapper produces
the join key & the record

pairs

Reducers perform
the actual join

MAP REDUCE SUMMARY

Highly fault tolerant

Relatively easy to write “arbitrary”
distributed computations over very large
amounts of data

MR framework removes burden of
dealing with failures from programmer

Schema embedded in application code

A lack of shared schema

Makes sharing data between
applications difficult

Makes lots of DBMS “goodies” such as
indices, integrity constraints, views, ...
impossible

No declarative query language

90

91

PIG

“Pig Latin: A Not-So-Foreign Language for Data Processing”
­ Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, Andrew Tomkins (Yahoo! Research)
­ http://www.sigmod08.org/program_glance.shtml#sigmod_industrial_program
­ http://infolab.stanford.edu/~usriv/papers/pig-latin.pdf

92

PIG

High level data flow language for exploring
very large datasets

Compiler that produces sequences of
MapReduce programs

Structure is amenable to substantial
parallelization

Operates on files in HDFS

Metadata not required, but used when
available

Provides an engine for executing data flows in
parallel on Hadoop

Ease of programming
­ Trivial to achieve parallel execution of simple

and parallel data analysis tasks

Optimization opportunities
­ Allows the user to focus on semantics rather than

efficiency

Extensibility
­ Users can create their own functions to do

special-purpose processing

93

General description Key properties

Top 5 pages accessed by users between 18 and 25 year
EXAMPLE

94

Filter by Age

Load Users Load Pages

Join on Name

Group on url

Count Clicks

Order by
Clicks

Take Top 5

Save results

EQUIVALENT JAVA MAP REDUCE CODE

96

97

QUERYING WITH RESOURCES CONSTRAINTS

98

Q1: Which are the most popular products
at Starbucks ?

Q2: Which are the consumption rules of
Starbucks clients ?

Distribution and organization of
data on disk

Query and data processing
on server

Swap memory– disk
Data transfer

• Efficiency => time cost
• Optimizing memory and computing

cost

Efficiently manage and exploit data sets according to given specific storage,
memory and computation resources

QUERYING WITHOUT RESOURCES CONSTRAINTS

­ Query evaluationà How and under which limits ?
­ Is not longer completely constraint by resources availability: computing, RAM, storage, network services
­ Decision making process determined by resources consumption and consumer requirements

Data involved in the query, particularly in the result can have different costs: top 5 gratis and the rest
available in return to a credit card number

Results storage and exploitation demands more resources

99

Costly => minimizing cost, energy
consumption

100

Genoveva Vargas-Solar
CR1, CNRS, LIG-LAFMIA
Genoveva.Vargas@imag.fr

http://vargas-solar.com/datascience

101

Provide data storage, fetching and delivery
strategies
­ Architecture: distributed file system across nodes
­ Data sharding and replication: on storage and

memory
­ Fetch to fulfil multi-facetig application requirements
­ Prefetching
­ Memory indexing
­ Reduce impedance mismatch

Greedy data
processing

MULTIMODEL DATA MANAGEMENT

DATA SHARDING

Sharded & colocated
Input data

Distributed File SystemMultimedia multiform data

102

DATA SHARDING

Sharded & colocated
Input data

Distributed File SystemMultimedia multiform data

Factors:
- RAM - Disk
- CPU - Network

Sharded data architecture

103

Sharded & colocated
Input data

Distributed File System

Classification

Data
transformation

Tagged opus execution

Multimedia
multiform data

Indexing classes

INDEXING & STORING

• the precise time of each note every recording,
• the instrument that plays each note,
• the note's position in the metrical structure of the composition

MusicNet: 330 classical music recordings, 1 million annotated labels indicating http://homes.cs.washington.edu/~thickstn/musicnet.html
104

Data analytics
operations

LOADING

•Identify the notes performed at specific times in a recording
•Classify the instruments that perform in a recording
•Classify the composer of a recording
•Identify precise onset times of the notes in a recording
•Predict the next note in a recording, conditioned on history

Music information retrieval
- Automatic music transcription
- Inferring a musical score from a recording
Generative models that can fabricate performances under various constraints
- Can we learn to synthesize a performance given a score?
- Can we generate a fugue in the style of Bach using a melody by Brahms?

105

GREEDY DATA PROCESSING
“Multi-view computational problem”

Iterative data processing and visualization tasks need to share CPU cycles

Data is a bottleneck

APPLICATION

DRAM

DISK/DATABASE

CPU
Multiples Cores

GPU
Thousands of Cores

1-5GBps1-10GBps

106

107

108

ACCESS METHODS

Read Optimized

Update Optimized
(write)

Memory Optimized
(space)

Adaptive structures
• Cracking
• Merging Approximate indexes

• Sparse index
• Bloom filter
• Bitmap

Differential structures
• PDT1
• LSM
• PBT
• MaSM

Point & Tree indexes
• Hash
• B-Tree
• Trie
• Skiplist

R U M
adaptive

Hardware

Requirements

Operations

Predefined Data Types, Log-structured Merge Tree, the Partitioned B-tree, the Materialized Sort-Merge algorithm

109

How to combine, deploy, and deliver data management functionalities:
­Compliant to application/user requirements
­Optimizing the consumption of computing resources in the presence of greedy data processing

tasks
­Delivered according to Service Level Agreement (SLA) contracts
­Deployed in elastic and distributed platforms

CHALLENGES & OBJECTIVE

