
Managing Big Data Collections
3rd year, ENSIMAG

Studying data sharding using MongoDB 1

Studying Data Sharding using
MongoDB

Technical requirements

 MongoDB 2.6.
 File cities.txt.

1 Context

NoSQL databases started gaining popularity in the 2000’s when companies began
investing and researching more into distributed databases. An important aspect of
NoSQL databases is that they have no predefined schema. Records can have different
fields as necessary. NoSQL databases, apart from using an Application Programming
Interface(API) or query language to access and modify data, may also use the
MapReduce method which is used for performing a specific function on an entire dataset
and retrieving only the result.

Sharding is a method for storing a large collection of data across multiple servers called
shards (cf. image below). This allows increased performance as each server handles
different sets of data thus if a single database becomes too large its performance may
diminish due to the increased time a query takes.

http://www.mongodb.org/downloads?_ga=1.9811697.55163611.1397947600
http://vargas-solar.com/data-management-services-cloud/wp-content/uploads/sites/32/2014/01/cities.txt

2 Objectives

 Discover and study the process of sharding a database using MongoDB, a document
oriented NoSQL database management system.

 Shard a database using one of the proposed strategies by MongoDB and perform
tests on the implemented strategy.

3 TO DO

Execute the following hands on tasks and answer the questions:
 Guided tour of the sharding strategies provided by MongoDB (section 4)
 Application of the studied strategies on a use case (section 5)

You should work in groups of 2-4 people. Generate a report document and upload
it on Teide no later than Thursday 15.01.2015, 12:00.

Managing Big Data Collections
3rd year, ENSIMAG

Studying data sharding using MongoDB 3

4 Guided tour on MongoDB sharding mechanisms

4.1 Preparing a database

MongoDB stores documents using its own binary format called BSON. This format is a
binary version of the widely used JSON (JavaScript Object Notation) format and stands
for Binary JSON. Although MongoDB uses BSON internally, the manipulation of
documents in the MongoDB shell interface and client software is done using JSON due to
its readability and open standard. In MongoDB databases are composed of collections of
documents.

For this exercise, you have first to (i) create a database and then (ii) create and
populate a database collection. Therefore we are going to use a data collection called
cities.

4.1.1 Creating and populating a documents database

4.1.1.1 Starting a MongoDB Instance

 Start a MongoDB instance: 1

mkdir -p ~/db/shard1 # Folder containing the DB files
mongod --shardsvr --dbpath ~/db/shard1 --port 27021

4.1.1.2 Creating a database and database collection

 Using a new shell, connect to the MongoDB instance:

mongo --host localhost:27021

 Create the database mydb and the database collection cities:

use mydb # Create the DB if not exists
db.createCollection("cities")

 Verify the existence of the database (mydb) and the database collection (cities):

show dbs
show collections

1 Note that the instance will be used later as a shard server (option --shardsvr).

4.1.1.3 Populating and querying a database

 Using a new shell, import the content of the file cities.txt into mydb.cities
collection. After that close the shell:

mongoimport --host localhost:27021 --db mydb --collection cities --file ~/cities.txt

 Using the shell connected to MongoDB, verify the existence of data in the

database by issuing some queries. After that close the shell:

db.cities.find() # Equivalent to SELECT * FROM mydb.cities
db.cities.count()

Q1. Describe in natural language the content of the database collection. Test the
command db.cities.find().pretty() Include a sample of the result in your
description.

How many cities are there in the database?

4.2 Configuring a sharded cluster

As discussed in the course, MongoDB supports sharding through a sharded cluster. A
sharded cluster is composed of the following components:

 Shards: store the data.
 Query routers: direct operations from clients to the appropriate shard(s) and

return results to clients.
 Config servers: store cluster’s metadata. The query router uses this metadata to

target operations to specific shards.

For the sake of simplicity you will configure with a simple sharded cluster (cf. image
below) composed of:

Managing Big Data Collections
3rd year, ENSIMAG

Studying data sharding using MongoDB 5

 One config server.
 One query router (mongos instance).
 One shard (mongod instance).

4.2.1 Starting a config server instance

 Using a new shell, start a config server (mongod instance):

mkdir ~/db/configdb
mongod --configsvr --dbpath ~/db/configdb --port 27020

4.2.2 Starting a query router instance

 Using a new shell, start a query router (mongos instance) connected to the
config server instance in port 27020:

mongos --configdb localhost:27020 --port 27019

4.2.3 Adding a shard instance to the cluster

 Using a new shell, connect to the query router (mongos instance):

mongo --host localhost:27019

 Add to the cluster the mongo instance containing the mydb database:

use admin
db.runCommand({ addShard: "localhost:27021", name: "shard1" })

 Verify the state of the cluster:

sh.status()

Q2 Which is the important information reported by this command? Refer to the
explanation of the previous lecture.

4.3 Sharding a database collection

Recall that sharding is enabled in MongoDB on a per-basis collection. When sharding is
enabled on a collection, MongoDB partitions the data into the shards of a cluster using a
shard key, an indexed field that exists in every document stored in the collection.

MongoDB divides the shard key values into chunks (of documents) and distributes the
chunks evenly across shards. To divide the shard key values into chunks, MongoDB uses
two kinds of partitioning strategies:

 Range based partitioning: data is partitioned into ranges [min, max]
determined by the shard key. Each range represents a chunk.

 Hash based partitioning: data is partitioned into chunks using a hash function.

In what follows you will shard copies of the collection mydb.cities using range based
and hash based partitioning.

Managing Big Data Collections
3rd year, ENSIMAG

Studying data sharding using MongoDB 7

4.3.1 Sharding a collection using ranges

 Using the shell connected to the query router (mongos instance), create the
collection cities1 in database mydb:

use mydb
db.createCollection("cities1")
show collections # Verify collection existence

 Enable sharding on the collection mydb.cities1 using as shard key the attribute

state:

sh.enableSharding("mydb")
sh.shardCollection("mydb.cities1", { "state": 1})

 Verify the number of chunks:

sh.status()

Q3 How many chunks did you create? Which are their associated ranges? Include a
screen copy of the results of the command in your answer to support your answer.

 Populate collection cities1 using the content of the collection mydb.cities:

db.cities.find().forEach(
 function(d) {
 db.cities1.insert(d);
 }
)

 Verify the number of chunks after population:

sh.status()

Q4 How many chunks are there now? Which are their associated ranges? Which changes
can you identify in particular? Include a screen copy of the results of the command in
your answer to support your answer.

4.3.2 Sharding a collection using hash-based partitioning

Now let us study the sharding strategy using a hash function.

 Using the shell connected to the query router (mongos instance), create the
collection cities2:

db.createCollection("cities2")
show collections # Verify collection existence

 Enable sharding on the collection mydb.cities2. The principle that we will adopt

is to use the attribute state as shard key.

sh.shardCollection("mydb.cities2", { "state": "hashed"})

 Verify the number of chunks before collection population:

sh.status()

Q5 How many chunks did you create? What differences do you see with respect to the
same task in the range sharding strategy? Include a screen copy of the results of the
command in your answer to support your answer.

 Populate collection cities2:

db.cities.find().forEach(
 function(d) { db.cities2.insert(d); }
)

 Verify the number of chunks after population:

sh.status()

Q6. How many chunks are there now? Include a screen copy of the results of the
command in your answer to support your answer. Compare the result with respect to
the range sharding. Include a screen copy of the results of the command in your answer
to support your answer.

4.4 Balancing data across sharded cluster

Balancing is the process MongoDB uses to distribute data of a sharded collection evenly
across a sharded cluster. When a shard has too many of a sharded collection’s chunks

Managing Big Data Collections
3rd year, ENSIMAG

Studying data sharding using MongoDB 9

compared to other shards, MongoDB automatically balances the chunks across the
shards.

MongoDB balancer supports tagging a range of shard key values. Using tags you can:

 Isolate specific subset of data on a specific set of shards.
 Ensure that relevant data reside on shards that are geographically close to the

user.

For the final part of this exercise you will analyze the behavior of the MongoDB
balancing process by adding tagged shards to your cluster.

4.4.1 Adding shards to a cluster

 Using a new shell, start another MongoDB instances:

mkdir -p ~/db/shard2 # Folders containing DB files
mongod --shardsvr --dbpath ~/db/shard2 --port 27022

 Using the shell connected to the query router (mongos instance), add the new

mongo instance to the cluster:

use admin
db.runCommand({ addShard: "localhost:27022", name: "shard2" })

 Wait a few seconds and check the status of the cluster:

sh.status()

Q6. Draw the new configuration of the cluster and label each element (router, config
server and shards) with its corresponding port as you defined in the previous tasks.

4.4.2 Sharding using tagged shards

 Using a new shell, start another MongoDB instances:

mkdir -p ~/db/shard3 # Folders containing DB files
mongod --shardsvr --dbpath ~/db/shard3 --port 27023

 Using the shell connected to the query router (mongos instance), add the new
mongo instance to the cluster:

use admin
db.runCommand({ addShard: "localhost:27023", name: "shard3" })
sh.status()

 Associate tags to shard instances:

sh.addShardTag("shard1", "CA")
sh.addShardTag("shard2", "NY")
sh.addShardTag("shard3", "Others")

 Create, shard and populate a new collection named cities3:

db.createCollection("cities3")

sh.shardCollection("mydb.cities3", { "state": 1})

use mydb
db.cities.find().forEach(
 function(d) { db.cities3.insert(d); }
)

 Associate shard key ranges to tagged shards:

sh.addTagRange("mydb.cities3", { state: MinKey }, { state: "CA" }, "Others")
sh.addTagRange("mydb.cities3", { state: "CA" }, { state: "CA_" }, "CA")
sh.addTagRange("mydb.cities3", { state: "CA_" }, { state: "NY" }, "Others")
sh.addTagRange("mydb.cities3", { state: "NY" }, { state: "NY_" }, "NY")
sh.addTagRange("mydb.cities3", { state: "NY_" }, { state: MaxKey }, "Others")

 Display cluster information:

sh.status()

Managing Big Data Collections
3rd year, ENSIMAG

Studying data sharding using MongoDB 11

Q7. Analyze the results and explain the logic behind this tagging strategy. Connect to the
shard that contains the data about California, and count the documents. Do the same
operation with the other shards. Is the sharded data collection complete with respect to
initial one? Are shards orthogonal?

5 Designing and testing a sharded databases

One of the challenges of designing a sharded collection is to identify the attribute that
will be used as sharding key, independently of the strategy that will be used. In the
previous task we chose the attribute state as sharding key.

Next we ask you to analyze again the collection cities and choose another attribute that
seems appropriate for scaling queries.

Q8
1. Explain your reasons for choosing your sharding key. Which are possible

implications when querying data and when adding/deleting data?
2. Implement a cluster with 2/3 shards and distribute the data across them according

to your chosen key using both the range and hash based strategies.
3. Populate your sharded database using the data collection cities.txt.
4. Compare the behavior of your sharding solution with the range and hash based

strategies.
a. Once you populate the sharded database, is the result balanced?
b. Give an example of query or a manipulation operation that can potentially

benefit from your sharding strategy. Test your hypothesis and report the
operations and the results of this operation by copying them from the
screen.

c. In which cases is your sharding useless for scaling the management of the
data collection? Give examples to support your arguments.

d. Define a criterion for defining critical documents and use the tagging strategy
for isolating these data. Show evidence of the operation and results.

