
Sharding and MongoDB
Release 2.8.0-rc3

MongoDB Documentation Project

January 12, 2015

Contents

1 Sharding Introduction 3
1.1 Purpose of Sharding . 3
1.2 Sharding in MongoDB . 3
1.3 Data Partitioning . 5

Shard Keys . 5
Range Based Sharding . 6
Hash Based Sharding . 6
Performance Distinctions between Range and Hash Based Partitioning 6
Customized Data Distribution with Tag Aware Sharding . 7

1.4 Maintaining a Balanced Data Distribution . 7
Splitting . 7
Balancing . 8
Adding and Removing Shards from the Cluster . 8

1.5 Additional Resources . 8

2 Sharding Concepts 9
2.1 Sharded Cluster Components . 9

Shards . 10
Config Servers . 11

2.2 Sharded Cluster Architectures . 13
Sharded Cluster Requirements . 13
Production Cluster Architecture . 13
Sharded Cluster Test Architecture . 15

2.3 Sharded Cluster Behavior . 15
Shard Keys . 16
Sharded Cluster High Availability . 18
Sharded Cluster Query Routing . 19

2.4 Sharding Mechanics . 24
Sharded Collection Balancing . 25
Chunk Migration Across Shards . 26
Chunk Splits in a Sharded Cluster . 28
Shard Key Indexes . 29
Sharded Cluster Metadata . 30

3 Sharded Cluster Tutorials 30
3.1 Sharded Cluster Deployment Tutorials . 31

Deploy a Sharded Cluster . 32
Considerations for Selecting Shard Keys . 35
Shard a Collection Using a Hashed Shard Key . 37
Add Shards to a Cluster . 38
Deploy Three Config Servers for Production Deployments . 39
Convert a Replica Set to a Replicated Sharded Cluster . 40
Convert Sharded Cluster to Replica Set . 45

3.2 Sharded Cluster Maintenance Tutorials . 46
View Cluster Configuration . 47
Migrate Config Servers with the Same Hostname . 48
Migrate Config Servers with Different Hostnames . 48
Replace Disabled Config Server . 49
Migrate a Sharded Cluster to Different Hardware . 50
Backup Cluster Metadata . 53
Configure Behavior of Balancer Process in Sharded Clusters . 53
Manage Sharded Cluster Balancer . 55
Remove Shards from an Existing Sharded Cluster . 59

3.3 Sharded Cluster Data Management . 62
Create Chunks in a Sharded Cluster . 62
Split Chunks in a Sharded Cluster . 63
Migrate Chunks in a Sharded Cluster . 64
Merge Chunks in a Sharded Cluster . 65
Modify Chunk Size in a Sharded Cluster . 67
Clear jumbo Flag . 68
Tag Aware Sharding . 70
Manage Shard Tags . 71
Enforce Unique Keys for Sharded Collections . 72
Shard GridFS Data Store . 75

3.4 Troubleshoot Sharded Clusters . 75
Config Database String Error . 75
Cursor Fails Because of Stale Config Data . 76
Avoid Downtime when Moving Config Servers . 76

4 Sharding Reference 77
4.1 Sharding Methods in the mongo Shell . 77
4.2 Sharding Database Commands . 77
4.3 Reference Documentation . 78

Config Database . 78

Sharding is the process of storing data records across multiple machines and is MongoDB’s approach to meeting the
demands of data growth. As the size of the data increases, a single machine may not be sufficient to store the data nor
provide an acceptable read and write throughput. Sharding solves the problem with horizontal scaling. With sharding,
you add more machines to support data growth and the demands of read and write operations.

Sharding Introduction (page 3) A high-level introduction to horizontal scaling, data partitioning, and sharded clus-
ters in MongoDB.

Sharding Concepts (page 9) The core documentation of sharded cluster features, configuration, architecture and be-
havior.

Sharded Cluster Components (page 9) A sharded cluster consists of shards, config servers, and mongos in-
stances.

2

Sharded Cluster Architectures (page 13) Outlines the requirements for sharded clusters, and provides exam-
ples of several possible architectures for sharded clusters.

Sharded Cluster Behavior (page 15) Discusses the operations of sharded clusters with regards to the automatic
balancing of data in a cluster and other related availability and security considerations.

Sharding Mechanics (page 24) Discusses the internal operation and behavior of sharded clusters, including
chunk migration, balancing, and the cluster metadata.

Sharded Cluster Tutorials (page 30) Tutorials that describe common procedures and administrative operations rele-
vant to the use and maintenance of sharded clusters.

Sharding Reference (page 77) Reference for sharding-related functions and operations.

1 Sharding Introduction

Sharding is a method for storing data across multiple machines. MongoDB uses sharding to support deployments with
very large data sets and high throughput operations.

1.1 Purpose of Sharding

Database systems with large data sets and high throughput applications can challenge the capacity of a single server.
High query rates can exhaust the CPU capacity of the server. Larger data sets exceed the storage capacity of a single
machine. Finally, working set sizes larger than the system’s RAM stress the I/O capacity of disk drives.

To address these issues of scales, database systems have two basic approaches: vertical scaling and sharding.

Vertical scaling adds more CPU and storage resources to increase capacity. Scaling by adding capacity has lim-
itations: high performance systems with large numbers of CPUs and large amount of RAM are disproportionately
more expensive than smaller systems. Additionally, cloud-based providers may only allow users to provision smaller
instances. As a result there is a practical maximum capability for vertical scaling.

Sharding, or horizontal scaling, by contrast, divides the data set and distributes the data over multiple servers, or
shards. Each shard is an independent database, and collectively, the shards make up a single logical database.

Sharding addresses the challenge of scaling to support high throughput and large data sets:

• Sharding reduces the number of operations each shard handles. Each shard processes fewer operations as the
cluster grows. As a result, a cluster can increase capacity and throughput horizontally.

For example, to insert data, the application only needs to access the shard responsible for that record.

• Sharding reduces the amount of data that each server needs to store. Each shard stores less data as the cluster
grows.

For example, if a database has a 1 terabyte data set, and there are 4 shards, then each shard might hold only
256GB of data. If there are 40 shards, then each shard might hold only 25GB of data.

1.2 Sharding in MongoDB

MongoDB supports sharding through the configuration of a sharded clusters.

Sharded cluster has the following components: shards, query routers and config servers.

3

4

Shards store the data. To provide high availability and data consistency, in a production sharded cluster, each shard is
a replica set 1. For more information on replica sets, see Replica Sets.

Query Routers, or mongos instances, interface with client applications and direct operations to the appropriate shard
or shards. The query router processes and targets operations to shards and then returns results to the clients. A sharded
cluster can contain more than one query router to divide the client request load. A client sends requests to one query
router. Most sharded clusters have many query routers.

Config servers store the cluster’s metadata. This data contains a mapping of the cluster’s data set to the shards. The
query router uses this metadata to target operations to specific shards. Production sharded clusters have exactly 3
config servers.

1.3 Data Partitioning

MongoDB distributes data, or shards, at the collection level. Sharding partitions a collection’s data by the shard key.

Shard Keys

To shard a collection, you need to select a shard key. A shard key is either an indexed field or an indexed compound
field that exists in every document in the collection. MongoDB divides the shard key values into chunks and distributes
the chunks evenly across the shards. To divide the shard key values into chunks, MongoDB uses either range based
partitioning or hash based partitioning. See the Shard Key (page 16) documentation for more information.

1 For development and testing purposes only, each shard can be a single mongod instead of a replica set. Do not deploy production clusters
without 3 config servers.

5

Range Based Sharding

For range-based sharding, MongoDB divides the data set into ranges determined by the shard key values to provide
range based partitioning. Consider a numeric shard key: If you visualize a number line that goes from negative
infinity to positive infinity, each value of the shard key falls at some point on that line. MongoDB partitions this line
into smaller, non-overlapping ranges called chunks where a chunk is range of values from some minimum value to
some maximum value.

Given a range based partitioning system, documents with “close” shard key values are likely to be in the same chunk,
and therefore on the same shard.

Hash Based Sharding

For hash based partitioning, MongoDB computes a hash of a field’s value, and then uses these hashes to create chunks.

With hash based partitioning, two documents with “close” shard key values are unlikely to be part of the same chunk.
This ensures a more random distribution of a collection in the cluster.

Performance Distinctions between Range and Hash Based Partitioning

Range based partitioning supports more efficient range queries. Given a range query on the shard key, the query router
can easily determine which chunks overlap that range and route the query to only those shards that contain these
chunks.

6

However, range based partitioning can result in an uneven distribution of data, which may negate some of the benefits
of sharding. For example, if the shard key is a linearly increasing field, such as time, then all requests for a given time
range will map to the same chunk, and thus the same shard. In this situation, a small set of shards may receive the
majority of requests and the system would not scale very well.

Hash based partitioning, by contrast, ensures an even distribution of data at the expense of efficient range queries.
Hashed key values results in random distribution of data across chunks and therefore shards. But random distribution
makes it more likely that a range query on the shard key will not be able to target a few shards but would more likely
query every shard in order to return a result.

Customized Data Distribution with Tag Aware Sharding

MongoDB allows administrators to direct the balancing policy using tag aware sharding. Administrators create and
associate tags with ranges of the shard key, and then assign those tags to the shards. Then, the balancer migrates
tagged data to the appropriate shards and ensures that the cluster always enforces the distribution of data that the tags
describe.

Tags are the primary mechanism to control the behavior of the balancer and the distribution of chunks in a cluster.
Most commonly, tag aware sharding serves to improve the locality of data for sharded clusters that span multiple data
centers.

See Tag Aware Sharding (page 70) for more information.

1.4 Maintaining a Balanced Data Distribution

The addition of new data or the addition of new servers can result in data distribution imbalances within the cluster,
such as a particular shard contains significantly more chunks than another shard or a size of a chunk is significantly
greater than other chunk sizes.

MongoDB ensures a balanced cluster using two background process: splitting and the balancer.

Splitting

Splitting is a background process that keeps chunks from growing too large. When a chunk grows beyond a specified
chunk size (page 29), MongoDB splits the chunk in half. Inserts and updates triggers splits. Splits are an efficient
meta-data change. To create splits, MongoDB does not migrate any data or affect the shards.

7

Balancing

The balancer (page 25) is a background process that manages chunk migrations. The balancer can run from any the
query routers in a cluster.

When the distribution of a sharded collection in a cluster is uneven, the balancer process migrates chunks from the
shard that has the largest number of chunks to the shard with the least number of chunks until the collection balances.
For example: if collection users has 100 chunks on shard 1 and 50 chunks on shard 2, the balancer will migrate
chunks from shard 1 to shard 2 until the collection achieves balance.

The shards manage chunk migrations as a background operation between an origin shard and a destination shard.
During a chunk migration, the destination shard is sent all the current documents in the chunk from the origin shard.
Next, the destination shard captures and applies all changes made to the data during the migration process. Finally,
the metadata regarding the location of the chunk on config server is updated.

If there’s an error during the migration, the balancer aborts the process leaving the chunk unchanged on the origin
shard. MongoDB removes the chunk’s data from the origin shard after the migration completes successfully.

Adding and Removing Shards from the Cluster

Adding a shard to a cluster creates an imbalance since the new shard has no chunks. While MongoDB begins migrating
data to the new shard immediately, it can take some time before the cluster balances.

When removing a shard, the balancer migrates all chunks from a shard to other shards. After migrating all data and
updating the meta data, you can safely remove the shard.

1.5 Additional Resources

• Sharding Methods for MongoDB (Presentation)2

• Everything You Need to Know About Sharding (Presentation)3

• MongoDB for Time Series Data: Sharding4

• MongoDB Operations Best Practices White Paper5

• Talk to a MongoDB Expert About Scaling6

2http://www.mongodb.com/presentations/webinar-sharding-methods-mongodb
3http://www.mongodb.com/presentations/webinar-everything-you-need-know-about-sharding
4http://www.mongodb.com/presentations/mongodb-time-series-data-part-3-sharding
5http://www.mongodb.com/lp/white-paper/ops-best-practices
6http://www.mongodb.com/lp/contact/planning-for-scale

8

http://www.mongodb.com/presentations/webinar-sharding-methods-mongodb
http://www.mongodb.com/presentations/webinar-everything-you-need-know-about-sharding
http://www.mongodb.com/presentations/mongodb-time-series-data-part-3-sharding
http://www.mongodb.com/lp/white-paper/ops-best-practices
http://www.mongodb.com/lp/contact/planning-for-scale

• MongoDB Deployment Topology Consulting Package7

2 Sharding Concepts

These documents present the details of sharding in MongoDB. These include the components, the architectures, and the
behaviors of MongoDB sharded clusters. For an overview of sharding and sharded clusters, see Sharding Introduction
(page 3).

Sharded Cluster Components (page 9) A sharded cluster consists of shards, config servers, and mongos instances.

Shards (page 10) A shard is a mongod instance that holds a part of the sharded collection’s data.

Config Servers (page 11) Config servers hold the metadata about the cluster, such as the shard location of the
data.

Sharded Cluster Architectures (page 13) Outlines the requirements for sharded clusters, and provides examples of
several possible architectures for sharded clusters.

Sharded Cluster Requirements (page 13) Discusses the requirements for sharded clusters in MongoDB.

Production Cluster Architecture (page 13) Outlines the components required to deploy a redundant and highly
available sharded cluster.

Continue reading from Sharded Cluster Architectures (page 13) for additional descriptions of sharded cluster
deployments.

Sharded Cluster Behavior (page 15) Discusses the operations of sharded clusters with regards to the automatic bal-
ancing of data in a cluster and other related availability and security considerations.

Shard Keys (page 16) MongoDB uses the shard key to divide a collection’s data across the cluster’s shards.

Sharded Cluster High Availability (page 18) Sharded clusters provide ways to address some availability con-
cerns.

Sharded Cluster Query Routing (page 19) The cluster’s routers, or mongos instances, send reads and writes
to the relevant shard or shards.

Sharding Mechanics (page 24) Discusses the internal operation and behavior of sharded clusters, including chunk
migration, balancing, and the cluster metadata.

Sharded Collection Balancing (page 25) Balancing distributes a sharded collection’s data cluster to all of the
shards.

Sharded Cluster Metadata (page 30) The cluster maintains internal metadata that reflects the location of data
within the cluster.

Continue reading from Sharding Mechanics (page 24) for more documentation of the behavior and operation of
sharded clusters.

2.1 Sharded Cluster Components

Sharded clusters implement sharding. A sharded cluster consists of the following components:

Shards A shard is a MongoDB instance that holds a subset of a collection’s data. Each shard is either a single
mongod instance or a replica set. In production, all shards are replica sets. For more information see Shards
(page 10).

7https://www.mongodb.com/products/consulting#deployment_topology

9

https://www.mongodb.com/products/consulting#deployment_topology

Config Servers Each config server (page 11) is a mongod instance that holds metadata about the cluster. The meta-
data maps chunks to shards. For more information, see Config Servers (page 11).

Routing Instances Each router is a mongos instance that routes the reads and writes from applications to the shards.
Applications do not access the shards directly. For more information see Sharded Cluster Query Routing
(page 19).

Enable sharding in MongoDB on a per-collection basis. For each collection you shard, you will specify a shard key
for that collection.

Deploy a sharded cluster, see Deploy a Sharded Cluster (page 32).

Shards

A shard is a replica set or a single mongod that contains a subset of the data for the sharded cluster. Together, the
cluster’s shards hold the entire data set for the cluster.

Typically each shard is a replica set. The replica set provides redundancy and high availability for the data in each
shard.

Important: MongoDB shards data on a per collection basis. You must access all data in a sharded cluster via the
mongos instances. If you connect directly to a shard, you will see only its fraction of the cluster’s data. There is no

10

particular order to the data set on a specific shard. MongoDB does not guarantee that any two contiguous chunks will
reside on a single shard.

Primary Shard

Every database has a “primary” 8 shard that holds all the un-sharded collections in that database.

To change the primary shard for a database, use the movePrimary command. The process of migrating the primary
shard may take significant time to complete, and you should not access the collections until it completes.

When you deploy a new sharded cluster with shards that were previously used as replica sets, all existing databases
continue to reside on their original shard. Databases created subsequently may reside on any shard in the cluster.

Shard Status

Use the sh.status() method in the mongo shell to see an overview of the cluster. This reports includes which
shard is primary for the database and the chunk distribution across the shards. See sh.status() method for more
details.

Config Servers

Config servers are special mongod instances that store the metadata (page 30) for a sharded cluster. Config servers
use a two-phase commit to ensure immediate consistency and reliability. Config servers do not run as replica sets. All
config servers must be available to deploy a sharded cluster or to make any changes to cluster metadata.

8 The term “primary” shard has nothing to do with the term primary in the context of replica sets.

11

A production sharded cluster has exactly three config servers. For testing purposes you may deploy a cluster with a
single config server. But to ensure redundancy and safety in production, you should always use three.

Warning: If your cluster has a single config server, then the config server is a single point of failure. If the config
server is inaccessible, the cluster is not accessible. If you cannot recover the data on a config server, the cluster
will be inoperable.
Always use three config servers for production deployments.

Each sharded cluster must have its own config servers. Do not use the same config servers for different sharded
clusters.

Tip
Use CNAMEs to identify your config servers to the cluster so that you can rename and renumber your config servers
without downtime.

Config Database

Config servers store the metadata in the config database (page 78). The mongos instances cache this data and use it
to route reads and writes to shards.

Read and Write Operations on Config Servers

MongoDB only writes data to the config server in the following cases:

• To create splits in existing chunks. For more information, see chunk splitting (page 28).

• To migrate a chunk between shards. For more information, see chunk migration (page 26).

MongoDB reads data from the config server data in the following cases:

• A new mongos starts for the first time, or an existing mongos restarts.

• After a chunk migration, the mongos instances update themselves with the new cluster metadata.

MongoDB also uses the config server to manage distributed locks.

Config Server Availability

If one or two config servers become unavailable, the cluster’s metadata becomes read only. You can still read and
write data from the shards, but no chunk migrations or splits will occur until all three servers are available.

If all three config servers are unavailable, you can still use the cluster if you do not restart the mongos instances
until after the config servers are accessible again. If you restart the mongos instances before the config servers are
available, the mongos will be unable to route reads and writes.

Clusters become inoperable without the cluster metadata. Always, ensure that the config servers remain available and
intact. As such, backups of config servers are critical. The data on the config server is small compared to the data
stored in a cluster. This means the config server has a relatively low activity load, and the config server does not need
to be always available to support a sharded cluster. As a result, it is easy to back up the config servers.

If the name or address that a sharded cluster uses to connect to a config server changes, you must restart every mongod
and mongos instance in the sharded cluster. Avoid downtime by using CNAMEs to identify config servers within the
MongoDB deployment.

See Renaming Config Servers and Cluster Availability (page 19) for more information.

12

2.2 Sharded Cluster Architectures

The following documents introduce deployment patterns for sharded clusters.

Sharded Cluster Requirements (page 13) Discusses the requirements for sharded clusters in MongoDB.

Production Cluster Architecture (page 13) Outlines the components required to deploy a redundant and highly avail-
able sharded cluster.

Sharded Cluster Test Architecture (page 15) Sharded clusters for testing and development can include fewer com-
ponents.

Sharded Cluster Requirements

While sharding is a powerful and compelling feature, sharded clusters have significant infrastructure requirements
and increases the overall complexity of a deployment. As a result, only deploy sharded clusters when indicated by
application and operational requirements

Sharding is the only solution for some classes of deployments. Use sharded clusters if:

• your data set approaches or exceeds the storage capacity of a single MongoDB instance.

• the size of your system’s active working set will soon exceed the capacity of your system’s maximum RAM.

• a single MongoDB instance cannot meet the demands of your write operations, and all other approaches have
not reduced contention.

If these attributes are not present in your system, sharding will only add complexity to your system without adding
much benefit.

Important: It takes time and resources to deploy sharding. If your system has already reached or exceeded its
capacity, it will be difficult to deploy sharding without impacting your application.

As a result, if you think you will need to partition your database in the future, do not wait until your system is over
capacity to enable sharding.

When designing your data model, take into consideration your sharding needs.

Data Quantity Requirements

Your cluster should manage a large quantity of data if sharding is to have an effect. The default chunk size is 64
megabytes. And the balancer (page 25) will not begin moving data across shards until the imbalance of chunks among
the shards exceeds the migration threshold (page 26). In practical terms, unless your cluster has many hundreds of
megabytes of data, your data will remain on a single shard.

In some situations, you may need to shard a small collection of data. But most of the time, sharding a small collection
is not worth the added complexity and overhead unless you need additional write capacity. If you have a small data
set, a properly configured single MongoDB instance or a replica set will usually be enough for your persistence layer
needs.

Chunk size is user configurable. For most deployments, the default value is of 64 megabytes is ideal. See
Chunk Size (page 29) for more information.

Production Cluster Architecture

In a production cluster, you must ensure that data is redundant and that your systems are highly available. To that end,
a production cluster must have the following components:

13

Components

Config Servers Three config servers (page 11). Each config server must be on separate machines. A single sharded
cluster must have exclusive use of its config servers (page 11). If you have multiple sharded clusters, you will need to
have a group of config servers for each cluster.

Shards Two or more replica sets. These replica sets are the shards. For information on replica sets, see
http://docs.mongodb.org/manual/replication.

Query Routers (mongos) One or more mongos instances. The mongos instances are the routers for the cluster.
Typically, deployments have one mongos instance on each application server.

You may also deploy a group of mongos instances and use a proxy/load balancer between the application and the
mongos. In these deployments, you must configure the load balancer for client affinity so that every connection from
a single client reaches the same mongos.

Because cursors and other resources are specific to an single mongos instance, each client must interact with only
one mongos instance.

Example

14

Sharded Cluster Test Architecture

Warning: Use the test cluster architecture for testing and development only.

For testing and development, you can deploy a minimal sharded clusters cluster. These non-production clusters have
the following components:

• One config server (page 11).

• At least one shard. Shards are either replica sets or a standalone mongod instances.

• One mongos instance.

See
Production Cluster Architecture (page 13)

2.3 Sharded Cluster Behavior

These documents address the distribution of data and queries to a sharded cluster as well as specific security and
availability considerations for sharded clusters.

Shard Keys (page 16) MongoDB uses the shard key to divide a collection’s data across the cluster’s shards.

Sharded Cluster High Availability (page 18) Sharded clusters provide ways to address some availability concerns.

Sharded Cluster Query Routing (page 19) The cluster’s routers, or mongos instances, send reads and writes to the
relevant shard or shards.

15

Shard Keys

The shard key determines the distribution of the collection’s documents among the cluster’s shards. The shard key is
either an indexed field or an indexed compound field that exists in every document in the collection.

MongoDB partitions data in the collection using ranges of shard key values. Each range, or chunk, defines a non-
overlapping range of shard key values. MongoDB distributes the chunks, and their documents, among the shards in
the cluster.

When a chunk grows beyond the chunk size (page 29), MongoDB attempts to split the chunk into smaller chunks,
always based on ranges in the shard key.

Considerations

Shard keys are immutable and cannot be changed after insertion. See the system limits for sharded cluster for more
information.

The index on the shard key cannot be a multikey index.

Hashed Shard Keys

New in version 2.4.

Hashed shard keys use a hashed index of a single field as the shard key to partition data across your sharded cluster.

The field you choose as your hashed shard key should have a good cardinality, or large number of different values.
Hashed keys work well with fields that increase monotonically like ObjectId values or timestamps.

If you shard an empty collection using a hashed shard key, MongoDB will automatically create and migrate
chunks so that each shard has two chunks. You can control how many chunks MongoDB will create with the
numInitialChunks parameter to shardCollection or by manually creating chunks on the empty collection
using the split command.

To shard a collection using a hashed shard key, see Shard a Collection Using a Hashed Shard Key (page 37).

Tip
MongoDB automatically computes the hashes when resolving queries using hashed indexes. Applications do not need
to compute hashes.

16

Impacts of Shard Keys on Cluster Operations

The shard key affects write and query performance by determining how the MongoDB partitions data in the cluster
and how effectively the mongos instances can direct operations to the cluster. Consider the following operational
impacts of shard key selection:

Write Scaling Some possible shard keys will allow your application to take advantage of the increased write capacity
that the cluster can provide, while others do not. Consider the following example where you shard by the values of the
default _id field, which is ObjectId.

MongoDB generates ObjectId values upon document creation to produce a unique identifier for the object. How-
ever, the most significant bits of data in this value represent a time stamp, which means that they increment in a regular
and predictable pattern. Even though this value has high cardinality (page 36), when using this, any date, or other
monotonically increasing number as the shard key, all insert operations will be storing data into a single chunk, and
therefore, a single shard. As a result, the write capacity of this shard will define the effective write capacity of the
cluster.

A shard key that increases monotonically will not hinder performance if you have a very low insert rate, or if most
of your write operations are update() operations distributed through your entire data set. Generally, choose shard
keys that have both high cardinality and will distribute write operations across the entire cluster.

Typically, a computed shard key that has some amount of “randomness,” such as ones that include a cryptographic
hash (i.e. MD5 or SHA1) of other content in the document, will allow the cluster to scale write operations. However,
random shard keys do not typically provide query isolation (page 17), which is another important characteristic of
shard keys.

New in version 2.4: MongoDB makes it possible to shard a collection on a hashed index. This can greatly improve
write scaling. See Shard a Collection Using a Hashed Shard Key (page 37).

Querying The mongos provides an interface for applications to interact with sharded clusters that hides the com-
plexity of data partitioning. A mongos receives queries from applications, and uses metadata from the config server
(page 11), to route queries to the mongod instances with the appropriate data. While the mongos succeeds in mak-
ing all querying operational in sharded environments, the shard key you select can have a profound affect on query
performance.

See also:

The Sharded Cluster Query Routing (page 19) and config server (page 11) sections for a more general overview of
querying in sharded environments.

Query Isolation The fastest queries in a sharded environment are those that mongos will route to a single shard,
using the shard key and the cluster meta data from the config server (page 11). For queries that don’t include the
shard key, mongos must query all shards, wait for their response and then return the result to the application. These
“scatter/gather” queries can be long running operations.

If your query includes the first component of a compound shard key 9, the mongos can route the query directly to a
single shard, or a small number of shards, which provides better performance. Even if you query values of the shard
key that reside in different chunks, the mongos will route queries directly to specific shards.

To select a shard key for a collection:

• determine the most commonly included fields in queries for a given application

• find which of these operations are most performance dependent.
9 In many ways, you can think of the shard key a cluster-wide index. However, be aware that sharded systems cannot enforce cluster-wide

unique indexes unless the unique field is in the shard key. Consider the http://docs.mongodb.org/manual/core/indexes page for
more information on indexes and compound indexes.

17

Genoveva Vargas-Solar

If this field has low cardinality (i.e not sufficiently selective) you should add a second field to the shard key making a
compound shard key. The data may become more splittable with a compound shard key.

See
Sharded Cluster Query Routing (page 19) for more information on query operations in the context of sharded clusters.

Sorting In sharded systems, the mongos performs a merge-sort of all sorted query results from the shards. See
Sharded Cluster Query Routing (page 19) and index-sort for more information.

Indivisible Chunks An insufficiently granular shard key can result in chunks that are “unsplittable”. See Create a
Shard Key that is Easily Divisible (page 36) for more information.

Additional Information

• Considerations for Selecting Shard Keys (page 35)

• Shard a Collection Using a Hashed Shard Key (page 37).

Sharded Cluster High Availability

A production (page 13) cluster has no single point of failure. This section introduces the availability concerns for
MongoDB deployments in general and highlights potential failure scenarios and available resolutions.

Application Servers or mongos Instances Become Unavailable

If each application server has its own mongos instance, other application servers can continue access the database.
Furthermore, mongos instances do not maintain persistent state, and they can restart and become unavailable without
losing any state or data. When a mongos instance starts, it retrieves a copy of the config database and can begin
routing queries.

A Single mongod Becomes Unavailable in a Shard

Replica sets provide high availability for shards. If the unavailable mongod is a primary, then the replica set
will elect a new primary. If the unavailable mongod is a secondary, and it disconnects the primary and secondary will
continue to hold all data. In a three member replica set, even if a single member of the set experiences catastrophic
failure, two other members have full copies of the data. 10

Always investigate availability interruptions and failures. If a system is unrecoverable, replace it and create a new
member of the replica set as soon as possible to replace the lost redundancy.

All Members of a Replica Set Become Unavailable

If all members of a replica set within a shard are unavailable, all data held in that shard is unavailable. However, the
data on all other shards will remain available, and it’s possible to read and write data to the other shards. However,
your application must be able to deal with partial results, and you should investigate the cause of the interruption and
attempt to recover the shard as soon as possible.

10 If an unavailable secondary becomes available while it still has current oplog entries, it can catch up to the latest state of the set using the
normal replication process, otherwise it must perform an initial sync.

18

One or Two Config Databases Become Unavailable

Three distinct mongod instances provide the config database using a special two-phase commits to maintain consistent
state between these mongod instances. Cluster operation will continue as normal but chunk migration (page 25) and
the cluster can create no new chunk splits (page 63). Replace the config server as soon as possible. If all config
databases become unavailable, the cluster can become inoperable.

Note: All config servers must be running and available when you first initiate a sharded cluster.

Renaming Config Servers and Cluster Availability

If the name or address that a sharded cluster uses to connect to a config server changes, you must restart every mongod
and mongos instance in the sharded cluster. Avoid downtime by using CNAMEs to identify config servers within the
MongoDB deployment.

To avoid downtime when renaming config servers, use DNS names unrelated to physical or virtual hostnames to refer
to your config servers (page 11).

Generally, refer to each config server using the DNS alias (e.g. a CNAME record). When specifying the config server
connection string to mongos, use these names. These records make it possible to change the IP address or rename
config servers without changing the connection string and without having to restart the entire cluster.

Shard Keys and Cluster Availability

The most important consideration when choosing a shard key are:

• to ensure that MongoDB will be able to distribute data evenly among shards, and

• to scale writes across the cluster, and

• to ensure that mongos can isolate most queries to a specific mongod.

Furthermore:

• Each shard should be a replica set, if a specific mongod instance fails, the replica set members will elect another
to be primary and continue operation. However, if an entire shard is unreachable or fails for some reason, that
data will be unavailable.

• If the shard key allows the mongos to isolate most operations to a single shard, then the failure of a single shard
will only render some data unavailable.

• If your shard key distributes data required for every operation throughout the cluster, then the failure of the entire
shard will render the entire cluster unavailable.

In essence, this concern for reliability simply underscores the importance of choosing a shard key that isolates query
operations to a single shard.

Sharded Cluster Query Routing

MongoDB mongos instances route queries and write operations to shards in a sharded cluster. mongos provide the
only interface to a sharded cluster from the perspective of applications. Applications never connect or communicate
directly with the shards.

The mongos tracks what data is on which shard by caching the metadata from the config servers (page 11). The
mongos uses the metadata to route operations from applications and clients to the mongod instances. A mongos
has no persistent state and consumes minimal system resources.

19

The most common practice is to run mongos instances on the same systems as your application servers, but you can
maintain mongos instances on the shards or on other dedicated resources.

Note: Changed in version 2.1.
Some aggregation operations using the aggregate command (i.e. db.collection.aggregate()) will cause
mongos instances to require more CPU resources than in previous versions. This modified performance profile may
dictate alternate architecture decisions if you use the aggregation framework extensively in a sharded environment.

Routing Process

A mongos instance uses the following processes to route queries and return results.

How mongos Determines which Shards Receive a Query A mongos instance routes a query to a cluster by:

1. Determining the list of shards that must receive the query.

2. Establishing a cursor on all targeted shards.

In some cases, when the shard key or a prefix of the shard key is a part of the query, the mongos can route the query
to a subset of the shards. Otherwise, the mongos must direct the query to all shards that hold documents for that
collection.

Example
Given the following shard key:

{ zipcode: 1, u_id: 1, c_date: 1 }

Depending on the distribution of chunks in the cluster, the mongos may be able to target the query at a subset of
shards, if the query contains the following fields:

{ zipcode: 1 }
{ zipcode: 1, u_id: 1 }
{ zipcode: 1, u_id: 1, c_date: 1 }

How mongos Handles Query Modifiers If the result of the query is not sorted, the mongos instance opens a result
cursor that “round robins” results from all cursors on the shards.

Changed in version 2.0.5: In versions prior to 2.0.5, the mongos exhausted each cursor, one by one.

If the query specifies sorted results using the sort() cursor method, the mongos instance passes the $orderby
option to the shards. The primary shard for the database receives and performs a merge sort for all results before
returning the data to the client via the mongos.

If the query limits the size of the result set using the limit() cursor method, the mongos instance passes that limit
to the shards and then re-applies the limit to the result before returning the result to the client.

If the query specifies a number of records to skip using the skip() cursor method, the mongos cannot pass the skip
to the shards, but rather retrieves unskipped results from the shards and skips the appropriate number of documents
when assembling the complete result. However, when used in conjunction with a limit(), the mongos will pass
the limit plus the value of the skip() to the shards to improve the efficiency of these operations.

20

Detect Connections to mongos Instances

To detect if the MongoDB instance that your client is connected to is mongos, use the isMaster command. When
a client connects to a mongos, isMaster returns a document with a msg field that holds the string isdbgrid. For
example:

{
"ismaster" : true,
"msg" : "isdbgrid",
"maxBsonObjectSize" : 16777216,
"ok" : 1

}

If the application is instead connected to a mongod, the returned document does not include the isdbgrid string.

Broadcast Operations and Targeted Operations

In general, operations in a sharded environment are either:

• Broadcast to all shards in the cluster that hold documents in a collection

• Targeted at a single shard or a limited group of shards, based on the shard key

For best performance, use targeted operations whenever possible. While some operations must broadcast to all shards,
you can ensure MongoDB uses targeted operations whenever possible by always including the shard key.

Broadcast Operations mongos instances broadcast queries to all shards for the collection unless the mongos can
determine which shard or subset of shards stores this data.

Multi-update operations are always broadcast operations.

The remove() operation is always a broadcast operation, unless the operation specifies the shard key in full.

Targeted Operations All insert() operations target to one shard.

All single update() (including upsert operations) and remove() operations must target to one shard.

Important: All update() and remove() operations for a sharded collection that specify the justOne or
multi: false option must include the shard key or the _id field in the query specification. update() and
remove() operations specifying justOne or multi: false in a sharded collection without the shard key or
the _id field return an error.

For queries that include the shard key or portion of the shard key, mongos can target the query at a specific shard or
set of shards. This is the case only if the portion of the shard key included in the query is a prefix of the shard key. For
example, if the shard key is:

{ a: 1, b: 1, c: 1 }

The mongos program can route queries that include the full shard key or either of the following shard key prefixes at
a specific shard or set of shards:

{ a: 1 }
{ a: 1, b: 1 }

Depending on the distribution of data in the cluster and the selectivity of the query, mongos may still have to contact
multiple shards 11 to fulfill these queries.

11 mongos will route some queries, even some that include the shard key, to all shards, if needed.

21

22

23

Sharded and Non-Sharded Data

Sharding operates on the collection level. You can shard multiple collections within a database or have multiple
databases with sharding enabled. 12 However, in production deployments, some databases and collections will use
sharding, while other databases and collections will only reside on a single shard.

Regardless of the data architecture of your sharded cluster, ensure that all queries and operations use the mongos
router to access the data cluster. Use the mongos even for operations that do not impact the sharded data.

2.4 Sharding Mechanics

The following documents describe sharded cluster processes.

Sharded Collection Balancing (page 25) Balancing distributes a sharded collection’s data cluster to all of the shards.

Chunk Migration Across Shards (page 26) MongoDB migrates chunks to shards as part of the balancing process.

Chunk Splits in a Sharded Cluster (page 28) When a chunk grows beyond the configured size, MongoDB splits the
chunk in half.

Shard Key Indexes (page 29) Sharded collections must keep an index that starts with the shard key.

Sharded Cluster Metadata (page 30) The cluster maintains internal metadata that reflects the location of data within
the cluster.

12 As you configure sharding, you will use the enableSharding command to enable sharding for a database. This simply makes it possible
to use the shardCollection command on a collection within that database.

24

Sharded Collection Balancing

Balancing is the process MongoDB uses to distribute data of a sharded collection evenly across a sharded cluster.
When a shard has too many of a sharded collection’s chunks compared to other shards, MongoDB automatically
balances the chunks across the shards. The balancing procedure for sharded clusters is entirely transparent to the user
and application layer.

Cluster Balancer

The balancer process is responsible for redistributing the chunks of a sharded collection evenly among the shards for
every sharded collection. By default, the balancer process is always enabled.

Any mongos instance in the cluster can start a balancing round. When a balancer process is active, the responsible
mongos acquires a “lock” by modifying a document in the lock collection in the Config Database (page 78).

Note: Changed in version 2.0: Before MongoDB version 2.0, large differences in timekeeping (i.e. clock skew)
between mongos instances could lead to failed distributed locks. This carries the possibility of data loss, particularly
with skews larger than 5 minutes. Always use the network time protocol (NTP) by running ntpd on your servers to
minimize clock skew.

To address uneven chunk distribution for a sharded collection, the balancer migrates chunks (page 26) from shards
with more chunks to shards with a fewer number of chunks. The balancer migrates the chunks, one at a time, until
there is an even dispersion of chunks for the collection across the shards.

Chunk migrations carry some overhead in terms of bandwidth and workload, both of which can impact database
performance. The balancer attempts to minimize the impact by:

• Moving only one chunk at a time. See also Chunk Migration Queuing (page 27).

• Starting a balancing round only when the difference in the number of chunks between the shard with the greatest
number of chunks for a sharded collection and the shard with the lowest number of chunks for that collection
reaches the migration threshold (page 26).

25

You may disable the balancer temporarily for maintenance. See Disable the Balancer (page 57) for details.

You can also limit the window during which the balancer runs to prevent it from impacting production traffic. See
Schedule the Balancing Window (page 56) for details.

Note: The specification of the balancing window is relative to the local time zone of all individual mongos instances
in the cluster.

See also:

Manage Sharded Cluster Balancer (page 55).

Migration Thresholds

To minimize the impact of balancing on the cluster, the balancer will not begin balancing until the distribution of
chunks for a sharded collection has reached certain thresholds. The thresholds apply to the difference in number
of chunks between the shard with the most chunks for the collection and the shard with the fewest chunks for that
collection. The balancer has the following thresholds:

Changed in version 2.2: The following thresholds appear first in 2.2. Prior to this release, a balancing round would
only start if the shard with the most chunks had 8 more chunks than the shard with the least number of chunks.

Number of Chunks Migration Threshold
Fewer than 20 2
20-79 4
80 and greater 8

Once a balancing round starts, the balancer will not stop until, for the collection, the difference between the number
of chunks on any two shards for that collection is less than two or a chunk migration fails.

Shard Size

By default, MongoDB will attempt to fill all available disk space with data on every shard as the data set grows. To
ensure that the cluster always has the capacity to handle data growth, monitor disk usage as well as other performance
metrics.

When adding a shard, you may set a “maximum size” for that shard. This prevents the balancer from migrating chunks
to the shard when the value of mapped exceeds the “maximum size”. Use the maxSize parameter of the addShard
command to set the “maximum size” for the shard.

See also:

Change the Maximum Storage Size for a Given Shard (page 54) and
http://docs.mongodb.org/manual/administration/monitoring.

Chunk Migration Across Shards

Chunk migration moves the chunks of a sharded collection from one shard to another and is part of the balancer
(page 25) process.

Chunk Migration

MongoDB migrates chunks in a sharded cluster to distribute the chunks of a sharded collection evenly among shards.
Migrations may be either:

26

• Manual. Only use manual migration in limited cases, such as to distribute data during bulk inserts. See Migrating
Chunks Manually (page 64) for more details.

• Automatic. The balancer (page 25) process automatically migrates chunks when there is an uneven distribution
of a sharded collection’s chunks across the shards. See Migration Thresholds (page 26) for more details.

All chunk migrations use the following procedure:

1. The balancer process sends the moveChunk command to the source shard.

2. The source starts the move with an internal moveChunk command. During the migration process, operations
to the chunk route to the source shard. The source shard is responsible for incoming write operations for the
chunk.

3. The destination shard builds any indexes required by the source that do not exist on the destination.

4. The destination shard begins requesting documents in the chunk and starts receiving copies of the data.

5. After receiving the final document in the chunk, the destination shard starts a synchronization process to ensure
that it has the changes to the migrated documents that occurred during the migration.

6. When fully synchronized, the destination shard connects to the config database and updates the cluster metadata
with the new location for the chunk.

7. After the destination shard completes the update of the metadata, and once there are no open cursors on the
chunk, the source shard deletes its copy of the documents.

Changed in version 2.4: If the balancer needs to perform additional chunk migrations from the source shard,
the balancer can start the next chunk migration without waiting for the current migration process to finish this
deletion step. See:ref:chunk-migration-queuing.

The migration process ensures consistency and maximizes the availability of chunks during balancing.

Chunk Migration Queuing Changed in version 2.4.

To migrate multiple chunks from a shard, the balancer migrates the chunks one at a time. However, the balancer does
not wait for the current migration’s delete phase to complete before starting the next chunk migration. See Chunk
Migration (page 26) for the chunk migration process and the delete phase.

This queuing behavior allows shards to unload chunks more quickly in cases of heavily imbalanced cluster, such as
when performing initial data loads without pre-splitting and when adding new shards.

This behavior also affect the moveChunk command, and migration scripts that use the moveChunk command may
proceed more quickly.

In some cases, the delete phases may persist longer. If multiple delete phases are queued but not yet complete, a crash
of the replica set’s primary can orphan data from multiple migrations.

27

Chunk Migration and Replication New in version 2.8: The new writeConcern field in the balancer configura-
tion document allows you to specify a write concern semantics the _secondaryThrottle option.

By default, each document operation during chunk migration propagates to at least one secondary before the bal-
ancer proceeds with the next document, which is equivalent to a write concern of { w: 1 }. You can set the
writeConcern option on the balancer configuration to set different write concern semantics.

To override this behavior and allow the balancer to continue without waiting for replication to a secondary, set the
_secondaryThrottle parameter to false. See Change Replication Behavior for Chunk Migration (Secondary
Throttle) (page 55) to update the _secondaryThrottle parameter for the balancer.

Independent of the secondaryThrottle setting, certain phases of the chunk migration have the following repli-
cation policy:

• MongoDB briefly pauses all application writes to the source shard before updating the config servers with the
new location for the chunk, and resumes the application writes after the update. The chunk move requires all
writes to be acknowledged by majority of the members of the replica set both before and after committing the
chunk move to config servers.

• When an outgoing chunk migration finishes and cleanup occurs, all writes must be replicated to a majority of
servers before further cleanup (from other outgoing migrations) or new incoming migrations can proceed.

Changed in version 2.4: In previous versions, the balancer did not wait for the document move to replicate to a
secondary. For details, see Secondary Throttle in the v2.2 Manual13.

Jumbo Chunks

During chunk migration, if the chunk exceeds the specified chunk size (page 29) or if the number of documents in the
chunk exceeds Maximum Number of Documents Per Chunk to Migrate, MongoDB does not migrate
the chunk. Instead, MongoDB attempts to split (page 28) the chunk. If the split is unsuccessful, MongoDB labels the
chunk as jumbo to avoid repeated attempts to migrate the chunk.

Chunk Splits in a Sharded Cluster

As chunks grow beyond the specified chunk size (page 29) a mongos instance will attempt to split the chunk in half.
Splits may lead to an uneven distribution of the chunks for a collection across the shards. In such cases, the mongos
instances will initiate a round of migrations to redistribute chunks across shards. See Sharded Collection Balancing
(page 25) for more details on balancing chunks across shards.

13http://docs.mongodb.org/v2.2/tutorial/configure-sharded-cluster-balancer/#sharded-cluster-config-secondary-throttle

28

http://docs.mongodb.org/v2.2/tutorial/configure-sharded-cluster-balancer/#sharded-cluster-config-secondary-throttle

Chunk Size

The default chunk size in MongoDB is 64 megabytes. You can increase or reduce the chunk size (page 67), mindful
of its effect on the cluster’s efficiency.

1. Small chunks lead to a more even distribution of data at the expense of more frequent migrations. This creates
expense at the query routing (mongos) layer.

2. Large chunks lead to fewer migrations. This is more efficient both from the networking perspective and in terms
of internal overhead at the query routing layer. But, these efficiencies come at the expense of a potentially more
uneven distribution of data.

3. Chunk size affects the Maximum Number of Documents Per Chunk to Migrate.

For many deployments, it makes sense to avoid frequent and potentially spurious migrations at the expense of a slightly
less evenly distributed data set.

Limitations

Changing the chunk size affects when chunks split but there are some limitations to its effects.

• Automatic splitting only occurs during inserts or updates. If you lower the chunk size, it may take time for all
chunks to split to the new size.

• Splits cannot be “undone”. If you increase the chunk size, existing chunks must grow through inserts or updates
until they reach the new size.

Note: Chunk ranges are inclusive of the lower boundary and exclusive of the upper boundary.

Indivisible Chunks

In some cases, chunks can grow beyond the specified chunk size (page 29) but cannot undergo a split; e.g. if a chunk
represents a single shard key value. See Considerations for Selecting Shard Keys (page 35) for considerations for
selecting a shard key.

Shard Key Indexes

All sharded collections must have an index that starts with the shard key. If you shard a collection without any
documents and without such an index, the shardCollection command will create the index on the shard key. If
the collection already has documents, you must create the index before using shardCollection.

Changed in version 2.2: The index on the shard key no longer needs to be only on the shard key. This index can be an
index of the shard key itself, or a compound index where the shard key is a prefix of the index.

Important: The index on the shard key cannot be a multikey index.

A sharded collection named people has for its shard key the field zipcode. It currently has the index {
zipcode: 1 }. You can replace this index with a compound index { zipcode: 1, username: 1 },
as follows:

1. Create an index on { zipcode: 1, username: 1 }:

db.people.createIndex({ zipcode: 1, username: 1 });

2. When MongoDB finishes building the index, you can safely drop the existing index on { zipcode: 1 }:

29

db.people.dropIndex({ zipcode: 1 });

Since the index on the shard key cannot be a multikey index, the index { zipcode: 1, username: 1 }
can only replace the index { zipcode: 1 } if there are no array values for the username field.

If you drop the last valid index for the shard key, recover by recreating an index on just the shard key.

For restrictions on shard key indexes, see limits-shard-keys.

Sharded Cluster Metadata

Config servers (page 11) store the metadata for a sharded cluster. The metadata reflects state and organization of the
sharded data sets and system. The metadata includes the list of chunks on every shard and the ranges that define the
chunks. The mongos instances cache this data and use it to route read and write operations to shards.

Config servers store the metadata in the Config Database (page 78).

Important: Always back up the config database before doing any maintenance on the config server.

To access the config database, issue the following command from the mongo shell:

use config

In general, you should never edit the content of the config database directly. The config database contains the
following collections:

• changelog (page 79)

• chunks (page 80)

• collections (page 81)

• databases (page 81)

• lockpings (page 81)

• locks (page 81)

• mongos (page 82)

• settings (page 82)

• shards (page 82)

• version (page 83)

For more information on these collections and their role in sharded clusters, see Config Database (page 78). See Read
and Write Operations on Config Servers (page 12) for more information about reads and updates to the metadata.

3 Sharded Cluster Tutorials

The following tutorials provide instructions for administering sharded clusters. For a higher-level overview, see Shard-
ing (page 2).

Sharded Cluster Deployment Tutorials (page 31) Instructions for deploying sharded clusters, adding shards, select-
ing shard keys, and the initial configuration of sharded clusters.

Deploy a Sharded Cluster (page 32) Set up a sharded cluster by creating the needed data directories, starting
the required MongoDB instances, and configuring the cluster settings.

30

Considerations for Selecting Shard Keys (page 35) Choose the field that MongoDB uses to parse a collection’s
documents for distribution over the cluster’s shards. Each shard holds documents with values within a
certain range.

Shard a Collection Using a Hashed Shard Key (page 37) Shard a collection based on hashes of a field’s values
in order to ensure even distribution over the collection’s shards.

Add Shards to a Cluster (page 38) Add a shard to add capacity to a sharded cluster.

Continue reading from Sharded Cluster Deployment Tutorials (page 31) for additional tutorials.

Sharded Cluster Maintenance Tutorials (page 46) Procedures and tasks for common operations on active sharded
clusters.

View Cluster Configuration (page 47) View status information about the cluster’s databases, shards, and
chunks.

Remove Shards from an Existing Sharded Cluster (page 59) Migrate a single shard’s data and remove the
shard.

Migrate Config Servers with Different Hostnames (page 48) Migrate a config server to a new system that uses
a new hostname. If possible, avoid changing the hostname and instead use the Migrate Config Servers with
the Same Hostname (page 48) procedure.

Manage Shard Tags (page 71) Use tags to associate specific ranges of shard key values with specific shards.

Continue reading from Sharded Cluster Maintenance Tutorials (page 46) for additional tutorials.

Sharded Cluster Data Management (page 62) Practices that address common issues in managing large sharded data
sets.

Troubleshoot Sharded Clusters (page 75) Presents solutions to common issues and con-
cerns relevant to the administration and use of sharded clusters. Refer to
http://docs.mongodb.org/manual/faq/diagnostics for general diagnostic information.

3.1 Sharded Cluster Deployment Tutorials

The following tutorials provide information on deploying sharded clusters.

Deploy a Sharded Cluster (page 32) Set up a sharded cluster by creating the needed data directories, starting the
required MongoDB instances, and configuring the cluster settings.

Considerations for Selecting Shard Keys (page 35) Choose the field that MongoDB uses to parse a collection’s doc-
uments for distribution over the cluster’s shards. Each shard holds documents with values within a certain range.

Shard a Collection Using a Hashed Shard Key (page 37) Shard a collection based on hashes of a field’s values in
order to ensure even distribution over the collection’s shards.

Add Shards to a Cluster (page 38) Add a shard to add capacity to a sharded cluster.

Deploy Three Config Servers for Production Deployments (page 39) Convert a test deployment with one config
server to a production deployment with three config servers.

Convert a Replica Set to a Replicated Sharded Cluster (page 40) Convert a replica set to a sharded cluster in which
each shard is its own replica set.

Convert Sharded Cluster to Replica Set (page 45) Replace your sharded cluster with a single replica set.

See also:

http://docs.mongodb.org/manual/tutorial/enable-authentication-in-sharded-cluster

31

Deploy a Sharded Cluster

Use the following sequence of tasks to deploy a sharded cluster:

Warning: Sharding and “localhost” Addresses
If you use either “localhost” or 127.0.0.1 as the hostname portion of any host identifier, for example as the
host argument to addShard or the value to the --configdb run time option, then you must use “localhost”
or 127.0.0.1 for all host settings for any MongoDB instances in the cluster. If you mix localhost addresses and
remote host address, MongoDB will error.

Start the Config Server Database Instances

The config server processes are mongod instances that store the cluster’s metadata. You designate a mongod as a
config server using the --configsvr option. Each config server stores a complete copy of the cluster’s metadata.

In production deployments, you must deploy exactly three config server instances, each running on different servers
to assure good uptime and data safety. In test environments, you can run all three instances on a single server.

Important: All members of a sharded cluster must be able to connect to all other members of a sharded cluster,
including all shards and all config servers. Ensure that the network and security systems including all interfaces and
firewalls, allow these connections.

1. Create data directories for each of the three config server instances. By default, a config server stores its data
files in the /data/configdb directory. You can choose a different location. To create a data directory, issue a
command similar to the following:

mkdir /data/configdb

2. Start the three config server instances. Start each by issuing a command using the following syntax:

mongod --configsvr --dbpath <path> --port <port>

The default port for config servers is 27019. You can specify a different port. The following example starts a
config server using the default port and default data directory:

mongod --configsvr --dbpath /data/configdb --port 27019

For additional command options, see http://docs.mongodb.org/manual/reference/program/mongod
or http://docs.mongodb.org/manual/reference/configuration-options.

Note: All config servers must be running and available when you first initiate a sharded cluster.

Start the mongos Instances

The mongos instances are lightweight and do not require data directories. You can run a mongos instance on a
system that runs other cluster components, such as on an application server or a server running a mongod process. By
default, a mongos instance runs on port 27017.

When you start the mongos instance, specify the hostnames of the three config servers, either in the configuration file
or as command line parameters.

Tip

32

To avoid downtime, give each config server a logical DNS name (unrelated to the server’s physical or virtual host-
name). Without logical DNS names, moving or renaming a config server requires shutting down every mongod and
mongos instance in the sharded cluster.

To start a mongos instance, issue a command using the following syntax:

mongos --configdb <config server hostnames>

For example, to start a mongos that connects to config server instance running on the following hosts and on the
default ports:

• cfg0.example.net

• cfg1.example.net

• cfg2.example.net

You would issue the following command:

mongos --configdb cfg0.example.net:27019,cfg1.example.net:27019,cfg2.example.net:27019

Each mongos in a sharded cluster must use the same configDB string, with identical host names listed in identical
order.

If you start a mongos instance with a string that does not exactly match the string used by the other mongos instances
in the cluster, the mongos return a Config Database String Error (page 75) error and refuse to start.

Add Shards to the Cluster

A shard can be a standalone mongod or a replica set. In a production environment, each shard should be a replica
set. Use the procedure in http://docs.mongodb.org/manual/tutorial/deploy-replica-set to
deploy replica sets for each shard.

1. From a mongo shell, connect to the mongos instance. Issue a command using the following syntax:

mongo --host <hostname of machine running mongos> --port <port mongos listens on>

For example, if a mongos is accessible at mongos0.example.net on port 27017, issue the following
command:

mongo --host mongos0.example.net --port 27017

2. Add each shard to the cluster using the sh.addShard() method, as shown in the examples below. Issue
sh.addShard() separately for each shard. If the shard is a replica set, specify the name of the replica set and
specify a member of the set. In production deployments, all shards should be replica sets.

Optional
You can instead use the addShard database command, which lets you specify a name and maximum size for
the shard. If you do not specify these, MongoDB automatically assigns a name and maximum size. To use the
database command, see addShard.

The following are examples of adding a shard with sh.addShard():

• To add a shard for a replica set named rs1 with a member running on port 27017 on
mongodb0.example.net, issue the following command:

sh.addShard("rs1/mongodb0.example.net:27017")

33

Changed in version 2.0.3.

For MongoDB versions prior to 2.0.3, you must specify all members of the replica set. For example:

sh.addShard("rs1/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017")

• To add a shard for a standalone mongod on port 27017 of mongodb0.example.net, issue the fol-
lowing command:

sh.addShard("mongodb0.example.net:27017")

Note: It might take some time for chunks to migrate to the new shard.

Enable Sharding for a Database

Before you can shard a collection, you must enable sharding for the collection’s database. Enabling sharding for a
database does not redistribute data but make it possible to shard the collections in that database.

Once you enable sharding for a database, MongoDB assigns a primary shard for that database where MongoDB stores
all data before sharding begins.

1. From a mongo shell, connect to the mongos instance. Issue a command using the following syntax:

mongo --host <hostname of machine running mongos> --port <port mongos listens on>

2. Issue the sh.enableSharding()method, specifying the name of the database for which to enable sharding.
Use the following syntax:

sh.enableSharding("<database>")

Optionally, you can enable sharding for a database using the enableSharding command, which uses the following
syntax:

db.runCommand({ enableSharding: <database> })

Enable Sharding for a Collection

You enable sharding on a per-collection basis.

1. Determine what you will use for the shard key. Your selection of the shard key affects the efficiency of sharding.
See the selection considerations listed in the Considerations for Selecting Shard Key (page 36).

2. If the collection already contains data you must create an index on the shard key using createIndex(). If
the collection is empty then MongoDB will create the index as part of the sh.shardCollection() step.

3. Enable sharding for a collection by issuing the sh.shardCollection() method in the mongo shell. The
method uses the following syntax:

sh.shardCollection("<database>.<collection>", shard-key-pattern)

Replace the <database>.<collection> string with the full namespace of your database, which consists
of the name of your database, a dot (e.g. .), and the full name of the collection. The shard-key-pattern
represents your shard key, which you specify in the same form as you would an index key pattern.

Example
The following sequence of commands shards four collections:

34

sh.shardCollection("records.people", { "zipcode": 1, "name": 1 })
sh.shardCollection("people.addresses", { "state": 1, "_id": 1 })
sh.shardCollection("assets.chairs", { "type": 1, "_id": 1 })
sh.shardCollection("events.alerts", { "_id": "hashed" })

In order, these operations shard:

(a) The people collection in the records database using the shard key { "zipcode": 1, "name":
1 }.

This shard key distributes documents by the value of the zipcode field. If a number of documents have
the same value for this field, then that chunk will be splittable (page 36) by the values of the name field.

(b) The addresses collection in the people database using the shard key { "state": 1, "_id":
1 }.

This shard key distributes documents by the value of the state field. If a number of documents have the
same value for this field, then that chunk will be splittable (page 36) by the values of the _id field.

(c) The chairs collection in the assets database using the shard key { "type": 1, "_id": 1
}.

This shard key distributes documents by the value of the type field. If a number of documents have the
same value for this field, then that chunk will be splittable (page 36) by the values of the _id field.

(d) The alerts collection in the events database using the shard key { "_id": "hashed" }.

New in version 2.4.

This shard key distributes documents by a hash of the value of the _id field. MongoDB computes the
hash of the _id field for the hashed index, which should provide an even distribution of documents across
a cluster.

Considerations for Selecting Shard Keys

Choosing a Shard Key

For many collections there may be no single, naturally occurring key that possesses all the qualities of a good shard
key. The following strategies may help construct a useful shard key from existing data:

1. Compute a more ideal shard key in your application layer, and store this in all of your documents, potentially in
the _id field.

2. Use a compound shard key that uses two or three values from all documents that provide the right mix of
cardinality with scalable write operations and query isolation.

3. Determine that the impact of using a less than ideal shard key is insignificant in your use case, given:

• limited write volume,

• expected data size, or

• application query patterns.

4. New in version 2.4: Use a hashed shard key. Choose a field that has high cardinality and create a hashed index
on that field. MongoDB uses these hashed index values as shard key values, which ensures an even distribution
of documents across the shards.

Tip

35

Genoveva Vargas-Solar

MongoDB automatically computes the hashes when resolving queries using hashed indexes. Applications do
not need to compute hashes.

Considerations for Selecting Shard Key

Choosing the correct shard key can have a great impact on the performance, capability, and functioning of your
database and cluster. Appropriate shard key choice depends on the schema of your data and the way that your appli-
cations query and write data.

Create a Shard Key that is Easily Divisible An easily divisible shard key makes it easy for MongoDB to distribute
content among the shards. Shard keys that have a limited number of possible values can result in chunks that are
“unsplittable”.

For instance, if a chunk represents a single shard key value, then MongoDB cannot split the chunk even when the
chunk exceeds the size at which splits (page 28) occur.

See also:

Cardinality (page 36)

Create a Shard Key that has High Degree of Randomness A shard key with high degree of randomness prevents
any single shard from becoming a bottleneck and will distribute write operations among the cluster.

See also:

Write Scaling (page 17)

Create a Shard Key that Targets a Single Shard A shard key that targets a single shard makes it possible for the
mongos program to return most query operations directly from a single specific mongod instance. Your shard key
should be the primary field used by your queries. Fields with a high degree of “randomness” make it difficult to target
operations to specific shards.

See also:

Query Isolation (page 17)

Shard Using a Compound Shard Key The challenge when selecting a shard key is that there is not always an
obvious choice. Often, an existing field in your collection may not be the optimal key. In those situations, computing
a special purpose shard key into an additional field or using a compound shard key may help produce one that is more
ideal.

Cardinality Cardinality in the context of MongoDB, refers to the ability of the system to partition data into chunks.
For example, consider a collection of data such as an “address book” that stores address records:

• Consider the use of a state field as a shard key:

The state key’s value holds the US state for a given address document. This field has a low cardinality as all
documents that have the same value in the state field must reside on the same shard, even if a particular state’s
chunk exceeds the maximum chunk size.

Since there are a limited number of possible values for the state field, MongoDB may distribute data unevenly
among a small number of fixed chunks. This may have a number of effects:

36

Genoveva Vargas-Solar

Genoveva Vargas-Solar

Genoveva Vargas-Solar

– If MongoDB cannot split a chunk because all of its documents have the same shard key, migrations involv-
ing these un-splittable chunks will take longer than other migrations, and it will be more difficult for your
data to stay balanced.

– If you have a fixed maximum number of chunks, you will never be able to use more than that number of
shards for this collection.

• Consider the use of a zipcode field as a shard key:

While this field has a large number of possible values, and thus has potentially higher cardinality, it’s possible
that a large number of users could have the same value for the shard key, which would make this chunk of users
un-splittable.

In these cases, cardinality depends on the data. If your address book stores records for a geographically dis-
tributed contact list (e.g. “Dry cleaning businesses in America,”) then a value like zipcode would be sufficient.
However, if your address book is more geographically concentrated (e.g “ice cream stores in Boston Mas-
sachusetts,”) then you may have a much lower cardinality.

• Consider the use of a phone-number field as a shard key:

Phone number has a high cardinality, because users will generally have a unique value for this field, MongoDB
will be able to split as many chunks as needed.

While “high cardinality,” is necessary for ensuring an even distribution of data, having a high cardinality does not
guarantee sufficient query isolation (page 17) or appropriate write scaling (page 17).

If you choose a shard key with low cardinality, some chunks may grow too large for MongoDB to migrate. See Jumbo
Chunks (page 28) for more information.

Shard Key Selection Strategy

When selecting a shard key, it is difficult to balance the qualities of an ideal shard key, which sometimes dictate
opposing strategies. For instance, it’s difficult to produce a key that has both a high degree randomness for even data
distribution and a shard key that allows your application to target specific shards. For some workloads, it’s more
important to have an even data distribution, and for others targeted queries are essential.

Therefore, the selection of a shard key is about balancing both your data and the performance characteristics caused
by different possible data distributions and system workloads.

Shard a Collection Using a Hashed Shard Key

New in version 2.4.

Hashed shard keys (page 16) use a hashed index of a field as the shard key to partition data across your sharded cluster.

For suggestions on choosing the right field as your hashed shard key, see Hashed Shard Keys (page 16). For limitations
on hashed indexes, see index-hashed-index.

Note: If chunk migrations are in progress while creating a hashed shard key collection, the initial chunk distribution
may be uneven until the balancer automatically balances the collection.

Shard the Collection

To shard a collection using a hashed shard key, use an operation in the mongo that resembles the following:

37

sh.shardCollection("records.active", { a: "hashed" })

This operation shards the active collection in the records database, using a hash of the a field as the shard key.

Specify the Initial Number of Chunks

If you shard an empty collection using a hashed shard key, MongoDB automatically creates and migrates empty chunks
so that each shard has two chunks. To control how many chunks MongoDB creates when sharding the collection, use
shardCollection with the numInitialChunks parameter.

Important: MongoDB 2.4 adds support for hashed shard keys. After sharding a collection with a hashed shard key,
you must use the MongoDB 2.4 or higher mongos and mongod instances in your sharded cluster.

Warning: MongoDB hashed indexes truncate floating point numbers to 64-bit integers before hashing. For
example, a hashed index would store the same value for a field that held a value of 2.3, 2.2, and 2.9. To
prevent collisions, do not use a hashed index for floating point numbers that cannot be reliably converted to
64-bit integers (and then back to floating point). MongoDB hashed indexes do not support floating point values
larger than 253.

Add Shards to a Cluster

You add shards to a sharded cluster after you create the cluster or any time that you need to add capacity to the cluster.
If you have not created a sharded cluster, see Deploy a Sharded Cluster (page 32).

In production environments, all shards should be replica sets.

Considerations

Balancing When you add a shard to a sharded cluster, you affect the balance of chunks among the shards of a cluster
for all existing sharded collections. The balancer will begin migrating chunks so that the cluster will achieve balance.
See Sharded Collection Balancing (page 25) for more information.

Capacity Planning When adding a shard to a cluster, always ensure that the cluster has enough capacity to support
the migration required for balancing the cluster without affecting legitimate production traffic.

Add a Shard to a Cluster

You interact with a sharded cluster by connecting to a mongos instance.

1. From a mongo shell, connect to the mongos instance. For example, if a mongos is accessible at
mongos0.example.net on port 27017, issue the following command:

mongo --host mongos0.example.net --port 27017

2. Add a shard to the cluster using the sh.addShard() method, as shown in the examples below. Issue
sh.addShard() separately for each shard. If the shard is a replica set, specify the name of the replica
set and specify a member of the set. In production deployments, all shards should be replica sets.

Optional

38

You can instead use the addShard database command, which lets you specify a name and maximum size for
the shard. If you do not specify these, MongoDB automatically assigns a name and maximum size. To use the
database command, see addShard.

The following are examples of adding a shard with sh.addShard():

• To add a shard for a replica set named rs1 with a member running on port 27017 on
mongodb0.example.net, issue the following command:

sh.addShard("rs1/mongodb0.example.net:27017")

Changed in version 2.0.3.

For MongoDB versions prior to 2.0.3, you must specify all members of the replica set. For example:

sh.addShard("rs1/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017")

• To add a shard for a standalone mongod on port 27017 of mongodb0.example.net, issue the fol-
lowing command:

sh.addShard("mongodb0.example.net:27017")

Note: It might take some time for chunks to migrate to the new shard.

Deploy Three Config Servers for Production Deployments

This procedure converts a test deployment with only one config server (page 11) to a production deployment with
three config servers.

Tip
Use CNAMEs to identify your config servers to the cluster so that you can rename and renumber your config servers
without downtime.

For redundancy, all production sharded clusters (page 3) should deploy three config servers on three different ma-
chines. Use a single config server only for testing deployments, never for production deployments. When you shift to
production, upgrade immediately to three config servers.

To convert a test deployment with one config server to a production deployment with three config servers:

1. Shut down all existing MongoDB processes in the cluster. This includes:

• all mongod instances or replica sets that provide your shards.

• all mongos instances in your cluster.

2. Copy the entire dbPath file system tree from the existing config server to the two machines that will provide the
additional config servers. These commands, issued on the system with the existing Config Database (page 78),
mongo-config0.example.net may resemble the following:

rsync -az /data/configdb mongo-config1.example.net:/data/configdb
rsync -az /data/configdb mongo-config2.example.net:/data/configdb

3. Start all three config servers, using the same invocation that you used for the single config server.

mongod --configsvr

4. Restart all shard mongod and mongos processes.

39

Genoveva Vargas-Solar

Convert a Replica Set to a Replicated Sharded Cluster

Overview

This tutorial converts a single three-member replica set to a sharded cluster with two shards. Each shard is an inde-
pendent three-member replica set. The procedure is as follows:

1. Create the initial three-member replica set and insert data into a collection. See Set Up Initial Replica Set
(page 40).

2. Start the config databases and a mongos. See Deploy Config Databases and mongos (page 41).

3. Add the initial replica set as a shard. See Add Initial Replica Set as a Shard (page 42).

4. Create a second shard and add to the cluster. See Add Second Shard (page 42).

5. Shard the desired collection. See Shard a Collection (page 42).

Prerequisites

This tutorial uses a total of ten servers: one server for the mongos and three servers each for the first replica set, the
second replica set, and the config servers (page 11).

Each server must have a resolvable domain, hostname, or IP address within your system.

The tutorial uses the default data directories (e.g. /data/db and /data/configdb). Cre-
ate the appropriate directories with appropriate permissions. To use different paths, see
http://docs.mongodb.org/manual/reference/configuration-options .

The tutorial uses the default ports (e.g. 27017 and 27019). To use different ports, see
http://docs.mongodb.org/manual/reference/configuration-options.

Considerations

In production deployments, use exactly three config servers. Each config server must be on a separate machine.

In development and testing environments, you can deploy a cluster with a single config server.

Procedures

Set Up Initial Replica Set This procedure creates the initial three-member replica set rs0. The replica
set members are on the following hosts: mongodb0.example.net, mongodb1.example.net, and
mongodb2.example.net.

Step 1: Start each member of the replica set with the appropriate options. For each member, start a mongod,
specifying the replica set name through the replSet option. Include any other parameters specific to your deploy-
ment. For replication-specific parameters, see cli-mongod-replica-set.

mongod --replSet "rs0"

Repeat this step for the other two members of the rs0 replica set.

40

Step 2: Connect a mongo shell to a replica set member. Connect a mongo shell to one member of the replica set
(e.g. mongodb0.example.net)

mongo mongodb0.example.net

Step 3: Initiate the replica set. From the mongo shell, run rs.initiate() to initiate a replica set that consists
of the current member.

rs.initiate()

Step 4: Add the remaining members to the replica set.
rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")

Step 5: Create and populate a new collection. The following step adds one million documents to the collection
test_collection and can take several minutes depending on your system.

Issue the following operations on the primary of the replica set:

use test
var bulk = db.test_collection.initializeUnorderedBulkOp();
people = ["Marc", "Bill", "George", "Eliot", "Matt", "Trey", "Tracy", "Greg", "Steve", "Kristina", "Katie", "Jeff"];
for(var i=0; i<1000000; i++){

user_id = i;
name = people[Math.floor(Math.random()*people.length)];
number = Math.floor(Math.random()*10001);
bulk.insert({ "user_id":user_id, "name":name, "number":number });

}
bulk.execute();

For more information on deploying a replica set, see http://docs.mongodb.org/manual/tutorial/deploy-replica-set.

Deploy Config Databases and mongos This procedure deploys the three config servers and the mongos.
The config servers use the following hosts: mongodb7.example.net, mongodb8.example.net, and
mongodb9.example.net; the mongos uses mongodb6.example.net.

Step 1: Start three config databases. On each mongodb7.example.net, mongodb8.example.net, and
mongodb9.example.net server, start the config server using default data directory /data/configdb and the
default port 27019:

mongod --configsvr

To modify the default settings or to include additional options specific to your deployment, see
http://docs.mongodb.org/manual/reference/configuration-options.

Step 2: Start a mongos instance. On mongodb6.example.net, start the mongos specifying the config
servers. The mongos runs on the default port 27017.

This tutorial specifies a small --chunkSize of 1 MB to test sharding with the test_collection created earlier.

Note: In production environments, do not use a small chunkSize size.

41

mongos --configdb mongodb07.example.net:27019,mongodb08.example.net:27019,mongodb09.example.net:27019 --chunkSize 1

Add Initial Replica Set as a Shard The following procedure adds the initial replica set rs0 as a shard.

Step 1: Connect a mongo shell to the mongos.
mongo mongodb6.example.net:27017/admin

Step 2: Add the shard. Add a shard to the cluster with the sh.addShard method:

sh.addShard("rs0/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017")

Add Second Shard The following procedure deploys a new replica set rs1 for the second shard and
adds it to the cluster. The replica set members are on the following hosts: mongodb3.example.net,
mongodb4.example.net, and mongodb5.example.net.

Step 1: Start each member of the replica set with the appropriate options. For each member, start a mongod,
specifying the replica set name through the replSet option. Include any other parameters specific to your deploy-
ment. For replication-specific parameters, see cli-mongod-replica-set.

mongod --replSet "rs1"

Repeat this step for the other two members of the rs1 replica set.

Step 2: Connect a mongo shell to a replica set member. Connect a mongo shell to one member of the replica set
(e.g. mongodb3.example.net)

mongo mongodb3.example.net

Step 3: Initiate the replica set. From the mongo shell, run rs.initiate() to initiate a replica set that consists
of the current member.

rs.initiate()

Step 4: Add the remaining members to the replica set. Add the remaining members with the rs.add() method.

rs.add("mongodb4.example.net")
rs.add("mongodb5.example.net")

Step 5: Connect a mongo shell to the mongos.
mongo mongodb6.example.net:27017/admin

Step 6: Add the shard. In a mongo shell connected to the mongos, add the shard to the cluster with the
sh.addShard() method:

sh.addShard("rs1/mongodb3.example.net:27017,mongodb4.example.net:27017,mongodb5.example.net:27017")

Shard a Collection

42

Step 1: Connect a mongo shell to the mongos.
mongo mongodb6.example.net:27017/admin

Step 2: Enable sharding for a database. Before you can shard a collection, you must first enable sharding for the
collection’s database. Enabling sharding for a database does not redistribute data but makes it possible to shard the
collections in that database.

The following operation enables sharding on the test database:

sh.enableSharding("test")

The operation returns the status of the operation:

{ "ok" : 1 }

Step 3: Determine the shard key. For the collection to shard, determine the shard key. The shard key (page 16)
determines how MongoDB distributes the documents between shards. Good shard keys:

• have values that are evenly distributed among all documents,

• group documents that are often accessed at the same time into contiguous chunks, and

• allow for effective distribution of activity among shards.

Once you shard a collection with the specified shard key, you cannot change the shard key. For more information on
shard keys, see Shard Keys (page 16) and Considerations for Selecting Shard Keys (page 35).

This procedure will use the number field as the shard key for test_collection.

Step 4: Create an index on the shard key. Before sharding a non-empty collection, create an index on the shard
key (page 29).

use test
db.test_collection.createIndex({ number : 1 })

Step 5: Shard the collection. In the test database, shard the test_collection, specifying number as the
shard key.

use test
sh.shardCollection("test.test_collection", { "number" : 1 })

The method returns the status of the operation:

{ "collectionsharded" : "test.test_collection", "ok" : 1 }

The balancer (page 25) will redistribute chunks of documents when it next runs. As clients insert additional documents
into this collection, the mongos will route the documents between the shards.

Step 6: Confirm the shard is balancing. To confirm balancing activity, run db.stats() or
db.printShardingStatus() in the test database.

use test
db.stats()
db.printShardingStatus()

Example output of the db.stats():

43

{
"raw" : {

"rs0/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017" : {
"db" : "test",
"collections" : 3,
"objects" : 989316,
"avgObjSize" : 111.99974123535857,
"dataSize" : 110803136,
"storageSize" : 174751744,
"numExtents" : 14,
"indexes" : 2,
"indexSize" : 57370992,
"fileSize" : 469762048,
"nsSizeMB" : 16,
"dataFileVersion" : {

"major" : 4,
"minor" : 5

},
"extentFreeList" : {

"num" : 0,
"totalSize" : 0

},
"ok" : 1

},
"rs1/mongodb3.example.net:27017,mongodb4.example.net:27017,mongodb5.example.net:27017" : {

"db" : "test",
"collections" : 3,
"objects" : 14697,
"avgObjSize" : 111.98258147921345,
"dataSize" : 1645808,
"storageSize" : 2809856,
"numExtents" : 7,
"indexes" : 2,
"indexSize" : 1169168,
"fileSize" : 67108864,
"nsSizeMB" : 16,
"dataFileVersion" : {

"major" : 4,
"minor" : 5

},
"extentFreeList" : {

"num" : 0,
"totalSize" : 0

},
"ok" : 1

}
},
"objects" : 1004013,
"avgObjSize" : 111,
"dataSize" : 112448944,
"storageSize" : 177561600,
"numExtents" : 21,
"indexes" : 4,
"indexSize" : 58540160,
"fileSize" : 536870912,
"extentFreeList" : {

"num" : 0,
"totalSize" : 0

44

},
"ok" : 1

}

Example output of the db.printShardingStatus():

--- Sharding Status ---
sharding version: {

"_id" : 1,
"version" : 4,
"minCompatibleVersion" : 4,
"currentVersion" : 5,
"clusterId" : ObjectId("5446970c04ad5132c271597c")

}
shards:

{ "_id" : "rs0", "host" : "rs0/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017" }
{ "_id" : "rs1", "host" : "rs1/mongodb3.example.net:27017,mongodb4.example.net:27017,mongodb5.example.net:27017" }

databases:
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "test", "partitioned" : true, "primary" : "rs0" }

test.test_collection
shard key: { "number" : 1 }
chunks:

rs1 5
rs0 186

too many chunks to print, use verbose if you want to force print

Run these commands for a second time to demonstrate that chunks are migrating from rs0 to rs1.

Convert Sharded Cluster to Replica Set

This tutorial describes the process for converting a sharded cluster to a non-sharded replica set. To convert a replica
set into a sharded cluster Convert a Replica Set to a Replicated Sharded Cluster (page 40). See the Sharding (page 2)
documentation for more information on sharded clusters.

Convert a Cluster with a Single Shard into a Replica Set

In the case of a sharded cluster with only one shard, that shard contains the full data set. Use the following procedure
to convert that cluster into a non-sharded replica set:

1. Reconfigure the application to connect to the primary member of the replica set hosting the single shard that
system will be the new replica set.

2. Optionally remove the --shardsrv option, if your mongod started with this option.

Tip
Changing the --shardsrv option will change the port that mongod listens for incoming connections on.

The single-shard cluster is now a non-sharded replica set that will accept read and write operations on the data set.

You may now decommission the remaining sharding infrastructure.

45

Convert a Sharded Cluster into a Replica Set

Use the following procedure to transition from a sharded cluster with more than one shard to an entirely new replica
set.

1. With the sharded cluster running, deploy a new replica set in addition to your sharded cluster. The
replica set must have sufficient capacity to hold all of the data files from all of the current shards combined. Do
not configure the application to connect to the new replica set until the data transfer is complete.

2. Stop all writes to the sharded cluster. You may reconfigure your application or stop all mongos instances.
If you stop all mongos instances, the applications will not be able to read from the database. If you stop all
mongos instances, start a temporary mongos instance on that applications cannot access for the data migration
procedure.

3. Use mongodump and mongorestore to migrate the data from the mongos instance to the new replica
set.

Note: Not all collections on all databases are necessarily sharded. Do not solely migrate the sharded collections.
Ensure that all databases and all collections migrate correctly.

4. Reconfigure the application to use the non-sharded replica set instead of the mongos instance.

The application will now use the un-sharded replica set for reads and writes. You may now decommission the remain-
ing unused sharded cluster infrastructure.

3.2 Sharded Cluster Maintenance Tutorials

The following tutorials provide information in maintaining sharded clusters.

View Cluster Configuration (page 47) View status information about the cluster’s databases, shards, and chunks.

Migrate Config Servers with the Same Hostname (page 48) Migrate a config server to a new system while keeping
the same hostname. This procedure requires changing the DNS entry to point to the new system.

Migrate Config Servers with Different Hostnames (page 48) Migrate a config server to a new system that uses a new
hostname. If possible, avoid changing the hostname and instead use the Migrate Config Servers with the Same
Hostname (page 48) procedure.

Replace Disabled Config Server (page 49) Replaces a config server that has become inoperable. This procedure as-
sumes that the hostname does not change.

Migrate a Sharded Cluster to Different Hardware (page 50) Migrate a sharded cluster to a different hardware sys-
tem, for example, when moving a pre-production environment to production.

Backup Cluster Metadata (page 53) Create a backup of a sharded cluster’s metadata while keeping the cluster oper-
ational.

Configure Behavior of Balancer Process in Sharded Clusters (page 53) Manage the balancer’s behavior by
scheduling a balancing window, changing size settings, or requiring replication before migration.

Manage Sharded Cluster Balancer (page 55) View balancer status and manage balancer behavior.

Remove Shards from an Existing Sharded Cluster (page 59) Migrate a single shard’s data and remove the shard.

46

View Cluster Configuration

List Databases with Sharding Enabled

To list the databases that have sharding enabled, query the databases collection in the Config Database (page 78).
A database has sharding enabled if the value of the partitioned field is true. Connect to a mongos instance
with a mongo shell, and run the following operation to get a full list of databases with sharding enabled:

use config
db.databases.find({ "partitioned": true })

Example
You can use the following sequence of commands when to return a list of all databases in the cluster:

use config
db.databases.find()

If this returns the following result set:

{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "animals", "partitioned" : true, "primary" : "m0.example.net:30001" }
{ "_id" : "farms", "partitioned" : false, "primary" : "m1.example2.net:27017" }

Then sharding is only enabled for the animals database.

List Shards

To list the current set of configured shards, use the listShards command, as follows:

use admin
db.runCommand({ listShards : 1 })

View Cluster Details

To view cluster details, issue db.printShardingStatus() or sh.status(). Both methods return the same
output.

Example
In the following example output from sh.status()

• sharding version displays the version number of the shard metadata.

• shards displays a list of the mongod instances used as shards in the cluster.

• databases displays all databases in the cluster, including database that do not have sharding enabled.

• The chunks information for the foo database displays how many chunks are on each shard and displays the
range of each chunk.

--- Sharding Status ---
sharding version: { "_id" : 1, "version" : 3 }
shards:
{ "_id" : "shard0000", "host" : "m0.example.net:30001" }
{ "_id" : "shard0001", "host" : "m3.example2.net:50000" }

databases:

47

{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "contacts", "partitioned" : true, "primary" : "shard0000" }

foo.contacts
shard key: { "zip" : 1 }
chunks:

shard0001 2
shard0002 3
shard0000 2

{ "zip" : { "$minKey" : 1 } } -->> { "zip" : "56000" } on : shard0001 { "t" : 2, "i" : 0 }
{ "zip" : 56000 } -->> { "zip" : "56800" } on : shard0002 { "t" : 3, "i" : 4 }
{ "zip" : 56800 } -->> { "zip" : "57088" } on : shard0002 { "t" : 4, "i" : 2 }
{ "zip" : 57088 } -->> { "zip" : "57500" } on : shard0002 { "t" : 4, "i" : 3 }
{ "zip" : 57500 } -->> { "zip" : "58140" } on : shard0001 { "t" : 4, "i" : 0 }
{ "zip" : 58140 } -->> { "zip" : "59000" } on : shard0000 { "t" : 4, "i" : 1 }
{ "zip" : 59000 } -->> { "zip" : { "$maxKey" : 1 } } on : shard0000 { "t" : 3, "i" : 3 }

{ "_id" : "test", "partitioned" : false, "primary" : "shard0000" }

Migrate Config Servers with the Same Hostname

This procedure migrates a config server (page 11) in a sharded cluster (page 9) to a new system that uses the same
hostname.

To migrate all the config servers in a cluster, perform this procedure for each config server separately and migrate the
config servers in reverse order from how they are listed in the mongos instances’ configDB string. Start with the
last config server listed in the configDB string.

1. Shut down the config server.

This renders all config data for the sharded cluster “read only.”

2. Change the DNS entry that points to the system that provided the old config server, so that the same hostname
points to the new system. How you do this depends on how you organize your DNS and hostname resolution
services.

3. Copy the contents of dbPath from the old config server to the new config server.

For example, to copy the contents of dbPath to a machine named mongodb.config2.example.net,
you might issue a command similar to the following:

rsync -az /data/configdb/ mongodb.config2.example.net:/data/configdb

4. Start the config server instance on the new system. The default invocation is:

mongod --configsvr

When you start the third config server, your cluster will become writable and it will be able to create new splits and
migrate chunks as needed.

Migrate Config Servers with Different Hostnames

Overview

Sharded clusters use a group of three config servers to store cluster meta data, and all three config servers must be
available to support cluster metadata changes that include chunk splits and migrations. If one of the config servers is
unavailable or inoperable, you must replace it as soon as possible.

48

This procedure migrates a config server (page 11) in a sharded cluster (page 9) to a new server that uses a different
hostname. Use this procedure only if the config server will not be accessible via the same hostname. If possible, avoid
changing the hostname so that you can instead use the procedure to migrate a config server and use the same hostname
(page 48).

Considerations

Changing a config server’s (page 11) hostname requires downtime and requires restarting every process in the sharded
cluster.

While migrating config servers, always make sure that all mongos instances have three config servers specified in the
configDB setting at all times. Also ensure that you specify the config servers in the same order for each mongos
instance’s configDB setting.

Procedure

1. Disable the cluster balancer process temporarily. See Disable the Balancer (page 57) for more information.

2. Shut down the config server to migrate.

This renders all config data for the sharded cluster “read only.”

3. Copy the contents of dbPath from the old config server to the new config server. For example, to copy
the contents of dbPath to a machine named mongodb.config2.example.net, use a command that
resembles the following:

rsync -az /data/configdb mongodb.config2.example.net:/data/configdb

4. Start the config server instance on the new system. The default invocation is:

mongod --configsvr

5. Shut down all existing MongoDB processes. This includes:

• the mongod instances for the shards.

• the mongod instances for the existing config databases (page 78).

• the mongos instances.

6. Restart all shard mongod instances.

7. Restart the mongod instances for the two existing non-migrated config servers.

8. Update the configDB setting for each mongos instances.

9. Restart the mongos instances.

10. Re-enable the balancer to allow the cluster to resume normal balancing operations. See the Disable the Balancer
(page 57) section for more information on managing the balancer process.

Replace Disabled Config Server

Overview

Sharded clusters use a group of three config servers to store cluster meta data, and all three config servers must be
available to support cluster metadata changes that include chunk splits and migrations. If one of the config servers is
unavailable or inoperable you must replace it as soon as possible.

49

This procedure replaces an inoperable config server (page 11) in a sharded cluster (page 9). Use this procedure only
to replace a config server that has become inoperable (e.g. hardware failure).

This process assumes that the hostname of the instance will not change. If you must change the hostname of the
instance, use the procedure to migrate a config server and use a new hostname (page 48).

Considerations

In the course of this procedure never remove a config server from the configDB parameter on any of the mongos
instances.

Procedure

Step 1: Provision a new system, with the same IP address and hostname as the previous host. You will have to
ensure the new system has the same IP address and hostname as the system it’s replacing or you will need to modify
the DNS records and wait for them to propagate.

Step 2: Shut down one of the remaining config servers. Copy all of this host’s dbPath path from the current
system to the system that will provide the new config server. This command, issued on the system with the data files,
may resemble the following:

rsync -az /data/configdb mongodb.config2.example.net:/data/configdb

Step 3: If necessary, update DNS and/or networking. Ensure the new config server is accessible by the same
name as the previous config server.

Step 4: Start the new config server.
mongod --configsvr

Migrate a Sharded Cluster to Different Hardware

This procedure moves the components of the sharded cluster to a new hardware system without downtime for reads
and writes.

Important: While the migration is in progress, do not attempt to change to the cluster metadata (page 30). Do not
use any operation that modifies the cluster metadata in any way. For example, do not create or drop databases, create
or drop collections, or use any sharding commands.

If your cluster includes a shard backed by a standalone mongod instance, consider converting the
standalone to a replica set to simplify migration and to let you keep the cluster online during future
maintenance. Migrating a shard as standalone is a multi-step process that may require downtime.

To migrate a cluster to new hardware, perform the following tasks.

Disable the Balancer

Disable the balancer to stop chunk migration (page 26) and do not perform any metadata write operations until the
process finishes. If a migration is in progress, the balancer will complete the in-progress migration before stopping.

To disable the balancer, connect to one of the cluster’s mongos instances and issue the following method:

50

sh.stopBalancer()

To check the balancer state, issue the sh.getBalancerState() method.

For more information, see Disable the Balancer (page 57).

Migrate Each Config Server Separately

Migrate each config server (page 11) by starting with the last config server listed in the configDB string. Proceed
in reverse order of the configDB string. Migrate and restart a config server before proceeding to the next. Do not
rename a config server during this process.

Note: If the name or address that a sharded cluster uses to connect to a config server changes, you must restart every
mongod and mongos instance in the sharded cluster. Avoid downtime by using CNAMEs to identify config servers
within the MongoDB deployment.

See Migrate Config Servers with Different Hostnames (page 48) for more information.

Important: Start with the last config server listed in configDB.

1. Shut down the config server.

This renders all config data for the sharded cluster “read only.”

2. Change the DNS entry that points to the system that provided the old config server, so that the same hostname
points to the new system. How you do this depends on how you organize your DNS and hostname resolution
services.

3. Copy the contents of dbPath from the old config server to the new config server.

For example, to copy the contents of dbPath to a machine named mongodb.config2.example.net,
you might issue a command similar to the following:

rsync -az /data/configdb/ mongodb.config2.example.net:/data/configdb

4. Start the config server instance on the new system. The default invocation is:

mongod --configsvr

Restart the mongos Instances

If the configDB string will change as part of the migration, you must shut down all mongos instances before
changing the configDB string. This avoids errors in the sharded cluster over configDB string conflicts.

If the configDB string will remain the same, you can migrate the mongos instances sequentially or all at once.

1. Shut down the mongos instances using the shutdown command. If the configDB string is changing, shut
down all mongos instances.

2. If the hostname has changed for any of the config servers, update the configDB string for each mongos
instance. The mongos instances must all use the same configDB string. The strings must list identical host
names in identical order.

Tip

51

To avoid downtime, give each config server a logical DNS name (unrelated to the server’s physical or virtual
hostname). Without logical DNS names, moving or renaming a config server requires shutting down every
mongod and mongos instance in the sharded cluster.

3. Restart the mongos instances being sure to use the updated configDB string if hostnames have changed.

For more information, see Start the mongos Instances (page 32).

Migrate the Shards

Migrate the shards one at a time. For each shard, follow the appropriate procedure in this section.

Migrate a Replica Set Shard To migrate a sharded cluster, migrate each member separately. First migrate the
non-primary members, and then migrate the primary last.

If the replica set has two voting members, add an arbiter to the replica set to ensure the set keeps a majority of its
votes available during the migration. You can remove the arbiter after completing the migration.

Migrate a Member of a Replica Set Shard

1. Shut down the mongod process. To ensure a clean shutdown, use the shutdown command.

2. Move the data directory (i.e., the dbPath) to the new machine.

3. Restart the mongod process at the new location.

4. Connect to the replica set’s current primary.

5. If the hostname of the member has changed, use rs.reconfig() to update the replica set
configuration document with the new hostname.

For example, the following sequence of commands updates the hostname for the instance at position 2 in the
members array:

cfg = rs.conf()
cfg.members[2].host = "pocatello.example.net:27017"
rs.reconfig(cfg)

For more information on updating the configuration document, see replica-set-reconfiguration-usage.

6. To confirm the new configuration, issue rs.conf().

7. Wait for the member to recover. To check the member’s state, issue rs.status().

Migrate the Primary in a Replica Set Shard While migrating the replica set’s primary, the set must elect a new
primary. This failover process which renders the replica set unavailable to perform reads or accept writes for the
duration of the election, which typically completes quickly. If possible, plan the migration during a maintenance
window.

1. Step down the primary to allow the normal failover process. To step down the primary, connect to the primary
and issue the either the replSetStepDown command or the rs.stepDown() method. The following
example shows the rs.stepDown() method:

rs.stepDown()

52

2. Once the primary has stepped down and another member has become PRIMARY state. To migrate the stepped-
down primary, follow the Migrate a Member of a Replica Set Shard (page 52) procedure

You can check the output of rs.status() to confirm the change in status.

Migrate a Standalone Shard The ideal procedure for migrating a standalone shard is to convert the
standalone to a replica set and then use the procedure for migrating a replica set shard (page 52). In
production clusters, all shards should be replica sets, which provides continued availability during maintenance win-
dows.

Migrating a shard as standalone is a multi-step process during which part of the shard may be unavailable. If the shard
is the primary shard for a database,the process includes the movePrimary command. While the movePrimary
runs, you should stop modifying data in that database. To migrate the standalone shard, use the Remove Shards from
an Existing Sharded Cluster (page 59) procedure.

Re-Enable the Balancer

To complete the migration, re-enable the balancer to resume chunk migrations (page 26).

Connect to one of the cluster’s mongos instances and pass true to the sh.setBalancerState() method:

sh.setBalancerState(true)

To check the balancer state, issue the sh.getBalancerState() method.

For more information, see Enable the Balancer (page 58).

Backup Cluster Metadata

This procedure shuts down the mongod instance of a config server (page 11) in order to create a backup of a sharded
cluster’s (page 3) metadata. The cluster’s config servers store all of the cluster’s metadata, most importantly the
mapping from chunks to shards.

When you perform this procedure, the cluster remains operational 14.

1. Disable the cluster balancer process temporarily. See Disable the Balancer (page 57) for more information.

2. Shut down one of the config databases.

3. Create a full copy of the data files (i.e. the path specified by the dbPath option for the config instance.)

4. Restart the original configuration server.

5. Re-enable the balancer to allow the cluster to resume normal balancing operations. See the Disable the Balancer
(page 57) section for more information on managing the balancer process.

See also:

http://docs.mongodb.org/manual/core/backups.

Configure Behavior of Balancer Process in Sharded Clusters

The balancer is a process that runs on one of the mongos instances in a cluster and ensures that chunks are evenly
distributed throughout a sharded cluster. In most deployments, the default balancer configuration is sufficient for
normal operation. However, administrators might need to modify balancer behavior depending on application or

14 While one of the three config servers is unavailable, the cluster cannot split any chunks nor can it migrate chunks between shards. Your
application will be able to write data to the cluster. See Config Servers (page 11) for more information.

53

operational requirements. If you encounter a situation where you need to modify the behavior of the balancer, use the
procedures described in this document.

For conceptual information about the balancer, see Sharded Collection Balancing (page 25) and Cluster Balancer
(page 25).

Schedule a Window of Time for Balancing to Occur

You can schedule a window of time during which the balancer can migrate chunks, as described in the following
procedures:

• Schedule the Balancing Window (page 56)

• Remove a Balancing Window Schedule (page 57).

The mongos instances use their own local timezones when respecting balancer window.

Configure Default Chunk Size

The default chunk size for a sharded cluster is 64 megabytes. In most situations, the default size is appropriate for
splitting and migrating chunks. For information on how chunk size affects deployments, see details, see Chunk Size
(page 29).

Changing the default chunk size affects chunks that are processes during migrations and auto-splits but does not
retroactively affect all chunks.

To configure default chunk size, see Modify Chunk Size in a Sharded Cluster (page 67).

Change the Maximum Storage Size for a Given Shard

The maxSize field in the shards (page 82) collection in the config database (page 78) sets the maximum size for
a shard, allowing you to control whether the balancer will migrate chunks to a shard. If mapped size 15 is above a
shard’s maxSize, the balancer will not move chunks to the shard. Also, the balancer will not move chunks off an
overloaded shard. This must happen manually. The maxSize value only affects the balancer’s selection of destination
shards.

By default, maxSize is not specified, allowing shards to consume the total amount of available space on their ma-
chines if necessary.

You can set maxSize both when adding a shard and once a shard is running.

To set maxSize when adding a shard, set the addShard command’s maxSize parameter to the maximum size in
megabytes. For example, the following command run in the mongo shell adds a shard with a maximum size of 125
megabytes:

db.runCommand({ addshard : "example.net:34008", maxSize : 125 })

To set maxSize on an existing shard, insert or update the maxSize field in the shards (page 82) collection in the
config database (page 78). Set the maxSize in megabytes.

Example
Assume you have the following shard without a maxSize field:

{ "_id" : "shard0000", "host" : "example.net:34001" }

15 This value includes the mapped size of all data files including the‘‘local‘‘ and admin databases. Account for this when setting maxSize.

54

Run the following sequence of commands in the mongo shell to insert a maxSize of 125 megabytes:

use config
db.shards.update({ _id : "shard0000" }, { $set : { maxSize : 125 } })

To later increase the maxSize setting to 250 megabytes, run the following:

use config
db.shards.update({ _id : "shard0000" }, { $set : { maxSize : 250 } })

Change Replication Behavior for Chunk Migration (Secondary Throttle)

Changed in version 2.8.0: The balancer configuration document added configurable writeConcern to control the
semantics of the _secondaryThrottle option.

The _secondaryThrottle parameter of the balancer and the moveChunk command affects the replication be-
havior during chunk migration (page 28). By default, _secondaryThrottle is true, which means each doc-
ument move during chunk migration propagates to at least one secondary before the balancer proceeds with its next
operation: this is equivalent to a write concern of { w: 1 }.

You can also configure the writeConcern for the _secondaryThrottle operation, to configure how migra-
tions will wait for replication to complete. For more information on the replication behavior during various steps of
chunk migration, see:ref:chunk-migration-replication.

To change the balancer’s _secondaryThrottle and writeConcern values, connect to a mongos instance and
directly update the _secondaryThrottle value in the settings (page 82) collection of the config database
(page 78). For example, from a mongo shell connected to a mongos, issue the following command:

use config
db.settings.update(

{ "_id" : "balancer" },
{ $set : { "_secondaryThrottle" : false },

{ "writeConcern": { "w": "majority" } } },
{ upsert : true }

)

The effects of changing the _secondaryThrottle and writeConcern value may not be immediate. To ensure
an immediate effect, stop and restart the balancer to enable the selected value of _secondaryThrottle. See
Manage Sharded Cluster Balancer (page 55) for details.

Manage Sharded Cluster Balancer

This page describes common administrative procedures related to balancing. For an introduction to balancing, see
Sharded Collection Balancing (page 25). For lower level information on balancing, see Cluster Balancer (page 25).

See also:

Configure Behavior of Balancer Process in Sharded Clusters (page 53)

Check the Balancer State

The following command checks if the balancer is enabled (i.e. that the balancer is allowed to run). The command does
not check if the balancer is active (i.e. if it is actively balancing chunks).

To see if the balancer is enabled in your cluster, issue the following command, which returns a boolean:

55

sh.getBalancerState()

New in version 2.8.0: You can also see if the balancer is enabled using sh.status(). The currently-enabled
field indicates whether the balancer is enabled, while the currently-running field indicates if the balancer is
currently running.

Check the Balancer Lock

To see if the balancer process is active in your cluster, do the following:

1. Connect to any mongos in the cluster using the mongo shell.

2. Issue the following command to switch to the Config Database (page 78):

use config

3. Use the following query to return the balancer lock:

db.locks.find({ _id : "balancer" }).pretty()

When this command returns, you will see output like the following:

{ "_id" : "balancer",
"process" : "mongos0.example.net:1292810611:1804289383",

"state" : 2,
"ts" : ObjectId("4d0f872630c42d1978be8a2e"),

"when" : "Mon Dec 20 2010 11:41:10 GMT-0500 (EST)",
"who" : "mongos0.example.net:1292810611:1804289383:Balancer:846930886",
"why" : "doing balance round" }

This output confirms that:

• The balancer originates from the mongos running on the system with the hostname
mongos0.example.net.

• The value in the state field indicates that a mongos has the lock. For version 2.0 and later, the value of an
active lock is 2; for earlier versions the value is 1.

Schedule the Balancing Window

In some situations, particularly when your data set grows slowly and a migration can impact performance, it’s useful
to be able to ensure that the balancer is active only at certain times. Use the following procedure to specify a window
during which the balancer will be able to migrate chunks:

1. Connect to any mongos in the cluster using the mongo shell.

2. Issue the following command to switch to the Config Database (page 78):

use config

3. Issue the following operation to ensure the balancer is not in the stopped state:

sh.setBalancerState(true)

The balancer will not activate if in the stopped state or outside the activeWindow timeframe.

4. Use an operation modeled on the following example update() operation to modify the balancer’s window:

56

db.settings.update({ _id : "balancer" }, { $set : { activeWindow : { start : "<start-time>", stop : "<stop-time>" } } }, true)

Replace <start-time> and <end-time> with time values using two digit hour and minute values (e.g
HH:MM) that describe the beginning and end boundaries of the balancing window. These times will be evaluated
relative to the time zone of each individual mongos instance in the sharded cluster. If your mongos instances
are physically located in different time zones, use a common time zone (e.g. GMT) to ensure that the balancer
window is interpreted correctly.

For instance, running the following will force the balancer to run between 11PM and 6AM local time only:

db.settings.update({ _id : "balancer" }, { $set : { activeWindow : { start : "23:00", stop : "6:00" } } }, true)

Note: The balancer window must be sufficient to complete the migration of all data inserted during the day.
As data insert rates can change based on activity and usage patterns, it is important to ensure that the balancing window
you select will be sufficient to support the needs of your deployment.

Do not use the sh.startBalancer() method when you have set an activeWindow.

Remove a Balancing Window Schedule

If you have set the balancing window (page 56) and wish to remove the schedule so that the balancer is always running,
issue the following sequence of operations:

use config
db.settings.update({ _id : "balancer" }, { $unset : { activeWindow : true } })

Disable the Balancer

By default the balancer may run at any time and only moves chunks as needed. To disable the balancer for a short
period of time and prevent all migration, use the following procedure:

1. Connect to any mongos in the cluster using the mongo shell.

2. Issue the following operation to disable the balancer:

sh.stopBalancer()

If a migration is in progress, the system will complete the in-progress migration before stopping.

3. To verify that the balancer will not start, issue the following command, which returns false if the balancer is
disabled:

sh.getBalancerState()

Optionally, to verify no migrations are in progress after disabling, issue the following operation in the mongo
shell:

use config
while(sh.isBalancerRunning()) {

print("waiting...");
sleep(1000);

}

Note: To disable the balancer from a driver that does not have the sh.stopBalancer() or
sh.setBalancerState() helpers, issue the following command from the config database:

57

db.settings.update({ _id: "balancer" }, { $set : { stopped: true } } , true)

Enable the Balancer

Use this procedure if you have disabled the balancer and are ready to re-enable it:

1. Connect to any mongos in the cluster using the mongo shell.

2. Issue one of the following operations to enable the balancer:

From the mongo shell, issue:

sh.setBalancerState(true)

From a driver that does not have the sh.startBalancer() helper, issue the following from the config
database:

db.settings.update({ _id: "balancer" }, { $set : { stopped: false } } , true)

Disable Balancing During Backups

If MongoDB migrates a chunk during a backup, you can end with an inconsistent snapshot of your sharded cluster.
Never run a backup while the balancer is active. To ensure that the balancer is inactive during your backup operation:

• Set the balancing window (page 56) so that the balancer is inactive during the backup. Ensure that the backup
can complete while you have the balancer disabled.

• manually disable the balancer (page 57) for the duration of the backup procedure.

If you turn the balancer off while it is in the middle of a balancing round, the shut down is not instantaneous. The
balancer completes the chunk move in-progress and then ceases all further balancing rounds.

Before starting a backup operation, confirm that the balancer is not active. You can use the following command to
determine if the balancer is active:

!sh.getBalancerState() && !sh.isBalancerRunning()

When the backup procedure is complete you can reactivate the balancer process.

Disable Balancing on a Collection

You can disable balancing for a specific collection with the sh.disableBalancing() method. You may want
to disable the balancer for a specific collection to support maintenance operations or atypical workloads, for example,
during data ingestions or data exports.

When you disable balancing on a collection, MongoDB will not interrupt in progress migrations.

To disable balancing on a collection, connect to a mongos with the mongo shell and call the
sh.disableBalancing() method.

For example:

sh.disableBalancing("students.grades")

The sh.disableBalancing() method accepts as its parameter the full namespace of the collection.

58

Enable Balancing on a Collection

You can enable balancing for a specific collection with the sh.enableBalancing() method.

When you enable balancing for a collection, MongoDB will not immediately begin balancing data. However, if the
data in your sharded collection is not balanced, MongoDB will be able to begin distributing the data more evenly.

To enable balancing on a collection, connect to a mongos with the mongo shell and call the
sh.enableBalancing() method.

For example:

sh.enableBalancing("students.grades")

The sh.enableBalancing() method accepts as its parameter the full namespace of the collection.

Confirm Balancing is Enabled or Disabled

To confirm whether balancing for a collection is enabled or disabled, query the collections collection in the
config database for the collection namespace and check the noBalance field. For example:

db.getSiblingDB("config").collections.findOne({_id : "students.grades"}).noBalance;

This operation will return a null error, true, false, or no output:

• A null error indicates the collection namespace is incorrect.

• If the result is true, balancing is disabled.

• If the result is false, balancing is enabled currently but has been disabled in the past for the collection.
Balancing of this collection will begin the next time the balancer runs.

• If the operation returns no output, balancing is enabled currently and has never been disabled in the past for this
collection. Balancing of this collection will begin the next time the balancer runs.

New in version 2.8.0: You can also see if the balancer is enabled using sh.status(). The currently-enabled
field indicates if the balancer is enabled.

Remove Shards from an Existing Sharded Cluster

To remove a shard you must ensure the shard’s data is migrated to the remaining shards in the cluster. This procedure
describes how to safely migrate data and how to remove a shard.

This procedure describes how to safely remove a single shard. Do not use this procedure to migrate an entire cluster
to new hardware. To migrate an entire shard to new hardware, migrate individual shards as if they were independent
replica sets.

To remove a shard, first connect to one of the cluster’s mongos instances using mongo shell. Then use the sequence
of tasks in this document to remove a shard from the cluster.

Ensure the Balancer Process is Enabled

To successfully migrate data from a shard, the balancer process must be enabled. Check the balancer state using
the sh.getBalancerState() helper in the mongo shell. For more information, see the section on balancer
operations (page 57).

59

Determine the Name of the Shard to Remove

To determine the name of the shard, connect to a mongos instance with the mongo shell and either:

• Use the listShards command, as in the following:

db.adminCommand({ listShards: 1 })

• Run either the sh.status() or the db.printShardingStatus() method.

The shards._id field lists the name of each shard.

Remove Chunks from the Shard

From the admin database, run the removeShard command. This begins “draining” chunks from the shard you are
removing to other shards in the cluster. For example, for a shard named mongodb0, run:

use admin
db.runCommand({ removeShard: "mongodb0" })

This operation returns immediately, with the following response:

{
"msg" : "draining started successfully",
"state" : "started",
"shard" : "mongodb0",
"ok" : 1

}

Depending on your network capacity and the amount of data, this operation can take from a few minutes to several
days to complete.

Check the Status of the Migration

To check the progress of the migration at any stage in the process, run removeShard from the admin database
again. For example, for a shard named mongodb0, run:

use admin
db.runCommand({ removeShard: "mongodb0" })

The command returns output similar to the following:

{
"msg" : "draining ongoing",

"state" : "ongoing",
"remaining" : {

"chunks" : 42,
"dbs" : 1

},
"ok" : 1

}

In the output, the remaining document displays the remaining number of chunks that MongoDB must migrate to
other shards and the number of MongoDB databases that have “primary” status on this shard.

Continue checking the status of the removeShard command until the number of chunks remaining is 0. Always run the
command on the admin database. If you are on a database other than admin, you can use sh._adminCommand
to run the command on admin.

60

Move Unsharded Data

If the shard is the primary shard for one or more databases in the cluster, then the shard will have unsharded data. If
the shard is not the primary shard for any databases, skip to the next task, Finalize the Migration (page 61).

In a cluster, a database with unsharded collections stores those collections only on a single shard. That shard becomes
the primary shard for that database. (Different databases in a cluster can have different primary shards.)

Warning: Do not perform this procedure until you have finished draining the shard.

1. To determine if the shard you are removing is the primary shard for any of the cluster’s databases, issue one of
the following methods:

• sh.status()

• db.printShardingStatus()

In the resulting document, the databases field lists each database and its primary shard. For example, the
following database field shows that the products database uses mongodb0 as the primary shard:

{ "_id" : "products", "partitioned" : true, "primary" : "mongodb0" }

2. To move a database to another shard, use the movePrimary command. For example, to migrate all remaining
unsharded data from mongodb0 to mongodb1, issue the following command:

db.runCommand({ movePrimary: "products", to: "mongodb1" })

This command does not return until MongoDB completes moving all data, which may take a long time. The
response from this command will resemble the following:

{ "primary" : "mongodb1", "ok" : 1 }

Finalize the Migration

To clean up all metadata information and finalize the removal, run removeShard again. For example, for a shard
named mongodb0, run:

use admin
db.runCommand({ removeShard: "mongodb0" })

A success message appears at completion:

{
"msg" : "removeshard completed successfully",
"state" : "completed",
"shard" : "mongodb0",
"ok" : 1

}

Once the value of the state field is “completed”, you may safely stop the processes comprising the mongodb0
shard.

See also:

http://docs.mongodb.org/manual/administration/backup-sharded-clusters

61

Genoveva Vargas-Solar

3.3 Sharded Cluster Data Management

The following documents provide information in managing data in sharded clusters.

Create Chunks in a Sharded Cluster (page 62) Create chunks, or pre-split empty collection to ensure an even distri-
bution of chunks during data ingestion.

Split Chunks in a Sharded Cluster (page 63) Manually create chunks in a sharded collection.

Migrate Chunks in a Sharded Cluster (page 64) Manually migrate chunks without using the automatic balance pro-
cess.

Merge Chunks in a Sharded Cluster (page 65) Use the mergeChunks to manually combine chunk ranges.

Modify Chunk Size in a Sharded Cluster (page 67) Modify the default chunk size in a sharded collection

Clear jumbo Flag (page 68) Clear jumbo flag from a shard.

Tag Aware Sharding (page 70) Tags associate specific ranges of shard key values with specific shards for use in
managing deployment patterns.

Manage Shard Tags (page 71) Use tags to associate specific ranges of shard key values with specific shards.

Enforce Unique Keys for Sharded Collections (page 72) Ensure that a field is always unique in all collections in a
sharded cluster.

Shard GridFS Data Store (page 75) Choose whether to shard GridFS data in a sharded collection.

Create Chunks in a Sharded Cluster

Pre-splitting the chunk ranges in an empty sharded collection allows clients to insert data into an already partitioned
collection. In most situations a sharded cluster will create and distribute chunks automatically without user interven-
tion. However, in a limited number of cases, MongoDB cannot create enough chunks or distribute data fast enough to
support required throughput. For example:

• If you want to partition an existing data collection that resides on a single shard.

• If you want to ingest a large volume of data into a cluster that isn’t balanced, or where the ingestion of data will
lead to data imbalance. For example, monotonically increasing or decreasing shard keys insert all data into a
single chunk.

These operations are resource intensive for several reasons:

• Chunk migration requires copying all the data in the chunk from one shard to another.

• MongoDB can migrate only a single chunk at a time.

• MongoDB creates splits only after an insert operation.

Warning: Only pre-split an empty collection. If a collection already has data, MongoDB automatically splits the
collection’s data when you enable sharding for the collection. Subsequent attempts to manually create splits can
lead to unpredictable chunk ranges and sizes as well as inefficient or ineffective balancing behavior.

To create chunks manually, use the following procedure:

1. Split empty chunks in your collection by manually performing the split command on chunks.

Example
To create chunks for documents in the myapp.users collection using the email field as the shard key, use
the following operation in the mongo shell:

62

for (var x=97; x<97+26; x++){
for(var y=97; y<97+26; y+=6) {
var prefix = String.fromCharCode(x) + String.fromCharCode(y);
db.runCommand({ split : "myapp.users" , middle : { email : prefix } });

}
}

This assumes a collection size of 100 million documents.

For information on the balancer and automatic distribution of chunks across shards, see Cluster Balancer
(page 25) and Chunk Migration (page 26). For information on manually migrating chunks, see Migrate Chunks
in a Sharded Cluster (page 64).

Split Chunks in a Sharded Cluster

Normally, MongoDB splits a chunk after an insert if the chunk exceeds the maximum chunk size (page 29). However,
you may want to split chunks manually if:

• you have a large amount of data in your cluster and very few chunks, as is the case after deploying a cluster
using existing data.

• you expect to add a large amount of data that would initially reside in a single chunk or shard. For example, you
plan to insert a large amount of data with shard key values between 300 and 400, but all values of your shard
keys are between 250 and 500 are in a single chunk.

Note: New in version 2.6: MongoDB provides the mergeChunks command to combine contiguous chunk ranges
into a single chunk. See Merge Chunks in a Sharded Cluster (page 65) for more information.

The balancer may migrate recently split chunks to a new shard immediately if mongos predicts future insertions will
benefit from the move. The balancer does not distinguish between chunks split manually and those split automatically
by the system.

Warning: Be careful when splitting data in a sharded collection to create new chunks. When you shard a
collection that has existing data, MongoDB automatically creates chunks to evenly distribute the collection. To
split data effectively in a sharded cluster you must consider the number of documents in a chunk and the average
document size to create a uniform chunk size. When chunks have irregular sizes, shards may have an equal number
of chunks but have very different data sizes. Avoid creating splits that lead to a collection with differently sized
chunks.

Use sh.status() to determine the current chunk ranges across the cluster.

To split chunks manually, use the split command with either fields middle or find. The mongo shell provides
the helper methods sh.splitFind() and sh.splitAt().

splitFind() splits the chunk that contains the first document returned that matches this query into two equally
sized chunks. You must specify the full namespace (i.e. “<database>.<collection>”) of the sharded collection
to splitFind(). The query in splitFind() does not need to use the shard key, though it nearly always makes
sense to do so.

Example
The following command splits the chunk that contains the value of 63109 for the zipcode field in the people
collection of the records database:

sh.splitFind("records.people", { "zipcode": "63109" })

63

Use splitAt() to split a chunk in two, using the queried document as the lower bound in the new chunk:

Example
The following command splits the chunk that contains the value of 63109 for the zipcode field in the people
collection of the records database.

sh.splitAt("records.people", { "zipcode": "63109" })

Note: splitAt() does not necessarily split the chunk into two equally sized chunks. The split occurs at the location
of the document matching the query, regardless of where that document is in the chunk.

Migrate Chunks in a Sharded Cluster

In most circumstances, you should let the automatic balancer migrate chunks between shards. However, you may
want to migrate chunks manually in a few cases:

• When pre-splitting an empty collection, migrate chunks manually to distribute them evenly across the shards.
Use pre-splitting in limited situations to support bulk data ingestion.

• If the balancer in an active cluster cannot distribute chunks within the balancing window (page 56), then you
will have to migrate chunks manually.

To manually migrate chunks, use the moveChunk command. For more information on how the automatic balancer
moves chunks between shards, see Cluster Balancer (page 25) and Chunk Migration (page 26).

Example
Migrate a single chunk

The following example assumes that the field username is the shard key for a collection named users in the
myapp database, and that the value smith exists within the chunk to migrate. Migrate the chunk using the following
command in the mongo shell.

db.adminCommand({ moveChunk : "myapp.users",
find : {username : "smith"},
to : "mongodb-shard3.example.net" })

This command moves the chunk that includes the shard key value “smith” to the shard named
mongodb-shard3.example.net. The command will block until the migration is complete.

Tip
To return a list of shards, use the listShards command.

Example
Evenly migrate chunks

To evenly migrate chunks for the myapp.users collection, put each prefix chunk on the next shard from the other
and run the following commands in the mongo shell:

var shServer = ["sh0.example.net", "sh1.example.net", "sh2.example.net", "sh3.example.net", "sh4.example.net"];
for (var x=97; x<97+26; x++){

for(var y=97; y<97+26; y+=6) {

64

var prefix = String.fromCharCode(x) + String.fromCharCode(y);
db.adminCommand({moveChunk : "myapp.users", find : {email : prefix}, to : shServer[(y-97)/6]})

}
}

See Create Chunks in a Sharded Cluster (page 62) for an introduction to pre-splitting.

New in version 2.2: The moveChunk command has the: _secondaryThrottle parameter. When set to true,
MongoDB ensures that changes to shards as part of chunk migrations replicate to secondaries throughout the migra-
tion operation. For more information, see Change Replication Behavior for Chunk Migration (Secondary Throttle)
(page 55).

Changed in version 2.4: In 2.4, _secondaryThrottle is true by default.

Warning: The moveChunk command may produce the following error message:

The collection's metadata lock is already taken.

This occurs when clients have too many open cursors that access the migrating chunk. You may either wait until
the cursors complete their operations or close the cursors manually.

Merge Chunks in a Sharded Cluster

Overview

The mergeChunks command allows you to collapse empty chunks into neighboring chunks on the same shard. A
chunk is empty if it has no documents associated with its shard key range.

Important: Empty chunks can make the balancer assess the cluster as properly balanced when it is not.

Empty chunks can occur under various circumstances, including:

• If a pre-split (page 62) creates too many chunks, the distribution of data to chunks may be uneven.

• If you delete many documents from a sharded collection, some chunks may no longer contain data.

This tutorial explains how to identify chunks available to merge, and how to merge those chunks with neighboring
chunks.

Procedure

Note: Examples in this procedure use a users collection in the test database, using the username filed as a
shard key.

Identify Chunk Ranges In the mongo shell, identify the chunk ranges with the following operation:

sh.status()

The output of the sh.status() will resemble the following:

65

--- Sharding Status ---
sharding version: {

"_id" : 1,
"version" : 4,
"minCompatibleVersion" : 4,
"currentVersion" : 5,
"clusterId" : ObjectId("5260032c901f6712dcd8f400")

}
shards:

{ "_id" : "shard0000", "host" : "localhost:30000" }
{ "_id" : "shard0001", "host" : "localhost:30001" }

databases:
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "test", "partitioned" : true, "primary" : "shard0001" }

test.users
shard key: { "username" : 1 }
chunks:

shard0000 7
shard0001 7

{ "username" : { "$minKey" : 1 } } -->> { "username" : "user16643" } on : shard0000 Timestamp(2, 0)
{ "username" : "user16643" } -->> { "username" : "user2329" } on : shard0000 Timestamp(3, 0)
{ "username" : "user2329" } -->> { "username" : "user29937" } on : shard0000 Timestamp(4, 0)
{ "username" : "user29937" } -->> { "username" : "user36583" } on : shard0000 Timestamp(5, 0)
{ "username" : "user36583" } -->> { "username" : "user43229" } on : shard0000 Timestamp(6, 0)
{ "username" : "user43229" } -->> { "username" : "user49877" } on : shard0000 Timestamp(7, 0)
{ "username" : "user49877" } -->> { "username" : "user56522" } on : shard0000 Timestamp(8, 0)
{ "username" : "user56522" } -->> { "username" : "user63169" } on : shard0001 Timestamp(8, 1)
{ "username" : "user63169" } -->> { "username" : "user69816" } on : shard0001 Timestamp(1, 8)
{ "username" : "user69816" } -->> { "username" : "user76462" } on : shard0001 Timestamp(1, 9)
{ "username" : "user76462" } -->> { "username" : "user83108" } on : shard0001 Timestamp(1, 10)
{ "username" : "user83108" } -->> { "username" : "user89756" } on : shard0001 Timestamp(1, 11)
{ "username" : "user89756" } -->> { "username" : "user96401" } on : shard0001 Timestamp(1, 12)
{ "username" : "user96401" } -->> { "username" : { "$maxKey" : 1 } } on : shard0001 Timestamp(1, 13)

The chunk ranges appear after the chunk counts for each sharded collection, as in the following excerpts:

Chunk counts:

chunks:
shard0000 7
shard0001 7

Chunk range:

{ "username" : "user36583" } -->> { "username" : "user43229" } on : shard0000 Timestamp(6, 0)

Verify a Chunk is Empty The mergeChunks command requires at least one empty input chunk. In the mongo
shell, check the amount of data in a chunk using an operation that resembles:

db.runCommand({
"dataSize": "test.users",
"keyPattern": { username: 1 },
"min": { "username": "user36583" },
"max": { "username": "user43229" }

})

If the input chunk to dataSize is empty, dataSize produces output similar to:

66

{ "size" : 0, "numObjects" : 0, "millis" : 0, "ok" : 1 }

Merge Chunks Merge two contiguous chunks on the same shard, where at least one of the contains no data, with an
operation that resembles the following:

db.runCommand({ mergeChunks: "test.users",
bounds: [{ "username": "user68982" },

{ "username": "user95197" }]
})

On success, mergeChunks produces the following output:

{ "ok" : 1 }

On any failure condition, mergeChunks returns a document where the value of the ok field is 0.

View Merged Chunks Ranges After merging all empty chunks, confirm the new chunk, as follows:

sh.status()

The output of sh.status() should resemble:

--- Sharding Status ---
sharding version: {

"_id" : 1,
"version" : 4,
"minCompatibleVersion" : 4,
"currentVersion" : 5,
"clusterId" : ObjectId("5260032c901f6712dcd8f400")

}
shards:

{ "_id" : "shard0000", "host" : "localhost:30000" }
{ "_id" : "shard0001", "host" : "localhost:30001" }

databases:
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "test", "partitioned" : true, "primary" : "shard0001" }

test.users
shard key: { "username" : 1 }
chunks:

shard0000 2
shard0001 2

{ "username" : { "$minKey" : 1 } } -->> { "username" : "user16643" } on : shard0000 Timestamp(2, 0)
{ "username" : "user16643" } -->> { "username" : "user56522" } on : shard0000 Timestamp(3, 0)
{ "username" : "user56522" } -->> { "username" : "user96401" } on : shard0001 Timestamp(8, 1)
{ "username" : "user96401" } -->> { "username" : { "$maxKey" : 1 } } on : shard0001 Timestamp(1, 13)

Modify Chunk Size in a Sharded Cluster

When the first mongos connects to a set of config servers, it initializes the sharded cluster with a default chunk size
of 64 megabytes. This default chunk size works well for most deployments; however, if you notice that automatic
migrations have more I/O than your hardware can handle, you may want to reduce the chunk size. For automatic splits
and migrations, a small chunk size leads to more rapid and frequent migrations. The allowed range of the chunk size
is between 1 and 1024 megabytes, inclusive.

To modify the chunk size, use the following procedure:

67

1. Connect to any mongos in the cluster using the mongo shell.

2. Issue the following command to switch to the Config Database (page 78):

use config

3. Issue the following save() operation to store the global chunk size configuration value:

db.settings.save({ _id:"chunksize", value: <sizeInMB> })

Note: The chunkSize and --chunkSize options, passed at runtime to the mongos, do not affect the chunk size
after you have initialized the cluster.

To avoid confusion, always set the chunk size using the above procedure instead of the runtime options.

Modifying the chunk size has several limitations:

• Automatic splitting only occurs on insert or update.

• If you lower the chunk size, it may take time for all chunks to split to the new size.

• Splits cannot be undone.

• If you increase the chunk size, existing chunks grow only through insertion or updates until they reach the new
size.

• The allowed range of the chunk size is between 1 and 1024 megabytes, inclusive.

Clear jumbo Flag

If MongoDB cannot split a chunk that exceeds the specified chunk size (page 29) or contains a number of documents
that exceeds the max, MongoDB labels the chunk as jumbo (page 28).

If the chunk size no longer hits the limits, MongoDB clears the jumbo flag for the chunk when the mongos reloads
or rewrites the chunk metadata.

In cases where you need to clear the flag manually, the following procedures outline the steps to manually clear the
jumbo flag.

Procedures

Divisible Chunks The preferred way to clear the jumbo flag from a chunk is to attempt to split the chunk. If the
chunk is divisible, MongoDB removes the flag upon successful split of the chunk.

Step 1: Connect to mongos. Connect a mongo shell to a mongos.

Step 2: Find the jumbo Chunk. Run sh.status(true) to find the chunk labeled jumbo.

sh.status(true)

For example, the following output from sh.status(true) shows that chunk with shard key range { "x" : 2 }
-->> { "x" : 4 } is jumbo.

--- Sharding Status ---
sharding version: {

...
}

68

shards:
...

databases:
...

test.foo
shard key: { "x" : 1 }

chunks:
shard-b 2
shard-a 2

{ "x" : { "$minKey" : 1 } } -->> { "x" : 1 } on : shard-b Timestamp(2, 0)
{ "x" : 1 } -->> { "x" : 2 } on : shard-a Timestamp(3, 1)
{ "x" : 2 } -->> { "x" : 4 } on : shard-a Timestamp(2, 2) jumbo
{ "x" : 4 } -->> { "x" : { "$maxKey" : 1 } } on : shard-b Timestamp(3, 0)

Step 3: Split the jumbo Chunk. Use either sh.splitAt() or sh.splitFind() to split the jumbo chunk.

sh.splitAt("test.foo", { x: 3 })

MongoDB removes the jumbo flag upon successful split of the chunk.

Indivisible Chunks In some instances, MongoDB cannot split the no-longer jumbo chunk, such as a chunk with
a range of single shard key value, and the preferred method to clear the flag is not applicable. In such cases, you can
clear the flag using the following steps.

Important: Only use this method if the preferred method (page 68) is not applicable.
Before modifying the config database (page 78), always back up the config database.

If you clear the jumbo flag for a chunk that still exceeds the chunk size and/or the document number limit, MongoDB
will re-label the chunk as jumbo when MongoDB tries to move the chunk.

Step 1: Stop the balancer. Disable the cluster balancer process temporarily, following the steps outlined in Disable
the Balancer (page 57).

Step 2: Create a backup of config database. Use mongodump against a config server to create a backup of the
config database. For example:

mongodump --db config --port <config server port> --out <output file>

Step 3: Connect to mongos. Connect a mongo shell to a mongos.

Step 4: Find the jumbo Chunk. Run sh.status(true) to find the chunk labeled jumbo.

sh.status(true)

For example, the following output from sh.status(true) shows that chunk with shard key range { "x" : 2 }
-->> { "x" : 3 } is jumbo.

--- Sharding Status ---
sharding version: {

...
}
shards:

69

...
databases:

...
test.foo

shard key: { "x" : 1 }
chunks:

shard-b 2
shard-a 2

{ "x" : { "$minKey" : 1 } } -->> { "x" : 1 } on : shard-b Timestamp(2, 0)
{ "x" : 1 } -->> { "x" : 2 } on : shard-a Timestamp(3, 1)
{ "x" : 2 } -->> { "x" : 3 } on : shard-a Timestamp(2, 2) jumbo
{ "x" : 3 } -->> { "x" : { "$maxKey" : 1 } } on : shard-b Timestamp(3, 0)

Step 5: Update chunks collection. In the chunks collection of the config database, unset the jumbo flag for
the chunk. For example,

db.getSiblingDB("config").chunks.update(
{ ns: "test.foo", min: { x: 2 }, jumbo: true },
{ $unset: { jumbo: "" } }

)

Step 6: Restart the balancer. Restart the balancer, following the steps in Enable the Balancer (page 58).

Step 7: Optional. Clear current cluster meta information. To ensure that mongos instances update their cluster
information cache, run flushRouterConfig in the admin database.

db.adminCommand({ flushRouterConfig: 1 })

Tag Aware Sharding

MongoDB supports tagging a range of shard key values to associate that range with a shard or group of shards. Those
shards receive all inserts within the tagged range.

The balancer obeys tagged range associations, which enables the following deployment patterns:

• isolate a specific subset of data on a specific set of shards.

• ensure that the most relevant data reside on shards that are geographically closest to the application servers.

This document describes the behavior, operation, and use of tag aware sharding in MongoDB deployments.

Considerations

• Shard key range tags are distinct from replica set member tags.

• Hash-based sharding only supports tag-aware sharding on an entire collection.

• Shard ranges are always inclusive of the lower value and exclusive of the upper boundary.

Behavior and Operations

The balancer migrates chunks of documents in a sharded collection to the shards associated with a tag that has a shard
key range with an upper bound greater than the chunk’s lower bound.

70

During balancing rounds, if the balancer detects that any chunks violate configured tags, the balancer migrates those
chunks to shards associated with those tags.

After configuring a tag with a shard key range and associating it with a shard or shards, the cluster may take some time
to balance the data among the shards. This depends on the division of chunks and the current distribution of data in
the cluster.

Once configured, the balancer respects tag ranges during future balancing rounds (page 25).

See also:

Manage Shard Tags (page 71)

Manage Shard Tags

In a sharded cluster, you can use tags to associate specific ranges of a shard key with a specific shard or subset of
shards.

Tag a Shard

Associate tags with a particular shard using the sh.addShardTag() method when connected to a mongos in-
stance. A single shard may have multiple tags, and multiple shards may also have the same tag.

Example
The following example adds the tag NYC to two shards, and the tags SFO and NRT to a third shard:

sh.addShardTag("shard0000", "NYC")
sh.addShardTag("shard0001", "NYC")
sh.addShardTag("shard0002", "SFO")
sh.addShardTag("shard0002", "NRT")

You may remove tags from a particular shard using the sh.removeShardTag() method when connected to a
mongos instance, as in the following example, which removes the NRT tag from a shard:

sh.removeShardTag("shard0002", "NRT")

Tag a Shard Key Range

To assign a tag to a range of shard keys use the sh.addTagRange()method when connected to a mongos instance.
Any given shard key range may only have one assigned tag. You cannot overlap defined ranges, or tag the same range
more than once.

Example
Given a collection named users in the records database, sharded by the zipcode field. The following operations
assign:

• two ranges of zip codes in Manhattan and Brooklyn the NYC tag

• one range of zip codes in San Francisco the SFO tag

sh.addTagRange("records.users", { zipcode: "10001" }, { zipcode: "10281" }, "NYC")
sh.addTagRange("records.users", { zipcode: "11201" }, { zipcode: "11240" }, "NYC")
sh.addTagRange("records.users", { zipcode: "94102" }, { zipcode: "94135" }, "SFO")

71

Note: Shard ranges are always inclusive of the lower value and exclusive of the upper boundary.

Remove a Tag From a Shard Key Range

The mongod does not provide a helper for removing a tag range. You may delete tag assignment from a shard key
range by removing the corresponding document from the tags (page 83) collection of the config database.

Each document in the tags (page 83) holds the namespace of the sharded collection and a minimum shard key value.

Example
The following example removes the NYC tag assignment for the range of zip codes within Manhattan:

use config
db.tags.remove({ _id: { ns: "records.users", min: { zipcode: "10001" }}, tag: "NYC" })

View Existing Shard Tags

The output from sh.status() lists tags associated with a shard, if any, for each shard. A shard’s tags exist in the
shard’s document in the shards (page 82) collection of the config database. To return all shards with a specific
tag, use a sequence of operations that resemble the following, which will return only those shards tagged with NYC:

use config
db.shards.find({ tags: "NYC" })

You can find tag ranges for all namespaces in the tags (page 83) collection of the config database. The output of
sh.status() displays all tag ranges. To return all shard key ranges tagged with NYC, use the following sequence
of operations:

use config
db.tags.find({ tags: "NYC" })

Enforce Unique Keys for Sharded Collections

Overview

The unique constraint on indexes ensures that only one document can have a value for a field in a collection. For
sharded collections these unique indexes cannot enforce uniqueness because insert and indexing operations are local
to each shard.

MongoDB does not support creating new unique indexes in sharded collections and will not allow you to shard col-
lections with unique indexes on fields other than the _id field.

If you need to ensure that a field is always unique in a sharded collection, there are three options:

1. Enforce uniqueness of the shard key (page 16).

MongoDB can enforce uniqueness for the shard key. For compound shard keys, MongoDB will enforce unique-
ness on the entire key combination, and not for a specific component of the shard key.

You cannot specify a unique constraint on a hashed index.

72

2. Use a secondary collection to enforce uniqueness.

Create a minimal collection that only contains the unique field and a reference to a document in the main
collection. If you always insert into a secondary collection before inserting to the main collection, MongoDB
will produce an error if you attempt to use a duplicate key.

If you have a small data set, you may not need to shard this collection and you can create multiple unique
indexes. Otherwise you can shard on a single unique key.

3. Use guaranteed unique identifiers.

Universally unique identifiers (i.e. UUID) like the ObjectId are guaranteed to be unique.

Procedures

Unique Constraints on the Shard Key

Process To shard a collection using the unique constraint, specify the shardCollection command in the
following form:

db.runCommand({ shardCollection : "test.users" , key : { email : 1 } , unique : true });

Remember that the _id field index is always unique. By default, MongoDB inserts an ObjectId into the _id field.
However, you can manually insert your own value into the _id field and use this as the shard key. To use the _id
field as the shard key, use the following operation:

db.runCommand({ shardCollection : "test.users" })

Limitations

• You can only enforce uniqueness on one single field in the collection using this method.

• If you use a compound shard key, you can only enforce uniqueness on the combination of component keys in
the shard key.

In most cases, the best shard keys are compound keys that include elements that permit write scaling (page 17) and
query isolation (page 17), as well as high cardinality (page 36). These ideal shard keys are not often the same keys
that require uniqueness and enforcing unique values in these collections requires a different approach.

Unique Constraints on Arbitrary Fields If you cannot use a unique field as the shard key or if you need to enforce
uniqueness over multiple fields, you must create another collection to act as a “proxy collection”. This collection must
contain both a reference to the original document (i.e. its ObjectId) and the unique key.

If you must shard this “proxy” collection, then shard on the unique key using the above procedure (page 73); otherwise,
you can simply create multiple unique indexes on the collection.

Process Consider the following for the “proxy collection:”

{
"_id" : ObjectId("...")
"email" ": "..."

}

The _id field holds the ObjectId of the document it reflects, and the email field is the field on which you want to
ensure uniqueness.

To shard this collection, use the following operation using the email field as the shard key:

73

db.runCommand({ shardCollection : "records.proxy" ,
key : { email : 1 } ,
unique : true });

If you do not need to shard the proxy collection, use the following command to create a unique index on the email
field:

db.proxy.createIndex({ "email" : 1 }, { unique : true })

You may create multiple unique indexes on this collection if you do not plan to shard the proxy collection.

To insert documents, use the following procedure in the JavaScript shell:

db = db.getSiblingDB('records');

var primary_id = ObjectId();

db.proxy.insert({
"_id" : primary_id
"email" : "example@example.net"

})

// if: the above operation returns successfully,

// then continue:

db.information.insert({
"_id" : primary_id
"email": "example@example.net"
// additional information...

})

You must insert a document into the proxy collection first. If this operation succeeds, the email field is unique, and
you may continue by inserting the actual document into the information collection.

See
The full documentation of: createIndex() and shardCollection.

Considerations

• Your application must catch errors when inserting documents into the “proxy” collection and must enforce
consistency between the two collections.

• If the proxy collection requires sharding, you must shard on the single field on which you want to enforce
uniqueness.

• To enforce uniqueness on more than one field using sharded proxy collections, you must have one proxy col-
lection for every field for which to enforce uniqueness. If you create multiple unique indexes on a single proxy
collection, you will not be able to shard proxy collections.

Use Guaranteed Unique Identifier The best way to ensure a field has unique values is to generate universally
unique identifiers (UUID,) such as MongoDB’s ‘ObjectId values.

This approach is particularly useful for the‘‘_id‘‘ field, which must be unique: for collections where you are not
sharding by the _id field the application is responsible for ensuring that the _id field is unique.

74

Shard GridFS Data Store

When sharding a GridFS store, consider the following:

files Collection

Most deployments will not need to shard the files collection. The files collection is typically small, and only
contains metadata. None of the required keys for GridFS lend themselves to an even distribution in a sharded situation.
If you must shard the files collection, use the _id field possibly in combination with an application field.

Leaving files unsharded means that all the file metadata documents live on one shard. For production GridFS stores
you must store the files collection on a replica set.

chunks Collection

To shard the chunks collection by { files_id : 1 , n : 1 }, issue commands similar to the following:

db.fs.chunks.createIndex({ files_id : 1 , n : 1 })

db.runCommand({ shardCollection : "test.fs.chunks" , key : { files_id : 1 , n : 1 } })

You may also want to shard using just the file_id field, as in the following operation:

db.runCommand({ shardCollection : "test.fs.chunks" , key : { files_id : 1 } })

Important: { files_id : 1 , n : 1 } and { files_id : 1 } are the only supported shard keys
for the chunks collection of a GridFS store.

Note: Changed in version 2.2.
Before 2.2, you had to create an additional index on files_id to shard using only this field.

The default files_id value is an ObjectId, as a result the values of files_id are always ascending, and applica-
tions will insert all new GridFS data to a single chunk and shard. If your write load is too high for a single server to
handle, consider a different shard key or use a different value for _id in the files collection.

3.4 Troubleshoot Sharded Clusters

This section describes common strategies for troubleshooting sharded cluster deployments.

Config Database String Error

Start all mongos instances in a sharded cluster with an identical configDB string. If a mongos instance tries
to connect to the sharded cluster with a configDB string that does not exactly match the string used by the other
mongos instances, including the order of the hosts, the following errors occur:

could not initialize sharding on connection

And:

mongos specified a different config database string

To solve the issue, restart the mongos with the correct string.

75

Cursor Fails Because of Stale Config Data

A query returns the following warning when one or more of the mongos instances has not yet updated its cache of
the cluster’s metadata from the config database:

could not initialize cursor across all shards because : stale config detected

This warning should not propagate back to your application. The warning will repeat until all the mongos instances
refresh their caches. To force an instance to refresh its cache, run the flushRouterConfig command.

Avoid Downtime when Moving Config Servers

Use CNAMEs to identify your config servers to the cluster so that you can rename and renumber your config servers
without downtime.

76

4 Sharding Reference

4.1 Sharding Methods in the mongo Shell

Name Description

sh._adminCommand Runs a database command against the admin database, like db.runCommand(), but
can confirm that it is issued against a mongos.

sh._checkFullName()Tests a namespace to determine if its well formed.
sh._checkMongos()Tests to see if the mongo shell is connected to a mongos instance.
sh._lastMigration()Reports on the last chunk migration.
sh.addShard() Adds a shard to a sharded cluster.
sh.addShardTag() Associates a shard with a tag, to support tag aware sharding (page 70).
sh.addTagRange() Associates range of shard keys with a shard tag, to support tag aware sharding

(page 70).
sh.disableBalancing()Disable balancing on a single collection in a sharded database. Does not affect

balancing of other collections in a sharded cluster.
sh.enableBalancing()Activates the sharded collection balancer process if previously disabled using

sh.disableBalancing().
sh.enableSharding()Enables sharding on a specific database.
sh.getBalancerHost()Returns the name of a mongos that’s responsible for the balancer process.
sh.getBalancerState()Returns a boolean to report if the balancer is currently enabled.
sh.help() Returns help text for the sh methods.
sh.isBalancerRunning()Returns a boolean to report if the balancer process is currently migrating chunks.
sh.moveChunk() Migrates a chunk in a sharded cluster.
sh.removeShardTag()Removes the association between a shard and a shard tag.
sh.removeTagRange()Removes an association between a range shard keys and a shard tag. Use to manage tag

aware sharding (page 70).
sh.setBalancerState()Enables or disables the balancer which migrates chunks between shards.
sh.shardCollection()Enables sharding for a collection.
sh.splitAt() Divides an existing chunk into two chunks using a specific value of the shard key as the

dividing point.
sh.splitFind() Divides an existing chunk that contains a document matching a query into two

approximately equal chunks.
sh.startBalancer()Enables the balancer and waits for balancing to start.
sh.status() Reports on the status of a sharded cluster, as db.printShardingStatus().
sh.stopBalancer()Disables the balancer and waits for any in progress balancing rounds to complete.
sh.waitForBalancer()Internal. Waits for the balancer state to change.
sh.waitForBalancerOff()Internal. Waits until the balancer stops running.
sh.waitForDLock() Internal. Waits for a specified distributed sharded cluster lock.
sh.waitForPingChange()Internal. Waits for a change in ping state from one of the mongos in the sharded cluster.

4.2 Sharding Database Commands

The following database commands support sharded clusters.

77

Name Description

addShard Adds a shard to a sharded cluster.
checkShardingIndexInternal command that validates index on shard key.
cleanupOrphaned Removes orphaned data with shard key values outside of the ranges of the chunks

owned by a shard.
enableSharding Enables sharding on a specific database.
flushRouterConfig Forces an update to the cluster metadata cached by a mongos.
getShardMap Internal command that reports on the state of a sharded cluster.
getShardVersion Internal command that returns the config server version.
isdbgrid Verifies that a process is a mongos.
listShards Returns a list of configured shards.
medianKey Deprecated internal command. See splitVector.
mergeChunks Provides the ability to combine chunks on a single shard.
moveChunk Internal command that migrates chunks between shards.
movePrimary Reassigns the primary shard when removing a shard from a sharded cluster.
removeShard Starts the process of removing a shard from a sharded cluster.
setShardVersion Internal command to sets the config server version.
shardCollection Enables the sharding functionality for a collection, allowing the collection to be

sharded.
shardingState Reports whether the mongod is a member of a sharded cluster.
splitChunk Internal command to split chunk. Instead use the methods sh.splitFind() and

sh.splitAt().
splitVector Internal command that determines split points.
split Creates a new chunk.
unsetSharding Internal command that affects connections between instances in a MongoDB

deployment.

4.3 Reference Documentation

Config Database (page 78) Complete documentation of the content of the local database that MongoDB uses to
store sharded cluster metadata.

Config Database

The config database supports sharded cluster operation. See the Sharding (page 2) section of this manual for full
documentation of sharded clusters.

Important: Consider the schema of the config database internal and may change between releases of MongoDB.
The config database is not a dependable API, and users should not write data to the config database in the course
of normal operation or maintenance.

Warning: Modification of the config database on a functioning system may lead to instability or inconsistent
data sets. If you must modify the config database, use mongodump to create a full backup of the config
database.

To access the config database, connect to a mongos instance in a sharded cluster, and use the following helper:

use config

You can return a list of the collections, with the following helper:

show collections

78

Collections

config

config.changelog

Internal MongoDB Metadata
The config (page 79) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The changelog (page 79) collection stores a document for each change to the metadata of a sharded collection.

Example
The following example displays a single record of a chunk split from a changelog (page 79) collection:

{
"_id" : "<hostname>-<timestamp>-<increment>",
"server" : "<hostname><:port>",
"clientAddr" : "127.0.0.1:63381",
"time" : ISODate("2012-12-11T14:09:21.039Z"),
"what" : "split",
"ns" : "<database>.<collection>",
"details" : {

"before" : {
"min" : {

"<database>" : { $minKey : 1 }
},
"max" : {

"<database>" : { $maxKey : 1 }
},
"lastmod" : Timestamp(1000, 0),
"lastmodEpoch" : ObjectId("000000000000000000000000")

},
"left" : {

"min" : {
"<database>" : { $minKey : 1 }

},
"max" : {

"<database>" : "<value>"
},
"lastmod" : Timestamp(1000, 1),
"lastmodEpoch" : ObjectId(<...>)

},
"right" : {

"min" : {
"<database>" : "<value>"

},
"max" : {

"<database>" : { $maxKey : 1 }
},
"lastmod" : Timestamp(1000, 2),
"lastmodEpoch" : ObjectId("<...>")

}
}
}

79

Each document in the changelog (page 79) collection contains the following fields:

config.changelog._id
The value of changelog._id is: <hostname>-<timestamp>-<increment>.

config.changelog.server
The hostname of the server that holds this data.

config.changelog.clientAddr
A string that holds the address of the client, a mongos instance that initiates this change.

config.changelog.time
A ISODate timestamp that reflects when the change occurred.

config.changelog.what
Reflects the type of change recorded. Possible values are:

•dropCollection

•dropCollection.start

•dropDatabase

•dropDatabase.start

•moveChunk.start

•moveChunk.commit

•split

•multi-split

config.changelog.ns
Namespace where the change occurred.

config.changelog.details
A document that contains additional details regarding the change. The structure of the details (page 80)
document depends on the type of change.

config.chunks

Internal MongoDB Metadata
The config (page 79) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The chunks (page 80) collection stores a document for each chunk in the cluster. Consider the following
example of a document for a chunk named records.pets-animal_\"cat\":

{
"_id" : "mydb.foo-a_\"cat\"",
"lastmod" : Timestamp(1000, 3),
"lastmodEpoch" : ObjectId("5078407bd58b175c5c225fdc"),
"ns" : "mydb.foo",
"min" : {

"animal" : "cat"
},
"max" : {

"animal" : "dog"
},
"shard" : "shard0004"

}

80

These documents store the range of values for the shard key that describe the chunk in the min and max fields.
Additionally the shard field identifies the shard in the cluster that “owns” the chunk.

config.collections

Internal MongoDB Metadata
The config (page 79) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The collections (page 81) collection stores a document for each sharded collection in the cluster. Given
a collection named pets in the records database, a document in the collections (page 81) collection
would resemble the following:

{
"_id" : "records.pets",
"lastmod" : ISODate("1970-01-16T15:00:58.107Z"),
"dropped" : false,
"key" : {

"a" : 1
},
"unique" : false,
"lastmodEpoch" : ObjectId("5078407bd58b175c5c225fdc")

}

config.databases

Internal MongoDB Metadata
The config (page 79) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The databases (page 81) collection stores a document for each database in the cluster, and tracks if the
database has sharding enabled. databases (page 81) represents each database in a distinct document. When
a databases have sharding enabled, the primary field holds the name of the primary shard.

{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "mydb", "partitioned" : true, "primary" : "shard0000" }

config.lockpings

Internal MongoDB Metadata
The config (page 79) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The lockpings (page 81) collection keeps track of the active components in the sharded cluster. Given
a cluster with a mongos running on example.com:30000, the document in the lockpings (page 81)
collection would resemble:

{ "_id" : "example.com:30000:1350047994:16807", "ping" : ISODate("2012-10-12T18:32:54.892Z") }

config.locks

81

Internal MongoDB Metadata
The config (page 79) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The locks (page 81) collection stores a distributed lock. This ensures that only one mongos instance can
perform administrative tasks on the cluster at once. The mongos acting as balancer takes a lock by inserting a
document resembling the following into the locks collection.

{
"_id" : "balancer",
"process" : "example.net:40000:1350402818:16807",
"state" : 2,
"ts" : ObjectId("507daeedf40e1879df62e5f3"),
"when" : ISODate("2012-10-16T19:01:01.593Z"),
"who" : "example.net:40000:1350402818:16807:Balancer:282475249",
"why" : "doing balance round"

}

If a mongos holds the balancer lock, the state field has a value of 2, which means that balancer is active.
The when field indicates when the balancer began the current operation.

Changed in version 2.0: The value of the state field was 1 before MongoDB 2.0.

config.mongos

Internal MongoDB Metadata
The config (page 79) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The mongos (page 82) collection stores a document for each mongos instance affiliated with the cluster.
mongos instances send pings to all members of the cluster every 30 seconds so the cluster can verify that the
mongos is active. The ping field shows the time of the last ping, while the up field reports the uptime of the
mongos as of the last ping. The cluster maintains this collection for reporting purposes.

The following document shows the status of the mongos running on example.com:30000.

{ "_id" : "example.com:30000", "ping" : ISODate("2012-10-12T17:08:13.538Z"), "up" : 13699, "waiting" : true }

config.settings

Internal MongoDB Metadata
The config (page 79) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The settings (page 82) collection holds the following sharding configuration settings:

•Chunk size. To change chunk size, see Modify Chunk Size in a Sharded Cluster (page 67).

•Balancer status. To change status, see Disable the Balancer (page 57).

The following is an example settings collection:

{ "_id" : "chunksize", "value" : 64 }
{ "_id" : "balancer", "stopped" : false }

82

config.shards

Internal MongoDB Metadata
The config (page 79) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The shards (page 82) collection represents each shard in the cluster in a separate document. If the shard is
a replica set, the host field displays the name of the replica set, then a slash, then the hostname, as in the
following example:

{ "_id" : "shard0000", "host" : "shard1/localhost:30000" }

If the shard has tags (page 70) assigned, this document has a tags field, that holds an array of the tags, as in
the following example:

{ "_id" : "shard0001", "host" : "localhost:30001", "tags": ["NYC"] }

config.tags

Internal MongoDB Metadata
The config (page 79) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The tags (page 83) collection holds documents for each tagged shard key range in the cluster. The documents
in the tags (page 83) collection resemble the following:

{
"_id" : { "ns" : "records.users", "min" : { "zipcode" : "10001" } },
"ns" : "records.users",
"min" : { "zipcode" : "10001" },
"max" : { "zipcode" : "10281" },
"tag" : "NYC"

}

config.version

Internal MongoDB Metadata
The config (page 79) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The version (page 83) collection holds the current metadata version number. This collection contains only
one document:

To access the version (page 83) collection you must use the db.getCollection()method. For example,
to display the collection’s document:

mongos> db.getCollection("version").find()
{ "_id" : 1, "version" : 3 }

83

	Sharding Introduction
	Purpose of Sharding
	Sharding in MongoDB
	Data Partitioning
	Shard Keys
	Range Based Sharding
	Hash Based Sharding
	Performance Distinctions between Range and Hash Based Partitioning
	Customized Data Distribution with Tag Aware Sharding

	Maintaining a Balanced Data Distribution
	Splitting
	Balancing
	Adding and Removing Shards from the Cluster

	Additional Resources

	Sharding Concepts
	Sharded Cluster Components
	Shards
	Config Servers

	Sharded Cluster Architectures
	Sharded Cluster Requirements
	Production Cluster Architecture
	Sharded Cluster Test Architecture

	Sharded Cluster Behavior
	Shard Keys
	Sharded Cluster High Availability
	Sharded Cluster Query Routing

	Sharding Mechanics
	Sharded Collection Balancing
	Chunk Migration Across Shards
	Chunk Splits in a Sharded Cluster
	Shard Key Indexes
	Sharded Cluster Metadata

	Sharded Cluster Tutorials
	Sharded Cluster Deployment Tutorials
	Deploy a Sharded Cluster
	Considerations for Selecting Shard Keys
	Shard a Collection Using a Hashed Shard Key
	Add Shards to a Cluster
	Deploy Three Config Servers for Production Deployments
	Convert a Replica Set to a Replicated Sharded Cluster
	Convert Sharded Cluster to Replica Set

	Sharded Cluster Maintenance Tutorials
	View Cluster Configuration
	Migrate Config Servers with the Same Hostname
	Migrate Config Servers with Different Hostnames
	Replace Disabled Config Server
	Migrate a Sharded Cluster to Different Hardware
	Backup Cluster Metadata
	Configure Behavior of Balancer Process in Sharded Clusters
	Manage Sharded Cluster Balancer
	Remove Shards from an Existing Sharded Cluster

	Sharded Cluster Data Management
	Create Chunks in a Sharded Cluster
	Split Chunks in a Sharded Cluster
	Migrate Chunks in a Sharded Cluster
	Merge Chunks in a Sharded Cluster
	Modify Chunk Size in a Sharded Cluster
	Clear jumbo Flag
	Tag Aware Sharding
	Manage Shard Tags
	Enforce Unique Keys for Sharded Collections
	Shard GridFS Data Store

	Troubleshoot Sharded Clusters
	Config Database String Error
	Cursor Fails Because of Stale Config Data
	Avoid Downtime when Moving Config Servers

	Sharding Reference
	Sharding Methods in the mongo Shell
	Sharding Database Commands
	Reference Documentation
	Config Database

