Designing Experiments

Overview of data management & exploitation solutions

Genoveva Vargas-Solar French Council of Scientific Research, LIG genoveva.vargas@imag.fr

http://vargas-solar.com/data-centric-smart-everything/

Democratized access to open data collections & algorithms released under different conditions & qualities

Microsoft Research Open Data

Social Data Science	Network Science	Digital humanities	Computational Science
Computat (Algorithm: mathem	ion atical model)	Expe (Architecture: c	riment setting computing environment)
Volum Velocity	ne Dialectica 1000 Yottabytes 1000 Brontobytes	Variety 1 Brontobyte 1 Geopbyte	y Value Veracity

QUERYING APPROACHES

	Databases ¦ information retrieval		Data Science
Query Types	Relational, multi-dimensional, spatio-temporal, aggregationPatterns, regular expressions	 (Dis)conjunctive Navigational	 Exploratory Analytics: modelling & predicting
Execution model	On demand/continuous	On demand	Step by step
Results properties	- Completeness (full/partial) - Fussiness	Approximation Precision/recall I Probabilistic	Approximation with some error degree Data, queries, samples
Dataset content	Intention model	Extension model	Extension (raw)
	Data structure table, key-value, tuple,	Quantitative representation Frequency matrix, Statistical profiling	csv, XML, JSON, BLOB,
	document, graph	Semantic representation Ontology, Terms graph	4

EXPLORATORY QUERYING

	Data Science
Query Types	ExploratoryAnalytics: modelling& predicting
Execution model	Step by step
Results properties	Approximation with some error degree Data, queries, samples
content	Extension (raw)
	csv, XML, JSON, BLOB, Data structure table, key-value, tuple, document, graph

- Methodologies weaving data management, greedy algorithms

- Programming models that must be tuned to be deployed in different target architectures

Data collections as backbone for conducting experiments, drive hypothesis and lead to "valid" conclusions, models, simulations, understanding

Diogenes approach

- Data: observations of phenomena often described as series of features/attributes
- Query: analytics objective (looks for insights or foresights) expressed as a pipeline of operations guided by the conditions and characteristics of the data
- **Result**: a model or prediction with associated assessment indexes, not definitive accepted with an associated error margin, accepted by comparison

6

DATA PROCESSING AND ANALYSIS

CONTEXT: URBAN DATA

"Does it make sense to invest in low-carbon technologies?"

SPATIO – TEMPORAL SERIES

Inhouse observed variables

- Electric consumption
- Indoor temperature
- Indoor humidity

Meteorological variables

- Total precipitation
- Total cloud cover
- Shortwave radiation
- Wind direction
- Snowfall amountSunshine duration
- Wind speed
- Heterogeneous masses of data, often spatio-temporal and produced as streams (i.e., spatio-temporal series),
- Backbone of analytical and prediction processes

- Gas consumption
- Outdoor temperature
- Outdoor humidity

COMPLEX AND REPETITIVE PROCESSING & ANALYSIS TASKS

Example: 📿

Will jogging in the morning around the river next weekend reduce breathing $\rm CO_2$?

"Does it make sense to invest in low-carbon technologies?"

- **Exploration & preparation**: Identify which variables impact my household CO₂ footprint
- Analysis: Predict whether investing in low-carbon technologies will decrease my CO₂ footprint
- Assessment: Identify which prediction model is better for my household energy consumption pattern

Artisanal design

depending on data scientist/engineers "*expertise*" 2

In-house programming using many different libraries, stacks, tools difficult to integrate

CHALLENGES

Efficient execution on distributed architectures requiring **important engineering effort**

Tuning for improving **data management** across nodes hosting software components and libraries

MACHINE LEARNING STUDIOS

DS Tools

1

CLOUD ML STUDIOS

	Amazon	Microsoft	Google	IBM
Automated and semi-automated ML services				
	AmazonML	MS AzureML Studio	Cloud AutoML	IBM Watson Model Builder
Classification	\checkmark	\checkmark	\checkmark	\checkmark
Regression	\checkmark	\checkmark	\checkmark	\checkmark
Clustering	\checkmark	\checkmark	*	*
Anomaly detection	*	✓	*	*
Recommendation	*	✓	\checkmark	*
Ranking	*	\checkmark	*	*
Platforms for custom modelling				
	Amazon SageMaker	Azure ML Services	Google ML Engine	IBM WatsonM Studio
Built-in algorithms	\checkmark	*	\checkmark	\checkmark
Supported Frameworks	Tensorflow, MXNet, Keras, Gluon, Pytorch, Caffe2, Chainer, Torch	Tensorflow, Scikit- Learn, MS Cognitive Toolkit, SparkML	Tensorflow, Scikit- Learn, XGBoost, Keras	Tensorfoow, SparkMLib, Scikit- Leam, XGBoost, PyTorch, IBM SPSS, PMML

PREPARING DATA

DATA MODELS

Tuple

• Row in a relational table, where attributes are pre-defined in a schema, and the values are scalar

Document

- Allows values to be nested documents or lists, as well as scalar values.
- Attributes are not defined in a global schema

Extensible record

Hybrid between tuple and document, where families of attributes are defined in a schema, but new attributes can be added on a per-record basis

DATA STORES

Key-value

• Systems that store values and an index to find them, based on a key

Document

• Systems that store documents, providing index and simple query mechanisms

Extensible record

• Systems that store extensible records that can be partitioned vertically and horizontally across nodes

Graph

Systems that store model data as graphs where nodes can represent content modelled as document or key-value structures and arcs represent a relation between the data modelled by the node

Relational

Systems that store, index and query tuples

KEY STORE VALUES

"Simplest data stores" use a data model similar to the memcached distributed inmemory cache

Single key-value index for all data

Provide a persistence mechanism

Replication, versioning, locking, transactions, sorting

API: inserts, deletes, index lookups

No secondary indices or keys

System	Address
Redis	code.google.com/p/redis
Scalaris	<pre>code.google.com/p/scalaris</pre>
Tokyo	tokyocabinet.sourceforge.net
Voldemort	project-voldemort.com
Riak	riak.basho.com
Membrain	<pre>schoonerinfotech.com/products</pre>
Membase	membase.com

DOCUMENT STORES

Support more complex data: pointerless objects, i.e., documents

Secondary indexes, multiple types of documents (objects) per database, nested documents and lists, e.g. B-trees

Automatic sharding (scale writes), no explicit locks, weaker concurrency (eventual for scaling reads) and atomicity properties

API: select, delete, getAttributes, putAttributes on documents

Queries can be distributed in parallel over multiple nodes using a map-reduce mechanism

System	Address
SimpleDB	amazon.com/simpledb
Couch DB	couchdb.apache.org
Mongo DB	mongodb.org
Terrastore	code.google.com/terrastore

EXTENSIBLE RECORD STORES

Basic data model is rows and columns

Basic scalability model is splitting rows and columns over multiple nodes

- Rows split across nodes through sharding on the primary key
 - Split by range rather than hash function
 - Rows analogous to documents: variable number of attributes, attribute names must be unique
 - Grouped into collections (tables)
 - Queries on ranges of values do not go to every node

Columns are distributed over multiple nodes using "column groups"

- Which columns are best stored together
- Column groups must be pre-defined with the extensible record stores

System	Address
HBase	hbase.apache.com
HyperTable	hypertable.org
Cassandra	incubator.apache.org/cassandra

SCALABLE RELATIONAL SYSTEMS

SQL: rich declarative query language

Databases reinforce referential integrity

ACID semantics

Well understood operations:

Configuration, Care and feeding, Backups, Tuning, Failure and recovery, Performance characteristics

Use small-scope operations

Challenge: joins that do not scale with sharding

Use small-scope transactions

•ACID transactions inefficient with communication and 2PC overhead

Shared nothing architecture for scalability

Avoid cross-node operations

System	Address
MySQL C	mysql.com/cluster
Volt DB	voltdb.com
Clustrix	clustrix.com
ScaleDB	scaledb.com
Scale Base	scalebase.com
Nimbus DB	nimbusdb.com

1970 - 2000 RELATIONAL DB

More than 30 years: maturity!

	K X J
Theoretical & Practical aspects (DBMS)	$\mathbf{R} \cup \mathbf{S}$
Domains & R \subseteq D ₁ x D ₂ x D _n , Algebra \rightarrow	P_S
1st Order Predicate Logic	K - 3
Languages: SQL (wins), QUEL, QBE	R [α]
DBMS Prototypes (1975), Products (1980)	R :φ
A major improvement in DB: provide data independence & a simple, tabular view of data	
Normal Forms & Dependencies (DB design, consistency)	R * S
Controversial: missing values, duplicates	

EXAMPLE

MODELING DATA COLLECTIONS

relational case

EXPERIMENT DESIGN

Diogenes approach

PREPARING DATA

Obtaining the data: Read from a file or obtained by scraping the web

Parsing the data: Format the data which can be in plain text, fixed columns, CSV, XML, HTML, etc.

Cleaning the data: A simple strategy is to remove or ignore incomplete records

Building data structures: A data structure that lends itself to the analysis we are interested in. Databases provide a mapping from keys to values, so they serve as dictionaries

ANALYSING INCOME ACCORDING TO GENDER

Financial parameters related to the US population*

- Features: Age, sex, marital, country, income, education, occupation, capital gain, etc.
- Question: Are men more likely to become high-income professionals than women, i.e., to receive an income of over \$50,000 per year?
- Preparing data collections
- Read and check the data
- Represent the data, for instance using a tabular data structure with features (columns) and records (rows)
- Group the data

* UCI's Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/Adult

EXPLORATORY DATA ANALYSIS

Measurements and categories represent a sample distribution of a variable:

- which approximately represents the population distribution of the variable
- to make tentative assumptions about the population distribution

Different *techniques*:

- Summarizing the data
- Data distributions
- Outlier treatment
- Kernel density

https://www.kaggle.com/robikscube/hourly-energy-consumption

UNDERSTANDING ENERGY CONSUMPTION IN THE PHILIPPINES

https://www.kaggle.com/ljvmiranda/philippines-energy-use

- 1. What percentage of the population has access to electricty?
 - Access to electricity over time
 - Comparison to South-East Asian (SEA) countries
- 2. What constitutes my country's energy mix?
 - Energy Mix in the Philippines
 - Comparison to South-East Asian (SEA) countries
 - Fossil-Fuel use
 - Renewable Energy Adoption
- 3. How are we consuming our energy?
 - Electric Power Consumption over time
 - Consumption footprint

