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The study of  network representations of  physical, biological, and social 
phenomena leading to predictive models of  these phenomena



NETWORK SCIENCE FIELDS

The field draws on theories and methods including
graph theory from mathematics
 statistical mechanics from physics
data mining and information visualization from computer science
 inferential modelling from statistics
social structure from sociology
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THE FATE OF SADDAM AND NETWORK SCIENCE



THE FAITH OF SADDAMM HUSSEIN AND NETWORK 
SCIENCE

The capture of Saddam Hussein:
 Shows the strong predictive power of networks
Underlies the need to obtain accurate maps of the networks; and the often 
heroic difficulties we encounter during the mapping process.
 demonstrates the remarkable stability of these networks:  
 the capture of Hussein was not based on fresh intelligence, but rather on his pre-invasion social links, 

unearthed from old photos stacked in his family album.

 Shows that the choice of network we focus on makes a huge difference: 
 the hierarchical tree, that captured the official organization of the Iraqi government, was of no use 

when it came to Saddam Hussein's whereabouts
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Behind each complex system there is a network, that defines 
the interactions between the component



Behind each system studied in complexity there is an intricate wiring diagram, 
or a network, that defines the interactions between the component

We will never understand complex system unless we map out and 
understand the networks behind them

THE ROLE OF NETWORKS



• Graph theory: 1735, Euler

• Social Network Research:  1930s, Moreno

• Communication networks/internet: 1960s

• Ecological Networks: May, 1979

THE HISTORY OF NETWORK ANALYSIS



Interdisciplinary

Quantitative and Mathematical 

Computational

Empirical, data driven

CHARACTERISTICS OF NETWORK SCIENCE
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Reduces 
Inflammation
Fever
Pain

Prevents
Heart attack
Stroke

Causes
Bleeding
Ulcer

Reduces the risk of 
Alzheimer's Disease

COX2

Reduces the risk of 
breast cancer
ovarian cancers
colorectal cancer

DRUG DESIGN, METABOLIC ENGINEERING



DRUG DESIGN, METABOLIC ENGINEERING



HUMAN DISEASE NETWORK



http://www.slate.com/id/2245232

FIGHTING TERRORISM AND MILITARY



http://www.ns-cta.org/ns-cta-blog/

FIGHTING TERRORISM AND MILITARY
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Network Science: Introduction

PREDICTING THE H1N1 PANDEMIA



Real Projected

PREDICTING THE H1N1 PANDEMIA



In September 2010 the National Institutes of Health
awarded $40 million to researchers at Harvard,
Washington University in St. Louis, the University of
Minnesota and UCLA, to develop the technologies that
could systematically map out brain circuits

The Human Connectome Project (HCP) with the
ambitious goal to construct a map of the complete
structural and functional neural connections in vivo
within and across individuals

http://www.humanconnectomeproject.org/overview/

BRAIN RESEARCH



• If you were to understand the spread of diseases, can you do 
it without networks?

• If you were to understand the WWW structure, searchability, 
etc, hopeless without invoking the Web’s topology

• If you want to understand human diseases, it is hopeless 
without considering the wiring diagram of the cell

NETWORKS REALLY MATTER



Networks and graphs



§ components: nodes, vertices N

§ interactions:  links, edges L

§ system:  network, graph (N,L)

COMPONENTS OF A COMPLEX SYSTEM



network often refers to real systems
www, social network, metabolic network
Language: (Network, node, link)

graph: mathematical representation of a network
web graph, social graph (a Facebook term)
Language: (Graph, vertex, edge)

We will try to make this distinction whenever it is appropriate, but in most cases we will use the two 
terms interchangeably

NETWORKS OR GRAPHS?



N=4
L=4

A COMMON LANGUAGE



• The choice of the proper network representation determines our 
ability to use network theory successfully

• In some cases there is 
• a unique, unambiguous representation
• the representation is by no means unique
• for example, the way we assign the links between a group of 

individuals will determine the nature of the question we can 
study

CHOOSING A PROPER REPRESENTATION



If you connect individuals 
that work with each other, 
you will explore 
the professional network.

CHOOSING A PROPER REPRESENTATION



If you connect those that
have a romantic and sexual
relationship, you will be
exploring the sexual
networks.

CHOOSING A PROPER REPRESENTATION



Links: undirected (symmetrical) 

Graph:

Directed links :
URLs on the www
phone calls 
metabolic reactions

Undirected Directed
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D

C

L

MF

G

H

I

Links:  directed (arcs). 

Digraph = directed graph:

Undirected links :
coauthorship links
Actor network
protein interactions

An undirected 
link is the 
superposition of 
two opposite 
directed links.

A
G

F

B
C

D

E

UNDIRECTED VS. DIRECTED NETWORKS



NETWORK NODES LINKS N L kDIRECTED
UNDIRECTED

WWW

Power Grid

Mobile Phone Calls

Email

Science Collaboration

Actor Network

Citation Network

E. Coli Metabolism

Protein Interactions

Webpages

Power plants, transformers

Subscribers

Email addresses

Scientists

Actors

Paper

Metabolites

Proteins

Links

Cables

Calls

Emails

Co-authorship

Co-acting

Citations

Chemical reactions

Binding interactions

Directed

Undirected

Directed

Directed

Undirected

Undirected

Directed

Directed

Undirected

325,729

4,941

36,595

57,194

23,133

702,388

449,673

1,039

2,018

1,497,134

6,594

91,826

103,731

93,439

29,397,908

4,689,479

5,802

2,930

Internet Routers Internet connections Undirected 192,244 609,066 6.33

4.60 

2.67

2.51

1.81

8.08

83.71

10.43

5.58

2.90

REFERENCE NETWORKS



Degree, Average Degree and Degree Distribution



DEGREE OF A NODE

The number of links it has to other nodes

The number of different individuals the person has talked to from her
call graph
The number of citations a research paper gets in the citation network

We denote ki the degree of the ith node in the network
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Node degree: the number of links connected to the node.
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In directed networks we can define an in-degree and out-degree. 

The (total) degree is the sum of in- and out-degree.

Source: a node with kin= 0; Sink: a node with kout= 0.

2k inC = 1koutC = 3=Ck

D
ire

ct
ed

A
G

F

B
C

D

E

A

B

� 

kA =1

NODE DEGREES



8

DEGREE, AVERAGE DEGREE,
AND DEGREE DISTRIBUTION

SECTION 2.3

A key property of each node is its degree, representing the number of 
links it has to other nodes. The degree can represent the number of mobile 
phone contacts an individual has in the call graph (i.e. the number of dif-
ferent individuals the person has talked to), or the number of citations a 
research paper gets in the citation network. 

Degree

We denote with ki the degree of the ith node in the network. For exam-
ple, for the undirected networks shown in Figure 2.2 we have k1=2, k2=3, 
k3=2, k4=1. In an undirected network the total number of links, L, can be 
expressed as the sum of the node degrees: 

         
      .

Here the 1/2 factor corrects for the fact that in the sum (2.1) each link is 
counted twice. For example, the link connecting the nodes 2 and 4 in Figure 
2.2 will be counted once in the degree of node 1 and once in the degree of 
node 4. 

Average Degree

An important property of a network is its average degree (BOX 2.2), which 
for an undirected network is

         
    

In directed networks we distinguish between incoming degree, ki
in, rep-

resenting the number of links that point to node i, and outgoing degree,        
ki

out, representing the number of links that point from node i to other 
nodes. Finally, a node’s total degree, ki, is given by

         
    

For example, on the WWW the number of pages a given document 
points to represents its outgoing degree, kout, and the number of docu-
ments that point to it represents its incoming degree, kin. The total number 

GRAPH THEORY

(2.1)

(2.2)

(2.3)

BOX 2.2
BRIEF STATISTICS REVIEW

Four key quantities characterize 
a sample of N values x1, ... , xN : 

Average (mean):

The nth moment:
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N – the number of nodes in the graph
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Aij = 1 if  there is a link between node i and j
Aij = 0 if nodes i and j are not connected to each other.

Network Science: Graph Theory 

Note that for a directed graph (right) the matrix is not symmetric.
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2 3

1
2 3

1

4

Aij = 1

Aij = 0

if there is a link pointing from node j and i

if there is no link pointing from j to i.

Aij =

0

BB@

0 0 0 0
1 0 0 1
0 0 0 1
1 0 0 0

1

CCAAij =

0

BB@

0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0

1

CCA

ADJACENCY MATRIX



Paths, connectedness, clustering coefficient, 
other concepts

other necessary concepts for doing graph analytics



WWW >     directed multigraph with self-interactions

Protein Interactions >  undirected unweighted with self-interactions

Collaboration network >           undirected multigraph or weighted.

Mobile phone calls >                           directed, weighted.        

Facebook Friendship links >                                  undirected, 
unweighted.

GRAPHOLOGY: REAL NETWORKS – MANY FEATURES



BIPARTITE NETWORKS 



bipartite graph (or bigraph) is a graph whose nodes can be divided into two disjoint sets
U and V such that every link connects a node in U to one in V; that is, U and V are 
independent sets. 

Examples:

Hollywood actor network
Collaboration networks
Disease network (diseasome)

BIPARTITE GRAPH

http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Disjoint_sets
http://en.wikipedia.org/wiki/Independent_set_(graph_theory)


Gene network

GENOME

PHENOMEDISEASOME  

Disease network

Goh, Cusick, Valle, Childs, Vidal & Barabási, PNAS (2007)

GENE NETWORK – DISEASE NETWORK



HUMAN DISEASE NETWORK



Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, A.-L. Barabási  Flavor network and the principles of food pairing , Scientific Reports 196, (2011).

INGREDIENT – FLAVOR BIPARTITE NETWORK 
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Network models



ERDŐS–RÉNYI RANDOM GRAPH MODEL

Used for generating random graphs in which edges are set between nodes with 
equal probabilities
 prove the existence of graphs satisfying various properties, or 
 provide a rigorous definition of what it means for a property to hold for almost all graphs.

Generating an Erdős–Rényi model
 the number of nodes in the graph generated as N
 the probability that a link should be formed between any two nodes as p 
 A constant 〈k〉 may derived from these two components with the formula 
 〈k〉 = 2 ⋅ E / N = p ⋅ (N − 1), where 

 E is the expected number of edges

47

http://igraph.org/r/doc/erdos.renyi.game.html



WATTS-STROGATZ SMALL WORLD MODEL

A random graph generation model that produces graphs with small-
world properties

An initial lattice structure is used to generate a Watts-Strogatz model. 
 Each node in the network is initially linked to its <k> closest neighbours
 Another parameter is specified as the rewiring probability:
 Each edge has a probability p that it will be rewired to the graph as a random edge. 
 The expected number of rewired links in the model is pE = pN<k>/2.

48

http://www.mathworks.com/help/matlab/math/build-watts-strogatz-small-world-graph-model.html



BARABÁSI–ALBERT (BA) PREFERENTIAL 
ATTACHMENT MODEL

Random network model used to demonstrate a preferential attachment 
 "rich-get-richer" effect
 An edge is most likely to attach to nodes with higher degrees 

The network begins with an initial network of m0 nodes 
 m0 ≥ 2 
 the degree of each node in the initial network should be at least 1 
 otherwise it will always remain disconnected from the rest of the network

New nodes are added to the network one at a time. 
 Each new node is connected to m existing nodes 
 With a probability that is proportional to the number of links that the existing nodes already have

49



BARABÁSI–ALBERT (BA) PREFERENTIAL 
ATTACHMENT MODEL

Random network model used to demonstrate a preferential attachment 
 "rich-get-richer" effect
 An edge is most likely to attach to nodes with higher degrees 

The network begins with an initial network of m0 nodes 
 m0 ≥ 2 
 the degree of each node in the initial network should be at least 1, 
 otherwise it will always remain disconnected from the rest of the network.

New nodes are added to the network one at a time
 Each new node is connected to m existing nodes 
 With a probability that is proportional to the number of links that the existing nodes already have

50

Some remarks
• Heavily linked nodes ("hubs") tend to quickly accumulate even more links 
• Nodes with only a few links are unlikely to be chosen as the destination for a new link
• New nodes have a "preference" to attach themselves to the already heavily linked nodes
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Network analysis



NETWORK ANALYSIS

Social network analysis 
 Examines the structure of relationships between social entities
 Entities are often people, but may also be groups, organizations nation states, 
web sites, scholarly publications

Dynamic network analysis:  
 examines the shifting structure of relationships among different classes of 
entities in complex socio-technical systems effects
 reflects social stability and changes such as the emergence of new groups, 
topics, and leaders

52



NETWORK ANALYSIS
Biological network analysis
 closely related to social network analysis
 focusing on local patterns in the network 
 network motifs are small sub-graphs that are over-represented in the network. 

 analysis of biological networks has led to the development of network medicine

Link analysis
 Exploring associations between objects. 
 examining the addresses of suspects and victims, the telephone numbers they have dialled and financial 

transactions that they have partaken in during a given timeframe, and the familial relationships between these 
subjects as a part of police investigation. 

 Link analysis here provides the crucial relationships and associations between very many objects of different 
types that are not apparent from isolated pieces of information

 Pandemic analysis, Web link analysis, Page Rank, ..

53



54

Analysis of large graphs
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High dim. 
data

Locality sensitive 
hashing

Clustering

Dimensionality 
reduction

Graph 
data

PageRank, 
SimRank

Community 
Detection

Spam 
Detection

Infinite 
data

Filtering data 
streams

Web 
advertising

Queries on 
streams

Machine 
learning

SVM

Decision 
Trees

Perceptron, 
kNN

Apps

Recommender 
systems

Association 
Rules

Duplicate 
document 
detection



WEB AS A GRAPH

Web as a directed graph:
 Nodes: Webpages

 Edges: Hyperlinks

J. LESKOVEC, A. RAJARAMAN, J. ULLMAN: MINING OF MASSIVE DATASETS, HTTP://WWW.MMDS.ORG 56
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WEB AS A GRAPH

Web as a directed graph:
 Nodes: Webpages

 Edges: Hyperlinks

J. LESKOVEC, A. RAJARAMAN, J. ULLMAN: MINING OF MASSIVE DATASETS, HTTP://WWW.MMDS.ORG 57
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J. LESKOVEC, A. RAJARAMAN, J. ULLMAN: MINING OF MASSIVE DATASETS, HTTP://WWW.MMDS.ORG

WEB AS A DIRECTED GRAPH

58



BROAD QUESTION

How to organize the Web?
First try: Human curated
Web directories
 Yahoo, DMOZ, LookSmart

Second try: Web Search
 Information Retrieval investigates: Find relevant docs in a small and trusted set
 Newspaper articles, Patents, etc.

 But: Web is huge, full of untrusted documents, random things, web spam, etc.

J. LESKOVEC, A. RAJARAMAN, J. ULLMAN: MINING OF MASSIVE DATASETS, HTTP://WWW.MMDS.ORG 59



WEB SEARCH: 2 CHALLENGES

2 challenges of web search:

(1) Web contains many sources of information
Who to “trust”?
 Trick: Trustworthy pages may point to each other!

(2) What is the “best” answer to query “newspaper”?
 No single right answer
 Trick: Pages that actually know about newspapers might all be pointing to many newspapers

J. LESKOVEC, A. RAJARAMAN, J. ULLMAN: MINING OF MASSIVE DATASETS, HTTP://WWW.MMDS.ORG 60



RANKING NODES ON THE GRAPH

All web pages are not equally “important”
www.joe-schmoe.com vs. www.stanford.edu

There is large diversity in the web-graph node connectivity

Let’s rank the pages by the link structure!

J. LESKOVEC, A. RAJARAMAN, J. ULLMAN: MINING OF MASSIVE DATASETS, HTTP://WWW.MMDS.ORG 61

http://www.joe-schmoe.com/
http://www.stanford.edu/


LINK ANALYSIS ALGORITHMS

Link Analysis approaches for computing importance of nodes in a 
graph:
Page Rank
Topic-Specific (Personalized) Page Rank
Web Spam Detection Algorithms

J. LESKOVEC, A. RAJARAMAN, J. ULLMAN: MINING OF MASSIVE DATASETS, HTTP://WWW.MMDS.ORG 62
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Map reduced K-means

Prajesh P Anchalia, Anjan K Koundinya, Srinath N K, MapReduce Design of K-Means Clustering Algorithm, IEEE, 2013
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Implementation 3: Spark platform



Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin,
Scott Shenker, Ion Stoica

SPARK
Fast, Interactive, Language-Integrated Cluster Computing

UC BERKELEY
www.spark-project.org



PROJECT GOALS

Extend the MapReduce model to better support two common classes of analytics 
apps:

Iterative algorithms (machine learning, graphs)
Interactive data mining
Enhance programmability:

 Integrate into Scala programming language
Allow interactive use from Scala interpreter

66
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MOTIVATION

Most current cluster programming models are 
based on acyclic data flow from stable storage to 
stable storage

Map

Map

Map

Reduce

Reduce

Input Output

67



MOTIVATION

Most current cluster programming models are based on acyclic data flow from stable 
storage to stable storage

Map

Map

Map

Reduce

Reduce

Input Output

Benefits of data flow: runtime can decide 
where to run tasks and can automatically 

recover from failures

68



MOTIVATION

Acyclic data flow is inefficient for applications that repeatedly reuse a working set of 
data:

Iterative algorithms (machine learning, graphs)
Interactive data mining tools (R, Excel, Python)
With current frameworks, apps reload data from stable storage on each query

69



SOLUTION: RESILIENT
DISTRIBUTED DATASETS (RDDS)
Allow apps to keep working sets in memory for efficient reuse

Retain the attractive properties of MapReduce
 Fault tolerance, data locality, scalability

Support a wide range of applications

70



+
SPARK OPERATIONS

71

Transformations
(define a new RDD)

map
filter
sample

groupByKey
reduceByKey
sortByKey

flatMap
union
join

cogroup
cross

mapValues

Actions
(return a result to 
driver program)

collect
reduce
count
save

lookupKey



OUTLINE

Spark programming model

Implementation

User applications

72



PROGRAMMING MODEL

Resilient distributed datasets (RDDs)
 Immutable, partitioned collections of objects
Created through parallel transformations (map, filter, groupBy, join, …) on 
data in stable storage
Can be cached for efficient reuse

Actions on RDDs
Count, reduce, collect, save, …

73



EXAMPLE: LOG MINING

74

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1

Block 2

Block 3

Worke
r

Worke
r

Worke
r

Driver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Result: full-text search of Wikipedia in <1 sec 
(vs 20 sec for on-disk data)

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

Load error messages from a log into memory, then interactively search for various 
patterns



RDD FAULT TOLERANCE

RDDs maintain lineage information that can be used to reconstruct lost partitions

Ex:

75

messages = textFile(...).filter(_.startsWith(“ERROR”))
.map(_.split(‘\t’)(2))

HDFS File Filtered RDD Mapped RDD
filter

(func = _.contains(...))
map

(func = _.split(...))



EXAMPLE: LOGISTIC REGRESSION

Goal: find best line separating two sets of points
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EXAMPLE: LOGISTIC REGRESSION

77

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {

val gradient = data.map(p =>
(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x

).reduce(_ + _)
w -= gradient

}

println("Final w: " + w)



LOGISTIC REGRESSION PERFORMANCE
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127 s / iteration

first iteration 174 s
further iterations 6 s

This is for a 29 GB dataset on 20 EC2 m1.xlarge machines (4 cores each)



SPARK SCHEDULER

Dryad-like DAGs

Pipelines functions
within a stage

Cache-aware work
reuse & locality

Partitioning-aware
to avoid shuffles
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join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

= cached data partition



CONCLUSION

Spark provides a simple, efficient, and powerful programming model for a wide 
range of apps

Download our open source release:

www.spark-project.org

80

matei@berkeley.edu

http://www.spark-project.org/


RELATED WORK

DryadLINQ, FlumeJava
 Similar “distributed collection” API, but cannot reuse datasets efficiently across queries

Relational databases
 Lineage/provenance, logical logging, materialized views

GraphLab, Piccolo, BigTable, RAMCloud
 Fine-grained writes similar to distributed shared memory

Iterative MapReduce (e.g. Twister, HaLoop)
 Implicit data sharing for a fixed computation pattern

Caching systems (e.g. Nectar)
 Store data in files, no explicit control over what is cached
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Let’s dive on Spark for executing and analyzing K-Means

https://databricks.com/blog/2015/01/28/introducing-streaming-k-means-in-spark-1-2.html
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Genoveva Vargas-Solar
CR1, CNRS, LIG-LAFMIA
Genoveva.Vargas@imag.fr

http://vargas-solar.com/big-linked-data-keystone/

http://imag.fr
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Page rank



LINKS AS VOTES

Idea: Links as votes
 Page is more important if it has more links

 In-coming links? Out-going links?

Think of in-links as votes:
 www.stanford.edu has 23,400 in-links
 www.joe-schmoe.com has 1 in-link

Are all in-links are equal?
 Links from important pages count more

 Recursive question! 
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http://www.stanford.edu/
http://www.joe-schmoe.com/
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EXAMPLE: PAGERANK SCORES
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SIMPLE RECURSIVE FORMULATION

Each link’s vote is proportional to the importance of its source page

If page j with importance rj has n out-links, each link gets rj / n votes

Page j’s own importance is the sum of the votes on its in-links
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rj/3

rj/3rj/3
rj = ri/3+rk/4

ri/3 rk/4



PAGERANK: THE “FLOW” MODEL
A “vote” from an important page is worth more

A page is important if it is pointed to by other important 
pages

Define a “rank” rj for page j

J. LESKOVEC, A. RAJARAMAN, J. ULLMAN: MINING OF MASSIVE DATASETS, HTTP://WWW.MMDS.ORG 90

å
®

=
ji

i
j

rr
id

y

ma
a/2

y/2
a/2

m

y/2

The web in 1839

“Flow” equations:

ry = ry /2 + ra
/2
ra = ry /2 + rm

rm = ra /2
𝒅𝒊 … out-degree of node 𝒊



PAGERANK: THREE QUESTIONS

Does this converge?

Does it converge to what we want?

Are results reasonable?
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PAGERANK: PROBLEMS

2 problems:

(1) Some pages are dead ends (have no out-links)
 Random walk has “nowhere” to go to

 Such pages cause importance to “leak out”

(2) Spider traps:
(all out-links are within the group)
 Random walked gets “stuck” in a trap

 And eventually spider traps absorb all importance
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Dead end

Spider trap



SOLUTION: TELEPORTS!

The Google solution for spider traps: At each time step, the random surfer 
has two options
 With prob. b, follow a link at random
 With prob. 1-b, jump to some random page
 Common values for b are in the range 0.8 to 0.9

Surfer will teleport out of spider trap within a few time steps
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SOME PROBLEMS WITH PAGE RANK

Measures generic popularity of a page
 Biased against topic-specific authorities
 Solution: Topic-Specific PageRank (next)

Uses a single measure of importance
 Other models of importance
 Solution: Hubs-and-Authorities

Susceptible to Link spam
 Artificial link topographies created in order to boost page rank
 Solution: TrustRank
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Challenge: implement a map reduce page rank algorithm
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Community detection



NETWORKS & COMMUNITIES
We often think of networks being organized into modules, cluster, communities:
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GOAL: FIND DENSELY LINKED CLUSTERS
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MOVIES AND ACTORS
Clusters in Movies-to-Actors graph:
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[Andersen, Lang: Communities from seed sets, 2006]



TWITTER & FACEBOOK
Discovering social circles, circles of trust:

100

[McAuley, Leskovec: Discovering social circles in ego networks, 2012]
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How to find communities?



METHOD 1: STRENGTH OF WEAK TIES
Edge betweenness: Number of shortest paths passing over the edge

Intuition:
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Edge strengths (call volume) 
in a real network

Edge betweenness
in a real network

b=16
b=7.5



METHOD 1: GIRVAN-NEWMAN

Divisive hierarchical clustering based on the notion of edge 
betweenness:

Number of shortest paths passing through the edge

Girvan-Newman Algorithm:
 Undirected unweighted networks

 Repeat until no edges are left:
 Calculate betweenness of edges
 Remove edges with highest betweenness

 Connected components are communities
 Gives a hierarchical decomposition of the network
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[Girvan-Newman ‘02]



+

J. LESKOVEC, A. RAJARAMAN, J. ULLMAN: MINING OF MASSIVE DATASETS, HTTP://WWW.MMDS.ORG

GIRVAN-NEWMAN: EXAMPLE
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Need to re-compute 
betweenness at 

every step

49
33

121
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GIRVAN-NEWMAN: EXAMPLE
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Step 1: Step 2:

Step 3: Hierarchical network decomposition:



+
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GIRVAN-NEWMAN: RESULTS

106

Communities in physics collaborations 



WE NEED TO RESOLVE 2 QUESTIONS

1. How to compute betweenness?

2. How to select the number of clusters?
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TRAWLING
Searching for small communities in the Web graph

What is the signature of a community / discussion in a Web graph?
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[Kumar et al. ‘99]

Dense 2-layer graph

Intuition: Many people all talking about the same things

… …

… Use this to define “topics”:
What the same people on 
the left talk about on the right
Remember HITS!



SEARCHING FOR SMALL COMMUNITIES

A more well-defined problem:
Enumerate complete bipartite subgraphs Ks,t
 Where Ks,t : s nodes on the “left” where each links to the same t other nodes on the “right”
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K3,4

|X| = s = 3
|Y| = t = 4X Y

Fully connected
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PATHOLOGY



A path is a sequence of nodes in which  each node is adjacent to the next one

Pi0,in  of length n between nodes i0 and in is an ordered collection of n+1 nodes and n links 

� 

Pn = {i0,i1,i2,...,in}

� 

Pn = {(i0 ,i1),(i1,i2 ),( i2 ,i3 ),...,( in−1,in )}

• In a directed network, the path can follow only the direction of an arrow. 
Network Science: Graph Theory 

PATHS



The distance (shortest path, geodesic path) between two nodes

is defined as the number of edges along the shortest path

connecting them

*If the two nodes are disconnected, the distance is infinity

In directed graphs each path needs to follow the direction of

the arrows

Thus in a digraph the distance from node A to B (on an AB

path) is generally different from the distance from node B to

A (on a BCA path)

D
C

A

B

D
C

A

B

DISTANCE IN A GRAPH SHORTEST PATH, GEODESIC PATH



Nij,number of paths between any two nodes i and j: 
Length n=1: If there is a link between i and j, then Aij=1 and Aij=0 otherwise 

Length n=2: If there is a path of length two between i and j, then AikAkj=1, and AikAkj=0 otherwise.
The number of paths of length 2:

� 

N
ij

(2) = Aik
k=1

N

∑ Akj = [A2 ]ij

Length n: In general, if there is a path of length n between i and j, then Aik…Alj=1 and Aik…Alj=0 
otherwise.
The number of paths of length n between i and j is*

� 

N
ij

(n) = [An ]ij
*holds for both directed and undirected networks.

ADJACENCY MATRIX NUMBER OF PATHS BETWEEN TWO NODES



Distance between node 0 and node 4:

1.Start at 0.

Network Science: Graph Theory Network Science: Graph Theory 
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Network Science: Graph Theory 
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Distance between node 0 and node 4:
1.Start at 0.
2.Find the nodes adjacent to 1. Mark them as at distance 1. Put them in a queue.

Network Science: Graph Theory 
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Network Science: Graph Theory 
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Distance between node 0 and node 4:
1.Start at 0.
2.Find the nodes adjacent to 0. Mark them as at distance 1. Put them in a queue.
3.Take the first node out of the queue. Find the unmarked nodes adjacent to it in the 
graph. Mark them with the label of 2. Put them in the queue.

Network Science: Graph Theory 
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Network Science: Graph Theory 
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Distance between node 0 and node 4:

1.Repeat until you find node 4  or there are no more nodes in the queue.
2.The distance between 0 and 4 is the label of 4 or, if 4 does not have a label, infinity.

Network Science: Graph Theory 
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Diameter: dmax the maximum distance between any pair of nodes in the graph. 

Average path length/distance, <d>,  for a connected graph:

where dij is the distance from node i to node j

In an undirected graph dij =dji , so we only need to count them once:

� 

d ≡
1

2Lmax
dij

i, j≠ i
∑

� 

d ≡
1
Lmax

dij
i, j> i
∑

Network Science: Graph Theory 

NETWORK DIAMETER AND AVERAGE DISTANCE



Network Science: Graph Theory 

2 5

43

1

l1!4

l1!4

l1!5

l1!5 = 2

l1!4 = 3

The path with the shortest length 
between two nodes (distance). 

PATHOLOGY: SHORTEST PATH



Network Science: Graph Theory 

2 5

43

1

Diameter

l1!4 = 3

2 5

43

1

Average Path Length

(l1!2 + l1!3 + l1!4+

+ l1!5 + l2!3 + l2!4+

+ l2!5 + l3!4 + l3!5+

+ l4!5) /10 = 1.6

The longest shortest path in a 
graph

The average of the shortest paths for 
all pairs of nodes.

PATHOLOGY: DIAMETER & AVG PATH LENGTH



Network Science: Graph Theory 

2 5

43

1

Cycle

2 5

43

1

Self-avoiding Path

A path with the same start and 
end node. 

A path that does not intersect 
itself.

PATHOLOGY: CYCLE & SELF-AVOIDING PATH



Network Science: Graph Theory 

2 5

43

1

2 5

43

1

Eulerian Path Hamiltonian Path

A path that visits each 
node exactly once.

A path that traverses each 
link exactly once.

PATHOLOGY: EUCLIDEAN & HAMILTONIAN PATHS



CONNECTEDNESS



Connected (undirected) graph: any two vertices can be joined by a path.
A disconnected graph is made up by two or more connected components.   

Bridge: if  we erase it, the graph becomes disconnected. 

Largest Component: 
Giant Component

The rest: Isolates
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CONNECTIVITY OF UNDIRECTED GRAPHS



The adjacency matrix of a network with several components can be written in a block-
diagonal form, so that nonzero elements are confined to squares, with all other elements 
being zero:

Network Science: Graph Theory 

ADJACENCY MATRIX CONNECTIVITY OF UNDIRECTED GRAPHS



Strongly connected directed graph: has a path from each node to 
every other node and vice versa (e.g. AB path and BA path).
Weakly connected directed graph: it is connected if we disregard the
edge directions.

Strongly connected components can be identified, but not every node is part
of a nontrivial strongly connected component.   

In-component: nodes that can reach the scc, 
Out-component: nodes that can be reached from the scc. 

Network Science: Graph Theory 
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Clustering coefficient



what fraction of your neighbors are connected?

Node i with degree ki

Ci in [0,1]

Watts & Strogatz, Nature 1998.

CLUSTERING COEFFICIENT



what fraction of your neighbors are connected?

Node i with degree ki

Ci in [0,1]

Network Science: Graph Theory Watts & Strogatz, Nature 1998.

SECTION 10

CLUSTERING COEFFICIENT

The local clustering coefficient captures the degree to 
which the neighbors of a given node link to each other.  For 
a node i with degree ki the local clustering coefficient is de-
fined as [5].
        
      (19)

where Li represents the number of links between the ki 
neighbors of node i. Note that Ci is between 0 and 1:

Ci = 0 if none of the neighbors of node i link to each 
other; 

Ci = 1 if the neighbors of node i form a complete 
graph, i.e. they all link to each other (Image 2.7). 

In general Ci is the probability that two neighbors of a 
node link to each other: C = 0.5 implies that there is a 
50% chance that two neighbors of a node are linked. 

In summary Ci measures the network’s local density: 
the more densely interconnected the neighborhood 
of node i, the higher is Ci.

The degree of clustering of a whole network is captured by 
the average clustering coefficient, <C>, representing the av-
erage of Ci over all nodes i = 1, ..., N [5],
        
                .  (20)

In line with the probabilistic interpretation <C> is the 
probability that two neighbors of a randomly selected node 
link to each other. 

While Eq. (19) is defined for undirected networks, the 
clustering coefficient can be generalized to directed and 
weighted [6,7,8,9]) networks as well. Note that in the net-
work literature one also often encounters the global clus-
tering coefficient, defined in Appendix A.
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Image 2.15
Clustering Coefficient.

The local clustering coefficient, Ci , of the central node with degree ki=4 
for three different configurations of its neighborhood. The clustering 
coefficient measures the local density of links in a node’s vicinity. The 
bottom figure shows a small network, with the local clustering coefficient 
of a node shown next to each node. Next to the figure we also list the 
network’s average clustering coefficient <C>, according to Eq. (20), and 
its global clustering coefficient C, declined in Appendix A, Eq. (21). Note 
that for nodes with degrees ki=0,1, the clustering coefficient is taken to be 
zero. 

CLUSTERING COEFFICIENT | 41

CLUSTERING COEFFICIENT



Useful concepts about graphs



NETWORK PROPERTIES

Density: defined as a ratio of the number of edges E to the number of
possible edges

Size: the number of nodes N or, less commonly, the number of edges E which
can range from N-1 (a tree) to E_{max} (a complete graph).

Average degree: the number of edges connected to it.
 Density of a network average degree,
 Random graph model, <k> = p(N-1) where p is the probability of two nodes being
connected



NETWORK PROPERTIES

Average path length: calculated by finding the shortest path
between all pairs of nodes
 adding them up, and then dividing by the total number of pairs
 This shows, on average, the number of steps it takes to get from one member of the
network to another

Diameter of a network: the longest of all the calculated shortest
paths in a network



NETWORK PROPERTIES

Connectedness:
Clique/Complete Graph: a completely connected network, where all nodes are
connected to every other node. These networks are symmetric in that all nodes have
in-links and out-links from all others
Giant Component: A single connected component which contains most of the nodes in
the network
Weakly Connected Component: A collection of nodes in which there exists a path
from any node to any other, ignoring directionality of the edges
 Strongly Connected Component: A collection of nodes in which there exists a
directed path from any node to any other



NETWORK PROPERTIES

Node centrality: produce rankings which seek to identify the 
most important nodes in a network model

Different centrality indices encode different contexts for the 
word "importance”
 The betweenness centrality, considers a node highly important if it forms bridges 
between many other nodes
 The eigenvalue centrality considers a node highly important if many other highly 
important nodes link to it



NETWORK PROPERTIES

Node influence: measures that rank or quantify the influence of every node 
(vertex) within a graph. 

Related to centrality indices. 

Applications: 
measuring the influence of each person in a social network
 understanding the role of infrastructure nodes in transportation networks, the 
Internet, or urban networks
 participation of a given node in disease dynamics



A. Degree distribution: pk

B. Path length: <d>

C. Clustering coefficient:

Network Science: Graph Theory 

THREE CENTRAL QUANTITIES IN NETWORK SCIENCE
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Implementation 1



DESIGN STEPS

Define and handle the input and output of the implementation 
 The input is given as a <key, value> pair

‘key’ is the cluster centre

‘value’ a vector in the data set
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+
GENERAL PRINCIPLE
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PRE-REQUISITE
Two files:
 F1: houses the clusters with their centroids 

 F2: houses the vectors to be clustered

The initial set of centres is stored in the input directory of HDFS 
 they form the ‘key’ field in the <key,value>
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MAP & REDUCE ROUTINES
Mapper: 
 Computes the distance between the given data set and cluster centre fed as a <key,value>
 Keeps track of the cluster to which the given vector is closest 
 Assign the vector to the nearest cluster, once the computation of distances is complete 

Reducer:
 Recalculates the centroid
 Restructures the cluster to prevent creations of clusters with extreme sizes i.e. cluster having too 

less data vectors or a cluster having too many data vectors
 Re-writes the new set of vectors and clusters to the disk 

Ready for the next iteration
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Implementation 2

http://codingwiththomas.blogspot.kr/2011/05/k-means-clustering-with-mapreduce.html


