Logistic regression

Genoveva Vargas-Solar French Council of Scientific Research, LIG genoveva.vargas@imag.fr

http://vargas-solar.com/data-centric-smart-everything/

Logistic regression assumptions

- Dependent variable is binary
- Observations are independent of each other
- Little or no multicollinearity among the independent variables
- Linearity of independent variables and log odds

Logistic regression linear models (discriminative)

Dependent variable is binary Observations are independent of each other Little or no multicollinearity among the independent variables Linearity of independent variables and log odds

• Sigmoid function or logistic function:

$$orall z\in \mathbb{R}, \hspace{1em} g(z)=rac{1}{1+e^{-z}}\in]0,1[$$

• Logistic regression: assume that $y|x; \vartheta \sim \text{Bernoulli}(\varphi)$

$$\phi = p(y=1|x; heta) = rac{1}{1+\exp(- heta^T x)} = g(heta^T x)$$

Remark: there is no closed form solution for the case of logistic regressions.

• Odds ratio represents the constant effect of predictor X on the likelihood that on output will occur

Logistic regression pipeline (1) linear models (discriminative)

- Reading data
- Basic explanatory data analysis (EDA)
 - Find non-numerical values / missing / null values
 - Descriptive Analysis: skewness, outliers, mean & median, correlation using pair plot
 - Pair plot many distributions each for every variable
- Model: select independent attributes, class variables, test size, seed repeatability of the code
- Train and test data splitting
- Accuracy report

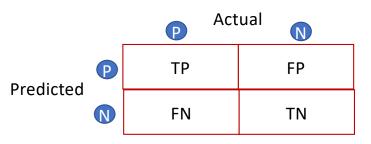
Logistic regression pipeline linear models (discriminative)

- Step 1: Classifying inputs to be in class 0/1
 - Compute the probability that an observation belongs to class 1 using a **logistic response function**
 - Logit function $P(y=1) = 1 / 1 + e^{-(\beta 0 + \beta 1 x i \dots + \beta n x n)} \beta_i$ selected to maximize the likelihood of predicting
 - Log odds Odds = P(y=1) / P(y=0) = the odds > 1 with high probability of y=1

the odds < 1 with high probability of y=0

```
Logit(P) = a+ bx
```

- Step 2: Defining the boundary for the odds (> 0,5)
 - p determines the FN FP to allow



Accuracy: how often is it correct Precision when P how often is it correct Recall when actually positive how often is it correctly predicted F1 harmonic mean AUC (receiver operating characteristic) TP rate sensitivity, FP rate specificity TN/TN+FP FPR 1- Specificity

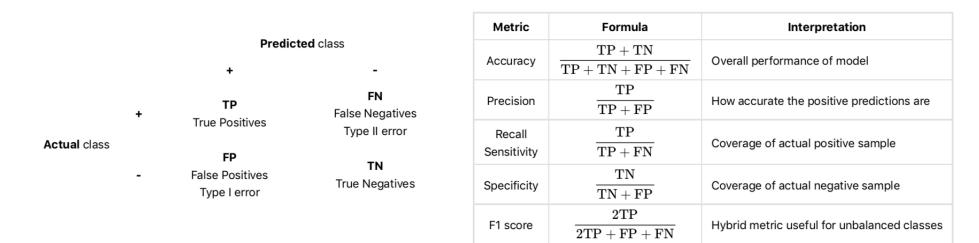
Logistic regression & classification linear models (discriminative)

- Softmax regression: multiclass logistic regression
 - used to generalize logistic regression when there are more than 2 outcome classes.
 - By convention, we set $\vartheta_k = 0$, which makes the Bernoulli parameter φ_i of each class *i* equal to:

$$\phi_i = rac{\exp(heta_i^T x)}{\displaystyle\sum_{j=1}^K \exp(heta_j^T x)}$$

Classification metrics (1)

- In a context of a binary classification
- **Confusion matrix** used to have a more complete picture when assessing the performance of a model



Classification metrics (2)

• **Receiver operating curve (**ROC), is the plot of TPR versus FPR by varying the threshold

Metric	Formula	Equivalent
True Positive Rate TPR	$\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}$	Recall, sensitivity
False Positive Rate FPR	$\frac{\rm FP}{\rm TN+FP}$	1-specificity

• AUC/AUROC — area under the receiving operating curve is the area below the ROC ¹

