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Helps to simplify large amounts of  data in a sensible way

­ A simple way to describe the data

­ Presenting quantitative descriptions in a manageable form

Main steps

­ Data preparation: generate statistically valid descriptions

­ Descriptive statistics: Generate different statistics to 

­ Describe and summarize the data concisely

­ Evaluate different ways to visualize them
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DESCRIPTIVE STATISTICS



PREPARING DATA
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Obtaining the data: Read from a file or obtained by scraping the web

Parsing the data: Format the data which can be in plain text, fixed columns, CSV, XML, HTML, etc.

Cleaning the data: A simple strategy is to remove or ignore incomplete records

Building data structures: A data structure that lends itself  to the analysis we are interested in. 

Databases provide a mapping from keys to values, so they serve as dictionaries

4

PREPARING DATA



Financial parameters related to the US population*

§Features: Age, sex, marital, country, income, education, occupation, capital gain, etc.

§Question: Are men more likely to become high-income professionals than women, i.e., to receive an income of  over $50,000 per 
year?

§Preparing data collections

§Read and check the data

§Represent the data, for instance using a tabular data structure with features (columns) and records (rows)

§Group the data
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* UCI’s Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/Adult

ANALYSING INCOME ACCORDING TO GENDER

https://archive.ics.uci.edu/ml/datasets/Adult
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READ & CHECK DATA



+
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REPRESENT & GROUP DATA



Measurements and categories represent a sample distribution of  a variable:

­ which approximately represents the population distribution of  the variable

­ to make tentative assumptions about the population distribution

Different techniques:

­ Summarizing the data

­ Data distributions

­ Outlier treatment

­ Kernel density
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EXPLORATORY DATA ANALYSIS



SUMMARIZING DATA
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Categorical data:

­ A simple tabulation of the frequency of each category is the best non-graphical exploration for 
data analysis

­ For example, we can ask ourselves what is the proportion of high-income professionals in our 
database

A quantitative variable:

­ The characteristics of the population distribution of a quantitative variable are its mean, 
deviation, histograms, outliers, etc.

­ Exploratory data analysis is a way to make preliminary assessments about the population 
distribution
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SUMMARIZING DATA
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SUMMARIZING DATA
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SUMMARIZING DATA



DATA DISTRIBUTION

13



Summarizing data by just looking at their mean, median, and variance can 
be dangerous

­Validate the data by inspecting them

­Very different data can be described by the same statistics

à An histogram is a graph that shows the frequency of  each value
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DATA DISTRIBUTIONS
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DATA DISTRIBUTIONS
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DATA DISTRIBUTIONS



17

DATA DISTRIBUTIONS
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§The Cumulative Distribution Function (CDF) 
describes the probability that a real-valued 
random variable X with a given probability 
distribution will be found to have a value 
less than or equal to x

DATA DISTRIBUTIONS



OUTLIERS
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Outliers are data samples with a value that is far from the central tendency

Different rules can be defined to detect outliers:

­ Computing samples that are far from the median

­ Computing samples whose values exceed the mean by 2 or 3 standard deviations
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OUTLIER TREATMENT
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OUTLIER TREATMENT
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OUTLIER TREATMENT
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OUTLIER TREATMENT
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OUTLIER TREATMENT
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OUTLIER TREATMENT



ESTIMATIONS
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Skewness is a statistic that measures the asymmetry of  the set of  ! data samples:

" # = 1
!
∑'=1! (' − µ 3

σ3

­ Negative deviation indicates that the distribution “skews left” (it extends further to the left than to the right)

­ One can easily see that the skewness for a normal distribution is zero, and any symmetric data must have a 

skewness of  zero
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MEASURING ASYMMETRY
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MEASURING ASYMMETRY



The Pearson’s median skewness coefficient is a more robust alternative to the skewness coefficient:

! " = 3 µ − µ12 σ

29

MEASURING ASYMMETRY



Estimate the distribution non-parametrically (i.e., making no assumptions about the form 
of  the underlying distribution) using kernel density estimation:

­ We are interested in a continuous representation of  the data

­ For instance, a Gaussian kernel to generate the density around the data
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KERNEL DENSITY
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KERNEL DENSITY
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KERNEL DENSITY



Use estimates to approximate the values of  unknown parameters of  a dataset:

­ Estimated mean, variance, and standard score: Point estimators that are single numerical estimates of  

parameters of  a population

­ Covariance, Pearson’s correlation and Spearman’s rank correlation: Variables of  data can express 

relations
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ESTIMATION



Given a dataset as a series of  values, { !" }, the sample mean is an estimator

­ For instance for the dataset {0.33, −1.76, 2.34, 0.56, 0.89}, the sample mean is 0.472

­ Two ways:

­ Remove outliers and then calculate the sample mean

­ Use the sample median as an estimator of  the mean of  the distribution
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ESTIMATED MEAN



If  there are no outliers, the sample mean minimizes the following mean squared error:

!"# $ = 1
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ESTIMATED MEAN



Given a dataset as a series of  values, { !" }, we can use the sample variance as an estimator

­ For large samples:

σ2 $ = 1
'(
"=1
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­ For small samples:
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ESTIMATED VARIANCE



Normalize data:

­ Avoid data that come in different units

­ Even data that come in the same units can still belong to different distributions

Given a dataset as a series of values, { !" }, we convert the data to 
standard scores by:

#" =
!" − µ
σ

' is dimensionless and its distribution has a mean of 0 and variance 
of 1
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STANDARD SCORE



When two datasets !, " share the same tendency, we speak about covariance:

­ Let us center the data with respect to their mean:

#$% = $% − µ!
#)% = )% − µY

­ The covariance is defined as the mean of  the following products:

+,- !, " = 1
0 1

%=1

0

#$% #)%

where 0 is the length of  both sets
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COVARIANCE



The Pearson’s correlation is always between −1 and +1, where the magnitude depends on the degree of  
correlation:

ρ = 1
$ %&=1
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­ If  the Pearson’s correlation is 1 (or −1), it means that the variables are perfectly correlated; this means that one variable can predict the 
other very well

­ Having ρ = 0, does not necessarily mean that the variables are not correlated! Pearson’s correlation captures correlations of  first order, but
not nonlinear correlations
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PEARSON’S CORRELATION



Use the ranks of  the sorted sample data, instead of  the values themselves:

­ It computes the correlation between the ranks of  the data

­ It comes as a solution to the robustness problem of  Pearson’s correlation when the data contain outliers

For example:

­X = [ 10, 20, 30, 40, 1000 ], Y = [−70,−1000,−50,−10,−20 ]

­RX = [ 1.0, 2.0, 3.0, 4.0, 5.0 ], RY = [ 2.0, 1.0, 3.0, 5.0, 4.0 ]
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SPEARMAN’S RANK CORRELATION



We have familiarized with the basic concepts and procedures of  descriptive statistics to explore a dataset:

­ Central measures of  tendency such as the sample mean and median

­ Variability measures such as the variance and standard deviation

­ Measures can be affected by outliers

We obtain a continuous representation of  the sample distribution using the kernel density

We estimate the correlation and the covariance of  datasets using Pearson’s and the Spearman’s rank 
correlations
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FINAL REMARKS
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CONTINUOUS DISTRIBUTION


