
!
!
!
!
!
!

Data sharding and replication!

Genoveva Vargas Solar

French Council of scientific research, LIG-LAFMIA, France

Genoveva.Vargas@imag.fr	
 	

http://www.vargas-­‐solar.com	

Data all around!
2

30 billion

pieces of content

are shared on Facebook

every month

40 billion+

hours video

are watched on YouTube

each month

As of 2011 the global
size

Data in healthcare was
estimated to be

150 Exabytes

(161 billion of
Gigabytes)

40 million Tweets

are sent per day about
200

monthly active users

By 2014 it is
anticipated

there will be

400 million
wearable wireless
health monitors

Web 2.0 sites where millions of users may
both read and write data, scalability for
simple database operations has become
important

Data collections available through front
ends managed through public/private
organization, available through the Web,
e.g., Sloan Sky Server

Storing and accessing huge
amounts of data!

Peta	
 1015	

Exa	
 1018	

Zetta	
 1021	

Yota	
 1024	

RAID	

Disk	

Cloud	

3

•  Data formats

•  Data collection sizes

•  Data storage supports

•  Data delivery

mechanisms

This part of the course is about!
4

http://nosql-­‐database.org	

Debate on whether NoSQL stores and relational systems are better or worse …

that is not the point

This session is absolutely about!
5

Alternative for managing multiform and multimedia data
collections according to different properties and requirements

Scaling database systems!
n  A system is scalable if increasing its

resources (CPU, memory, disk) results
in increased performance
proportionally to the added resources

n  Improving performance means serving
more units of work for handling larger
units of work like when data sets grow

n  Database systems have been scaled by
buying bigger faster and more
expensive machines

6

¡  Vertically (SCALE UP)

¡  Add resources (CPU, memory) to a single node in a system

¡  Horizontally (SCALE OUT)

¡  Add more nodes to a system

NoSQL stores characteristics!
n  Simple operations

n  Key lookups reads and writes of one record or a small number of
records

n  No complex queries or joins

n  Ability to dynamically add new attributes to data records

n  Horizontal scalability

n  Distribute data and operations over many servers

n  Replicate and distribute data over many servers

n  No shared memory or disk

n  High performance

n  Efficient use of distributed indexes and RAM for data storage

n  Weak consistency model

n  Limited transactions

7

Next generation databases mostly addressing some of the points: being non-relational,
distributed, open-source and horizontally scalable [http://nosql-­‐database.org]	

Dealing with huge amounts of data!
8

Peta	
 1015	

Exa	
 1018	

Zetta	
 1021	

Yota	
 1024	

RAID	

Disk	

Cloud	

Concurrency	

Consistency	

Atomicity	

Relational	

Graph	

Key	
 value	

Columns	

•  Data	
 model	
 	

•  Consistency	
 	

•  Storage	
 	

•  Durability	
 	

•  Availability	
 	

•  Query	
 support	

9

Data	
 stores	
 designed	
 	
 to	
 scale	
 simple	
 	

OLTP-­‐style	
 applica7on	
 loads	
 	

Read/Write	
 operations	
 	

by	
 thousands/millions	

of	
 users	

https://www.youtube.com/watch?v=jyx8iP5tfCI	

+ How to map data management to !
Big Data requirements!
How to “map” the components of the reference architecture to (virtual) machines in the
cloud.

n  How data is collected, transformed, integrated, loaded, stored, modeled?

n  How to partition data and functions?

 (load balancing)

n  How the consistency of the data is maintained (vs availability)

n  What programming model?

n  Whether and how to cache?

Problem statement: How much to
give up?!

n  CAP theorem1: a system can have two of the three properties

n  NoSQL systems sacrifice consistency

11

Consistency	
 Availability	

Fault-­‐tolerant	
 	

partitioning	

1	
 Eric	
 Brewer,	
 "Towards	
 robust	
 distributed	
 systems."	
 PODC.	
 2000	
 http://www.cs.berkeley.edu/~brewer/cs262b-­‐2004/PODC-­‐keynote.pdf	
 	

12

SYSTEM
 CONCURREN
CY CONTROL

DATA
STORAGE

REPLICATION
 TRANSACTION

Redis
 Locks
 RAM
 Asynchronou
s

No

Scalaris
 Locks
 RAM
 Synchronous
 Local

Tokyo
 Locks
 RAM/Disk
 Asynchronou
s

Local

Voldemort
 MVCC
 RAM/BDB
 Asynchronou
s

No

Riak
 MVCC
 Plug in
 Asynchronou
s

No

Membrain
 Locks
 Flash
+Disk

Synchronous
 Local

Membase
 Locks
 Disk
 Synchronous
 Local

Dynamo
 MVCC
 Plug in
 Asynchronou
s

No

SimpleDB
 Non
 S3
 Asynchronou
s

No

MongoDB
 Locks
 Disk
 Asynchronou
s

No

CouchDB
 MVCC
 Disk
 Asynchronou
s

No

SYSTEM
 CONCURREN
CY CONTROL

DATA
STORAGE

REPLICATION
 TRANSACTION

Terrastore
 Locks
 RAM+
 Synchronous
 L

Hbase
 Locks
 HADOOP
 Asynchronous
 L

HyperTable
 Locks
 Files
 Synchronous
 L

Cassandra
 MVCC
 Disk
 Asynchronous
 L

BigTable
 Locs
+stamps

GFS
 Both
 L

PNuts
 MVCC
 Disk
 Asynchronous
 L

MySQL-C
 ACID
 Disk
 Synchronous
 Y

VoltDB
 ACID/no
Lock

RAM
 Synchronous
 Y

Clustrix
 ACID/no
Lock

Disk
 Synchronous
 Y

ScaleDB
 ACID
 Disk
 Synchronous
 Y

ScaleBase
 ACID
 Disk
 Asynchronous
 Y

NimbusDB
 ACID/no
Lock

Disk
 Synchronous
 Y

Ke
y-­‐
Va
lu
e	

Do
cu
me
nt
	

Ex
te
nd
ed
	
 r
ec
or
ds
	

Re
la
ti
on
al
	

Cattell,	
 Rick.	
 "Scalable	
 SQL	
 and	
 NoSQL	
 data	
 stores."	
 ACM	
 SIGMOD	
 Record	
 39.4	
 (2011):	
 12-­‐27	

Problem statement: How much to
give up?!

n  CAP theorem1: a system can have two of the three properties

n  NoSQL systems sacrifice consistency

13

Consistency	
 Availability	

Fault-­‐tolerant	
 	

partitioning	

1	
 Eric	
 Brewer,	
 "Towards	
 robust	
 distributed	
 systems."	
 PODC.	
 2000	
 http://www.cs.berkeley.edu/~brewer/cs262b-­‐2004/PODC-­‐keynote.pdf	
 	

NoSql Stores: availability and
performance!
n  Replication

n  Copy data across multiple servers
(each bit of data can be found in
multiple servers)

n  Increase data availability

n  Faster query evaluation

n  Sharding

n  Distribute different data across

multiple servers

n  Each server acts as the single source

of a data subset

n  Orthogonal techniques

14

Replication: pros & cons!

n  Data is more available

n  Failure of a site containing E

does not result in unavailability
of E if replicas exist

n  Performance

n  Parallelism: queries processed

in parallel on several nodes

n  Reduce data transfer for local

data

n  Increased updates cost

n  Synchronisation: each replica

must be updated

n  Increased complexity of
concurrency control

n  Concurrent updates to distinct

replicas may lead to
inconsistent data unless
special concurrency control
mechanisms are implemented

15

Sharding: why is it useful?!

n  Scaling applications by reducing
data sets in any single databases

n  Segregating data

n  Sharing application data

n  Securing sensitive data by

isolating it

n  Improve read and write performance

n  Smaller amount of data in each user group implies faster

querying

n  Isolating data into smaller shards accessed data is more

likely to stay on cache

n  More write bandwidth: writing can be done in parallel

n  Smaller data sets are easier to backup, restore and

manage

n  Massively work done

n  Parallel work: scale out across more nodes

n  Parallel backend: handling higher user loads

n  Share nothing: very few bottlenecks

n  Decrease resilience improve availability

n  If a box goes down others still operate

n  But: Part of the data missing

16

Load%balancer%

Cache%1%

Cache%2%

Cache%3%

MySQL%
Master%

MySQL%
Master%

Web%1%

Web%2%

Web%3%

Site%database%

Resume%database%

Sharding and replication!
n  Sharding with no replication: unique copy, distributed data sets

n  (+) Better concurrency levels (shards are accessed independently)

n  (-) Cost of checking constraints, rebuilding aggregates

n  Ensure that queries and updates are distributed across shards

n  Replication of shards

n  (+) Query performance (availability)

n  (-) Cost of updating, of checking constraints, complexity of concurrency control

n  Partial replication (most of the times)

n  Only some shards are duplicated

17

NoSQL STORES: Data
management properties!
n  Indexing

n  Distributed hashing like
Memcached open source cache

n  In-memory indexes are scalable

when distributing and replicating
objects over multiple nodes

n  Partitioned tables

n  High availability and scalability:
eventual consistency

n  Data fetched are not guaranteed to

be up-to-date

n  Updates are guaranteed to be

propagated to all nodes eventually

n  Shared nothing horizontal scaling

n  Replicating and partitioning data

over many servers

n  Support large number of simple

read/write operations per second
(OLTP)

n  No ACID guarantees

n  Updates eventually propagated but

limited guarantees on reads
consistency

n  BASE: basically available; soft
state, eventually consistent

n  Multi-version concurrency control

18

19

Sharding on Mongo

+ Mongodb sharding!
n  Database systems with large data sets and high throughput applications can challenge the capacity of a single server.

n  High query rates can exhaust the CPU capacity of the server.

n  Larger data sets exceed the storage capacity of a single machine.

n  Finally, working set sizes larger than the system’s RAM stress the I/O capacity of disk drives.

n  To address these issues of scales, database systems have two basic approaches: vertical scaling and sharding

n  Vertical scaling adds more CPU and storage resources to increase capacity.

n  Scaling by adding capacity has limitations: high performance systems with large numbers of CPUs and large amount of
RAM are disproportionately more expensive than smaller systems.

n  Additionally, cloud-based providers may only allow users to provision smaller instances.

n  As a result there is a practical maximum capability for vertical scaling.

n  Sharding, or horizontal scaling, divides the data set and distributes the data over multiple servers, or shards.

n  Each shard is an independent database,

n  Collectively, the shards make up a single logical database

20

+ Sharding data! 21

I TB

Collection	
 1	

256
GB

Shard	
 1	

256
GB

Shard	
 2	

256
GB

Shard	
 3	

256
GB

Shard	
 4	

Collection	
 1	

+ sharding!

n  Addresses the challenge of scaling to support high throughput and large data sets:

n  Reduces the number of operations each shard handles.

n  Each shard processes fewer operations as the cluster grows.

n  As a result, a cluster can increase capacity and throughput horizontally.

n  For example, to insert data, the application only needs to access the shard responsible for that

record.

n  Reduces the amount of data that each server needs to store.

n  Each shard stores less data as the cluster grows.

n  For example, if a database has a 1 terabyte data set, and there are 4 shards, then each shard

might hold only 256GB of data. If there are 40 shards, then each shard might hold only 25GB of
data.

22

+ Sharding in mongo! 23

+ Sharding in mongo!

n  Shards (mongd) store the data. To provide high availability and data consistency, in a
production sharded cluster, each shard is a replica set.

n  Query Routers (mongos instances), interface with client applications and direct operations
to the appropriate shard or shards.

n  The query router processes and targets operations to shards and then returns results to the

clients.

n  A sharded cluster can contain more than one query router to divide the client request load.

n  A client sends requests to one query router. Most sharded clusters have many query routers.

n  Config servers store the cluster’s metadata.

n  This data contains a mapping of the cluster’s data set to the shards.

n  The query router uses this metadata to target operations to specific shards.

n  Production sharded clusters have exactly 3 config servers

24

Primary shard!
n  Every database has a “primary” shard that holds all

the un-sharded collections in that database

n  To change the primary shard for a database, use
the movePrimary command.

n  The process of migrating the primary shard may

take significant time to complete, and you
should not access the collections until it
completes.

n  When a new sharded cluster is deployed with
shards that were previously used as replica sets, all
existing databases continue to reside on their
original shard

n  Databases created subsequently may reside on any
shard in the cluster

25

+ Shard status (1)!

n  Use the sh.status() method in the mongo shell to see an
overview of the cluster.

n  This reports includes which shard is primary for the database and the

chunk distribution across the shards

n  The Sharding	
 Version	
 section displays information on the config

database:

26

+ Shard status (2)!

n  The Shards section lists information on the shard(s). For each
shard, the section displays the name, host, and the associated
tags, if any

27

+ Shard status (3)!

n  The Databases section lists information on the database(s). For
each database, the section displays the name, whether the
database has sharding enabled, and the primary shard for the
database.

28

+ Shard status (4)!

n  The Sharded Collection section provides information on the
sharding details for sharded collection(s). For each sharded
collection,

n  the section displays the shard key,

n  the number of chunks per shard(s),

n  the distribution of documents across chunks

n  the tag information, if any, for shard key range(s)

29

+ Config servers!

n  Special mongod instances that store the metadata for a sharded cluster.

n  Use a two-phase commit to ensure immediate consistency and reliability.

n  Do not run as replica sets.

n  All config servers must be available to deploy a sharded cluster or to make
any changes to cluster metadata.

n  A production sharded cluster has exactly three config servers

n  For testing purposes you may deploy a cluster with a single config server

n  But to ensure redundancy and safety in production, you should always use three.

30

+ Config database!

n  Config servers store the metadata in the config database. The mongos
instances cache this data and use it to route reads and writes to shards

n  MongoDB only writes data to the config server in the following cases:

n  To create splits in existing chunks.

n  To migrate a chunk between shards.

n  MongoDB reads data from the config server data in the following cases:

n  A new mongos starts for the first time, or an existing mongos restarts.

n  After a chunk migration, the mongos instances update themselves with the new

cluster metadata.

n  MongoDB also uses the config server to manage distributed locks.

31

+ Data partitioning!

n  MongoDB distributes data, or shards, at the collection level.

n  Sharding partitions a collection’s data by the shard key.

n  A shard key is either an indexed field or an indexed compound
field that exists in every document in the collection.

n  MongoDB divides the shard key values into chunks and
distributes the chunks evenly across the shards.

n  range based partitioning or hash based partitioning

32

+ Range based sharding!

n  MongoDB divides the data set into ranges determined by the shard key values

n  Consider a numeric shard key: If you visualize a number line that goes from negative

infinity to positive infinity, each value of the shard key falls at some point on that line.

n  MongoDB partitions this line into smaller, non-overlapping ranges called chunks	
 	

n  chunk is range of values from some minimum value to some maximum value.

n  Given a range based partitioning system, documents with “close” shard key
values are likely to be in the same chunk, and therefore on the same shard

33

+ Hash based sharding!

n  For hash based partitioning, MongoDB computes a hash of a field’s
value, and then uses these hashes to create chunks

n  With hash based partitioning, two documents with “close” shard key
values are unlikely to be part of the same chunk.

n  This ensures a more random distribution of a collection in the cluster

34

+ Tag aware sharding!

n  MongoDB allows administrators to direct the balancing policy using tag aware
sharding.

n  Administrators create and associate tags with ranges of the shard key

n  Assign those tags to the shards.

n  The balancer migrates tagged data to the appropriate shards and ensures that
the cluster always enforces the distribution of data that the tags describe

n  Tags are the primary mechanism to control the behavior of the balancer and the

distribution of chunks in a cluster.

n  Most commonly, tag aware sharding serves to improve the locality of data for sharded

clusters that span multiple data centers

35

+ Range and hash based sharding!

n  Range based partitioning supports more efficient range queries

n  Given a range query on the shard key, the query router can easily determine which chunks

overlap that range and route the query to only those shards that contain these chunks

n  It can result in an uneven distribution of data, which may negate some of the benefits of sharding

n  If the shard key is a linearly increasing field, such as time, then all requests for a given time
range will map to the same chunk, and thus the same shard.

n  In this situation, a small set of shards may receive the majority of requests and the system
would not scale very well

n  Hash based partitioning, ensures an even distribution of data

n  Hashed key values results in random distribution of data across chunks and therefore shards.

n  Random distribution makes it more likely that a range query on the shard key will not be able to

target a few shards but would more likely query every shard in order to return a result

36

+ Maintaining a balanced data
distribution!
n  The addition of new data or the addition of new servers can

result in data distribution imbalances within the cluster

n  particular shard contains significantly more chunks than another shard

n  a size of a chunk is significantly greater than other chunk sizes

n  MongoDB ensures a balanced cluster using two background
process: splitting and the balancer

37

splitting!

n  Background process that keeps
chunks from growing too large.

n  When a chunk grows beyond a
specified chunk size,

n  MongoDB splits the chunk in half

n  Inserts and updates triggers splits.

n  Splits are an efficient meta-data
change.

n  To create splits, MongoDB does
not migrate any data or affect
the shards

38

+ Balancing (1)!

n  The balancer is a background process that manages chunk
migrations.

n  Runs from any of the query routers in a cluster

n  When the distribution of a sharded collection in a cluster is uneven

n  The balancer process migrates chunks from the shard that has the largest

number of chunks to the shard with the least number of chunks until the
collection balances

n  For example: if collection users has 100 chunks on shard 1 and 50 chunks
on shard 2, the balancer will migrate chunks from shard 1 to shard 2 until
the collection achieves balance

39

+ Balancing (2)!

n  The shards manage chunk migrations as a background operation
between an origin shard and a destination shard.

n  During a chunk migration, the destination shard is sent all the current

documents in the chunk from the origin shard.

n  Next, the destination shard captures and applies all changes made to the

data during the migration process.

n  Finally, the metadata regarding the location of the chunk on config server

is updated

n  If there’s an error during the migration, the balancer aborts the process

leaving the chunk unchanged on the origin shard.

n  MongoDB removes the chunk’s data from the origin shard after the

migration completes successfully

40

+ Balancing (3)! 41

+ Adding and removing shards form
a cluster!
n  Adding a shard to a cluster creates an imbalance since the new

shard has no chunks.

n  MongoDB begins migrating data to the new shard immediately

n  It can take some time before the cluster balances.

n  When removing a shard, the balancer migrates all chunks from a
shard to other shards.

n  After migrating all data and updating the meta data, you can
safely remove the shard

42

+ Sharding vs. horizontal
partitioning!
n  Horizontal partitioning splits one or more tables by row, usually within a single instance of a schema

and a database server.

n  Reduce index size (and thus search effort) provided that there is some obvious, robust, implicit way to identify in

which table a particular row will be found, without first needing to search the index,

n  e.g., the classic example of the 'CustomersEast' and 'CustomersWest' tables, where their zip code already

indicates where they will be found

n  Sharding goes beyond this: it partitions the problematic table(s) in the same way, but across
potentially multiple instances of the schema

n  Search load for the large partitioned table can now be split across multiple servers (logical or physical), not just

multiple indexes on the same logical server

n  Splitting shards across multiple isolated instances requires more than simple horizontal partitioning

n  Sharding splits large partitionable tables across the servers, while smaller tables are replicated as complete units

43

44

Consistency issues

+ Consistency!

n  Consistency is an important area of study in distributed systems

n  Data consistency summarizes the validity, accuracy, usability and
integrity of related data between applications and across an (IT)
enterprise

n  ensures that each user observes a consistent view of the data, including

visible changes made by the user's own transactions and transactions of
other users or processes

n  Data Consistency problems may arise at any time but are frequently
introduced during or following recovery situations when backup
copies of the data are used in place of the original data

45

+ Consistency models!
n  Consistency model is a guarantee about the relation between and update to an object and the access to an updated object

n  used in distributed systems like distributed shared memory systems or distributed data stores (such as a file systems, databases, optimistic
replication systems or Web caching).

n  The system supports a given model if operations on memory follow specific rules.

n  The data consistency model specifies a contract between programmer and system, wherein the system guarantees that if the programmer

follows the rules, memory will be consistent and the results of memory operations will be predictable

n  Linearizability (strict or atomic consistency)

n  Serializability: ensures a global ordering of transactions

n  Sequential consistency: ensures a global ordering of operations

n  Casual consistency: ensures partial orderings between dependent operations

n  Eventually consistent transactions: ensure different order of updates in all copies eventually converge same value

46

+ Eventual consistency!
n  Specific form of weak consistency used in many large distributed databases

n  Requires that all changes to a replicated piece of data eventually reach all affected replicas

n  Storage system guarantees that if no updates are made to the object, eventually all accesses will return the last

updated value

n  If no failures occur, the maximum size of inconsistency window can be determined based on factors like:

communication delays, the load of the system, the number of replicas involved in the replication scheme

n  Conflict resolution is not handled & responsibility is pushed up to the programmer in the event of
conflicting updates

n  Domain Name System

n  Updates to a name are distributed according to a configured pattern in combination to time-controlled caches

n  Eventually all clients will see the update

n  Given enough time over which no changes are performed, all updates will propagate through the system and all

replicas will be synchronized

47

+ Properties!

n  CAP theorem by Brewer: consistency, availability and partition tolerance are
three desired properties of any shared-data system

n  Conjuncture: Maximum two of them can be guaranteed at a time (!)

n  Ideally we expect a service to be available during the whole period time of network

connection: if the network is available the service should be available too

n  To achieve good performance parameters, requests need to be processed
by a distributed system:

n  Increasing the number of servers, the probability of any of them or network

communication failing is also invreaed

n  A system must be designed in such a way that this failure be transparent (or

minimize the impact) to the client

48

1	
 Eric	
 Brewer,	
 "Towards	
 robust	
 distributed	
 systems."	
 PODC.	
 2000	
 http://www.cs.berkeley.edu/~brewer/cs262b-­‐2004/PODC-­‐keynote.pdf	
 	

+ Playing with cap!

n  Availability and partition: achieve as low latency as possible combined with
high performance as possible (e.g., Cassandra)

n  Consistency and partition tolerance: mirroring database clusters between
different data centres to achieve quicker response by splitting workload into
different sub tasks and then execute them simultaneously across all
available nodes/servers

n  Stock market prices and number of stock available have to be up to date
(consistency level)

n  E-commerce site: not good for a business if a customer finds out the
product is out of stock after she submitted the payment (consistency level)

49

+ Eventual consistency!

n  Writes to one replica will eventually appear at other replicas

n  If all replicas have received the same set of write they will have the same
values for all data

n  Weak form of consistency that does not restrict the ordering of operations
on different keys à programmers should reason about all possible
orderings and exposing many inconsistencies to users

n  Examples:

n  After Alice updates her profile, she might not see that update after a refresh

n  Or if Alice and Bob are commenting back and forth on a blog post, Carol might see

a random non-contiguous subset of that conversation

50

+ Consistency vs. High availability!

n  The application designer must know how the database consistency
is obtained and the costs of inconsistency or anomalies to decide
whether to implement eventual consistency with high availability

n  Dealing with consistency abnormalities is intuitive and difficult: it
depends on thinking the correct sequence of operations and
therefore more difficult than high consistency

n  Atomic commitment protocols taking care of resources blocking

n  Time stamps and versions associated to a store system for identifying

newest versions

n  E.g. PNUTS (Yahoo!)

51

Eventual consistency: Pros and
cons!
n  Easy to achieve

n  Database servers separated from
the larger database cluster by a
network partition can still accept
(NoSQL systems)

n  Often strongly consistent (cf.
Amazon SimpleDB inconsistency
window < 500 ms. ; Amazon S3 <
12 seconds; Cassandra < 200
ms)

n  Not precise definition: not clear what is eventually
consistent state?

n  A DB always returning the value 42 is eventually
consistent even if 42 was never written?

n  Eventually all accesses return the last updated
value thus the DB cannot converge to an arbitrary
value

n  What values can be returned before the eventual
state of the DB is reached? If replicas have not yet
converged, what guarantees can be made on the
data returned?

n  The last updated value? How to know what version
of data item was converged to same state in all
replicas?

52

+ Eventual consistency: more issues!

n  Requires that writes to one replica will eventually appear at other replicas

n  If all replicas have received the same set of writes, they will have the same values
for all data

n  Problem: it does not restrict the ordering of operations on different keys à
programmer should reason about all possible orderings

n  What is the effect on the application if a database read returns an arbitrarily old value?

n  What is the effect on the application if the database sees a modification happen in the

wrong order?

n  What is the effect on the application of another client modifying the database as I try to

read it?

n  What is the effect that my database updates have on other clients trying to read the data?

53

54

http://vargas-solar/data-management-services-cloud/

Linearizability (1)!
n  First introduced as a consistency model by Herlihy and Wing in 1987

n  History: sequence of invocations and responses made of an object by a set of threads.

n  Each invocation of a function will have a subsequent response.

n  This can be used to model any use of an object.

n  Given two threads, A and B, both attempt to grab a lock, backing off if it's already taken

n  This would be modelled as both threads invoking the lock operation, then both threads receiving a response, one successful, one not

n  A sequential history is one in which all invocations have immediate responses. A sequential history should be trivial to reason about, as it has no real concurrency

n  Is this example sequential?

55

A	
 invokes	
 lock	
 B	
 invokes	
 lock	
 A	
 gets	
 ‘failed’	
 response	
 B	
 gets	
 ‘successful’	
 response	

Linearizability (2)!
n  A history is linearizable if:

n  its invocations and responses can be reordered to yield a sequential history

n  that sequential history is correct according to the sequential definition of the object

n  if a response preceded an invocation in the original history, it must still precede it in the

sequential reordering

n  It is the last point which is unique to linearizability, and is thus the major contribution of Herlihy and
Wing

n  Reordering B's invocation below A's response yields a sequential history. This is easy to reason
about, as all operations now happen in an obvious order

n  Unfortunately, it doesn't match the sequential definition of the object (it doesn't match the
semantics of the program)

56

A	
 invokes	
 lock	
 A	
 gets	
 ‘failed’	
 response	
 B	
 invokes	
 lock	
 B	
 gets	
 ‘successful’	
 response	

Linearizability (3)!
n  A should have successfully obtained the lock, and B should have subsequently aborted

n  This is another correct sequential history. It is also a linearization!

n  Note that the definition of linearizability only precludes responses that precede invocations from being reordered

n  Since the original history had no responses before invocations, we can reorder it as we wish. Hence the original history is

indeed linearizable.

n  An object (as opposed to a history) is linearizable if all valid histories of its use can be linearized

n  Note that this is a much harder assertion to prove

57

B	
 invokes	
 lock	

	

B	
 gets	
 ‘successful’	
 response	

	

A	
 invokes	
 lock	

	

A	
 gets	
 ‘failed’	
 response	

	

Serializability (1)!
n  In concurrency control of databases, transaction processing, and

transactional applications (e.g., transactional memory and software
transactional memory), both centralized and distributed,

n  A transaction schedule (history) is serializable if its outcome (e.g., the resulting

database state) is equal to the outcome of its transactions executed serially,
i.e., sequentially without overlapping in time

n  Transactions are normally executed concurrently (they overlap), since this is the
most efficient way.

n  Serializability is the major correctness criterion for concurrent transactions'
executions. It is considered the highest level of isolation between transactions,
and plays an essential role in concurrency control

58

Serializability (2)!

n  Not linearizable

n  This history is not valid because there is a point at which both A and B

hold the lock;

n  It cannot be reordered to a valid sequential history without violating the

ordering rule

n  However, under serializability, B's unlock operation may be moved to
before A's original lock, which is a valid history (assuming the object
begins the history in a locked state)

59

A	
 invokes	
 lock	

	

A	
 gets	
 ‘successful’	

response	

	

B	
 invokes	

unlock	

	

B	
 gets	
 ‘successful’	

response	

	

A	
 invokes	

unlock	

B	
 gets	
 ‘successful’	

response	

B	
 invokes	
 unlock	

	

B	
 gets	
 ‘successful’	

response	

	

A	
 invokes	
 lock	

	

A	
 gets	
 ‘successful’	

response	

	

A	
 invokes	

unlock	

A	
 gets	
 ‘successful’	

response	

Sequential consistency!
n  Sequential consistency is one of the consistency models used in the domain of concurrent programming

(e.g. in distributed shared memory, distributed transactions, etc.).

n  "... the result of any execution is the same as if the operations of all the processors were executed in some sequential

order, and the operations of each individual processor appear in this sequence in the order specified by its program.”

n  A system provides sequential consistency if

n  every node of the system sees the (write) operations on the same memory part (page, virtual object, cell, etc.) in the same

order,

n  although the order may be different from the order as defined by real time (as observed by a hypothetical external

observer or global clock) of issuing the operations

n  The sequential consistency is weaker than strict consistency

n  which would demand that operations are seen in order in which they were actually issued,

n  which is essentially impossible to secure in distributed system as deciding global time is impossible and

60

Casual consistency!
n  A system provides causal consistency if memory operations that potentially are causally related are seen by every node of the system in the same order

n  Condition-writes that are potentially causally related must be seen by all processes in the same order

n  Concurrent writes may be seen in a different order on different machines

n  When a node performs a read followed later by a write, even on a different variable

n  the first operation is said to be causally ordered before the second

n  because the value stored by the write may have been dependent upon the result of the read

n  A read operation is causally ordered after the earlier write on the same variable that stored the data retrieved by the read

n  Two write operations performed by the same node are defined to be causally ordered, in the order they were performed

n  After writing value v into variable x, a node knows that a read of x would give v, so a later write could be said to be (potentially) causally related to the earlier one

n  Finally, e this causal order can be forced to be transitive: that is, we say that if operation A is (causally) ordered before B, and B is ordered before C, A is ordered before C

n  This is weaker than sequential consistency, which requires that all nodes see all writes in the same order

61

CAP THEOREM!
n  Consistency: requires that each operation executed within a distributed system

where data is spread among more servers ended with the same result as if
executed on one server with all data

n  Availability: requires that sending a request to any functional node should be
enough for a requester to get a response (a system is therefore tolerant to failure
of other nodes caused for example by network throughput problems)

n  Partition tolerance: a distributed system consists of servers interconnected by a
network. During network communication failures are frequent. .Temporary
communication interruption among a server must not cause the whole system to
respond incorrectly

62

63

Tailoring data storage services

+ Service based HQ evaluation! 64

Data	
 	

services	

Access	

services	

Storage	

services	

Additional	

extension	

services	

Other	

services	

Extension	
 services	

Streaming, XML, queries

+ Service based HQ evaluation! 65

Data	
 	

services	

Access	

services	

Storage	

services	

Additional	

extension	

services	

Other	

services	

Extension	
 services	

Streaming, XML, queries

Are we sure that the data of interest will be always accessible?

(Katsov-2012)

Use the right tool for a given job…

66

Lack of standardization of models and data storage technologies

+ Polyglot persistence ! 67

Data	
 	

services	

Access	

services	

Storage	

services	

Additional	

extension	

services	

Other	

services	

Extension	
 services	

Streaming, XML, queries

+

Data	
 stores	
 designed	
 	
 to	
 scale	
 simply	
 	

OLTP-­‐style	
 applica7on	
 loads	
 	
 Read/Write	
 operations	
 	

by	
 thousands/millions	
 of	
 users	

CHARACTERISTIC	
 SUBCHARACTERISTIC	
 METRIC	

Reliability	
 Maturity	
 API changes	

Availability	
 Downtime 3	

Fault tolerance	
 Node down throughput 3	

Recoverability	
 Time to stabilize on node up 3	

Performance and
efficiency	

Time behaviour	
 Throughput, latency 2	

Resource utilisation	
 CPU, Memory and disk usage 4	

Quality driven benchmark1! 68

1Yahoo Cloud Serving Benchmark, https://github.com/brianfrankcooper/YCSB/wiki

2 Cooper,B.F.,Silberstein,A.,Tam,E.,Ramakrishnan,R.,Sears,R.:Benchmarking cloud serving systems with YCSB. In: Proceedings of the 1st ACM
symposium on Cloud computing. pp. 143–154. SoCC ’10, ACM, New York, NY, USA (2010)

3 Nelubin, D., Engber, B.: Failover Characteristics of leading NoSQL databases. Tech. rep., Thumbtack Technology (2013)

4 Massie, M.L., Chun, B.N., Culler, D.E.: The Ganglia Distributed Monitoring Sys- tem: Design, Implementation, and Experience. Parallel Computing
30(7) (Jul 2004)

+ Quality driven benchmark! 69

Wo
rk
lo
ad
	

ex
ec
ut
or
	

DB
	
 i
nt
er
fa
ce
	

la
ye
r	

Client	
 threads	

Stats	
 Cloud	
 serving	

store	

QDB	

YSCB	
 Client	

•  Read/write	
 mix	

•  Record	
 size	

•  Popularity	
 distribution	

•  DB	
 to	
 use	

•  Workload	
 to	
 use	

•  Target	
 throughput	

•  Number	
 of	
 threads	

Read	
 latency	

Throughput	

Linked	
 data	
 &	

temporal	
 streams	

+ Ongoing work!

n  QDB benchmark extends YCSB: FaultTolerance, Recoverability and TimeBehaviour

n  Pivot data model for representing NoSQL stores data models

n  Sample application: Shopping system1 (ProductInfo)

n  Document data stores: MongoDB, Couchbase, VoltDB, Redis, Neo4J

n  Cluster of four Ubuntu 12.04 servers deployed with extra large VM instances (8
virtual cores and 14 GB of RAM) in Windows Azure2

n  Distributed polyglot (big) database engineering

n  Model2Roo: engineering data storage solutions for given data collections

n  ExSchema for supporting the maintenance of a polyglot storage solution

70

1 McMurtry, D., Oakley, A., Sharp, J., Subramanian, M., Zhang, H.: Data Access for Highly-Scalable Solutions: Using SQL, NoSQL, and Polyglot Persistence
Microsoft patterns & practices, Microsoft (2013)

2 http://www.windowsazure.com/

3 http://forge.puppetlabs.com/puppetlabs/

4Yahoo Cloud Serving Benchmark, https://github.com/brianfrankcooper/YCSB/wiki

Challenge: open data!
n  Data journalism

n  http://datauy.org/que-es-una-hackaton/

n  Open data services:

n  http://www.data-publica.com

n  Open data repositories

n  http://www.infotecarios.com/hackathon-repositorios-

de-datos-abiertos-open-data-segunda-parte/

n  Open knowledge

n  https://okfn.org

n  Datos en Uruguay

n  http://datauy.org/asi-fue-el-dia-mundial-de-los-

datos-abiertos-2013/

71

Web

Datasets
Editior

Internal
Datasets

Open
Data

Socail
Networks

Crawl
Scraping
ETL, etc.

Text Mining
Structuration
Augmentation

…

Delivery
Visualization

Custom Off the
shelf

Challenge: polyglot meets XPeranto!
Given a data collection coming from different social networks stored on NoSQL systems (Neo4J and Mongo) [possibly according
to a strategy combining sharding and replication techniques], extend the UnQL pivot query language considering

n  Data processing operators adapted to query different data models (graph, document). Example query Neo + Mongo and
what about Join, Union …

n  Assuming concurrent CRUD operations to the stores can you expect query results to be consistent ? How can you tag your
results or implement a sharding strategy in order to determine whether results are consistent?

n  Querying data represented on different models: How can you exploit the structure of the different stores for expressing
queries ? Provide adapted operators? Give generic operators and then rewrite queries?

n  Normally, Polyglot solutions tend to solve some data processing issues in the application code. This can be penalizing.
Discuss the challenges to address for ensuring that your queries will be able to scale as the collection grows.

72

Challenge: expected results!

n  Give the principle of your proposal through a partial programming
solution, of the operators of your UnQL extension, detail the query
evaluation process if U want your solution to scale

n  We ask U to sketch the solution on the polyglot database that we provide

consisting of mongo, Neo4J stores

n  https://github.com/jccastrejon/edbt-unql

n  Technical requirements: VMware player 5

73

When is polyglot persistence
pertinent?!
n  Application essentially composing and serving web pages

n  They only looked up page elements by ID, they had different needs or availability,
concurrency and no need to share all their data

n  A problem like this is much better suited to a NoSQL store than the corporate
relational DBMS

n  Scaling to lots of traffic gets harder and harder to do with vertical scaling

n  Many NoSQL databases are designed to operate over clusters

n  They can tackle larger volumes of traffic and data than is realistic with a single

server

74

+ Conclusions!

n  Data are growing big and more heterogeneous and they need new
adapted ways to be managed thus the NoSQL movement is gaining
momentum

n  Data heterogeneity implies different management requirements this is
where polyglot persistence comes up

n  Consistency – Availability – Fault tolerance theorem: find the balance !

n  Which data store according to its data model?

n  A lot of programming implied …

75

Open opportunities if you’re interested in this topic!

Contact: Genoveva Vargas-Solar, CNRS, LIG-LAFMIA

Genoveva.Vargas@imag.fr	

http://www.vargas-­‐solar.com/teaching/	
 	
 	
 	

http://code.google.com/p/exschema/	
 	

76

http://code.google.com/p/model2roo/	
 	

Open source polyglot persistence tools

References!
n  Eric	
 A.,	
 Brewer	
 "Towards	
 robust	
 distributed	
 systems."	
 PODC.	
 2000	

n  Rick,	
 Cattell	
 "Scalable	
 SQL	
 and	
 NoSQL	
 data	
 stores."	
 ACM	
 SIGMOD	
 Record	
 39.4	
 (2011):	
 12-­‐27	

n  Juan	
 Castrejon,	
 Genoveva	
 Vargas-­‐Solar,	
 Christine	
 Collet,	
 and	
 Rafael	
 Lozano,	
 ExSchema:	

Discovering	
 and	
 Maintaining	
 Schemas	
 from	
 Polyglot	
 Persistence	
 Applications,	
 In	
 Proceedings	
 of	

the	
 International	
 Conference	
 on	
 Software	
 Maintenance,	
 Demo	
 Paper,	
 IEEE,	
 2013	
 	

n  M.	
 Fowler	
 and	
 P.	
 Sadalage.	
 NoSQL	
 Distilled:	
 A	
 Brief	
 Guide	
 to	
 the	
 Emerging	
 World	
 of	
 Polyglot	

Persistence.	
 Pearson	
 Education,	
 Limited,	
 2012	

n  C.	
 Richardson,	
 Developing	
 polyglot	
 persistence	
 applications,	
 http://fr.slideshare.net/
chris.e.richardson/developing-­‐polyglotpersistenceapplications-­‐gluecon2013	

77

NOSQL STORES: AVAILABILITY AND
PERFORMANCE!

78

Replication master - slave!

n  Makes one node the authoritative copy/replica that
handles writes while replica synchronize with the master
and may handle reeds

n  All replicas have the same weight

n  Replicas can all accept writes

n  The lose of one of them does not prevent access to
the data store

n  Helps with read scalability but does not help with
write scalability

n  Read resilience: should the master fail, slaves can
still handle read requests

n  Master failure eliminates the ability to handle writes
until either the master is restored or a new master is
appointed

n  Biggest complication is consistency

n  Possible write – write conflict

n  Attempt to update the same record at the same

time from to different places

n  Master is a bottle-neck and a point of failure

79

� �

� �

� �

� �

� �

� �

Master'

Slaves'

all'updates'
made'to'the'master'

changes'propagate''
To'slaves'

reads'can'be'done'
from'master'or'slaves'

Master-slave replication management!
n  Masters can be appointed

n  Manually when configuring the nodes cluster

n  Automatically: when configuring a nodes cluster one of them elected as master. The master can appoint a new master

when the master fails reducing downtime

n  Read resilience

n  Read and write paths have to be managed separately to handle failure in the write path and still reads can occur

n  Reads and writes are put in different database connections if the database library accepts it

n  Replication comes inevitably with a dark side: inconsistency

n  Different clients reading different slaves will see different values if changes have not been propagated to all slaves

n  In the worst case a client cannot read a write it just made

n  Even if master-slave is used for hot backups, if the master fails any updates on to the backup are lost

80

Replication: peer-To-Peer!

n  Allows writes to any node; the nodes coordinate to
synchronize their copies

n  The replicas have equal weight

n  Deals with inconsistencies

n  Replicas coordinate to avoid

conflict

n  Network traffic cost for

coordinating writes

n  Unnecessary to make all replicas

agree to write, only the majority

n  Survival to the loss of the minority

of replicas nodes

n  Policy to merge inconsistent writes

n  Full performance on writing to any

replica

81

� �

� �

� �

� �

� �

� �

Master'

nodes'communicate'
their'writes'

all'nodes'read'
and'write'all'data'

Sharding!

n  Ability to distribute both data and
load of simple operations over many
servers, with no RAM or disk shared
among servers

n  A way to horizontally scale writes

n  Improve read performance

n  Application/data store support

n  Puts different data on separate nodes

n  Each user only talks to one servicer

so she gets rapid responses

n  The load should be balanced out

nicely between servers

n  Ensure that

n  data that is accessed together is

clumped together on the same
node

n  that clumps are arranged on the
nodes to provide best data access

82

� �

� �

Each%shard%reads%and%
writes%its%own%data%

�

�

� �

Sharding!

n  Small databases are fast

n  Big databases are slow

n  Keep databases small

n  Start with a big monolithic
database

n  Break into smaller databases

n  Across many clusters

n  Using a key value

83

Database laws
 Principle

Instead of having one million customers information

on a single big machine ….

100 000 customers on smaller and different machines

+ Sharding criteria!

n  Partitioning

n  Relational: handled by the DBMS (homogeneous DBMS)

n  NoSQL: based on ranging of the k-value

n  Federation

n  Relational

n  Combine tables stored in different physical databases

n  Easier with denormalized data

n  NoSQL:

n  Store together data that are accessed together

n  Aggregates unit of distribution

84

Sharding!

n  Each application server (AS) is
running DBS/client

n  Each shard server is running

n  a database server

n  replication agents and query

agents for supporting parallel
query functionality

n  Pick a dimension that helps sharding easily
(customers, countries, addresses)

n  Pick strategies that will last a long time as
repartition/re-sharding of data is operationally
difficult

n  This is done according to two different principles

n  Partitioning: a partition is a structure that

divides a space into tow parts

n  Federation: a set of things that together

compose a centralized unit but each individually
maintains some aspect of autonomy

85

Architecture
 Process

Customers data is partitioned by ID in shards using an

algorithm d to determine which shard a customer ID belongs to

Replication: aspects to consider!

n  Conditioning
 n  Important elements to consider

n  Data to duplicate

n  Copies location

n  Duplication model (master –

slave / P2P)

n  Consistency model (global –

copies)

86

Fault	

tolerance	

Availability	
 Transparency	

levels	

Performance	

! Find a compromise !

PARTITIONING!
A PARTITION IS A STRUCTURE THAT DIVIDES A SPACE INTO TOW PARTS

87

Background: distributed relational
databases!
n  External schemas (views) are often subsets

of relations (contacts in Europe and
America)

n  Access defined on subsets of relations:
80% of the queries issued in a region have
to do with contacts of that region

n  Relations partition

n  Better concurrency level

n  Fragments accessed independently

n  Implications

n  Check integrity constraints

n  Rebuild relations

88

Fragmentation!
n  Horizontal

n  Groups of tuples of the same relation

n  Budget < 300 000 or >= 150 000

n  Not disjoint are more difficult to manage

n  Vertical

n  Groups attributes of the same relation

n  Separate budget from loc and pname of

the relation project

n  Hybrid

89

Fragmentation: rules!

Vertical

n  Clustering

n  Grouping elementary fragments

n  Budget and location information in two

relations

n  Splitting

n  Decomposing a relation according to

affinity relationships among attributes

Horizontal

n  Tuples of the same fragment must be statistically homogeneous

n  If t1 and t2 are tuples of the same fragment then t1 and t2 have
the same probability of being selected by a query

n  Keep important conditions

n  Complete

n  Every tuple (attribute) belongs to a fragment (without
information loss)

n  If tuples where budget >= 150 000 are more likely to be
selected then it is a good candidate

n  Minimum

n  If no application distinguishes between budget >= 150 000

and budget < 150 000 then these conditions are unnecessary

90

Sharding: horizontal partitioning!
n  The entities of a database are split into two or

more sets (by row)

n  In relational: same schema several physical
bases/servers

n  Partition contacts in Europe and America shards where

they zip code indicates where the will be found

n  Efficient if there exists some robust and implicit way to

identify in which partition to find a particular entity

n  Last resort shard

n  Needs to find a sharding function: modulo, round

robin, hash – partition, range - partition

91

Load%balancer%

Cache%1%

Cache%2%

Cache%3%

MySQL%
Master%

MySQL%
Master%

Web%1%

Web%2%

Web%3%

Even%IDs%

Odd%IDs%
MySQL%
Slave%1% MySQL%

Slave%2%

MySQL%
Slave%n%

MySQL%
Slave%1% MySQL%

Slave%2%

MySQL%
Slave%n%

FEDERATION!
A FEDERATION IS A SET OF THINGS THAT TOGETHER COMPOSE A CENTRALIZED UNIT BUT EACH
INDIVIDUALLY MAINTAINS SOME ASPECT OF AUTONOMY

92

FEDERATION: vertical SHARDING!
n  Principle

n  Partition data according to their logical affiliation

n  Put together data that are commonly accessed

n  The search load for the large partitioned entity can
be split across multiple servers (logical and
physical) and not only according to multiple indexes
in the same logical server

n  Different schemas, systems, and physical bases/
servers

n  Shards the components of a site and not only data

93

Load%balancer%

Cache%1%

Cache%2%

Cache%3%

MySQL%
Master%

MySQL%
Master%

Web%1%

Web%2%

Web%3%

Site%database%

Resume%database%
MySQL%
Slave%1% MySQL%

Slave%2%

MySQL%
Slave%n%

MySQL%
Slave%1%

Internal%
user%

NOSQL STORES: PERSISTENCY MANAGEMENT!

94

 «memcached»
n  «memcached» is a memory management protocol based on a cache:

n  Uses the key-value notion

n  Information is completly stored in RAM

n  «memcached» protocol for:

n  Creating, retrieving, updating, and deleting information from the

database

n  Applications with their own «memcached» manager (Google,

Facebook, YouTube, FarmVille, Twitter, Wikipedia)

95

Storage on disc (1)!

n  For efficiency reasons, information is stored using the RAM:

n  Work information is in RAM in order to answer to low latency requests

n  Yet, this is not always possible and desirable

Ø  The process of moving data from RAM to disc is called "eviction”; this
process is configured automatically for every bucket

96

Storage on disc (2)!
n NoSQL servers support the storage of key-value pairs on disc:

n  Persistency–can be executed by loading data, closing and
reinitializing it without having to load data from another source

n  Hot backups– loaded data are sotred on disc so that it can be
reinitialized in case of failures

n  Storage on disc– the disc is used when the quantity of data is
higher thant the physical size of the RAM, frequently used
information is maintained in RAM and the rest es stored on disc

97

Storage on disc (3)!
n  Strategies for ensuring:

n  Each node maintains in RAM information on the key-value pairs it stores.
Keys:

n  may not be found, or

n  they can be stored in memory or on disc

n  The process of moving information from RAM to disc is asynchronous:

n  The server can continue processing new requests

n  A queue manages requests to disc

Ø  In periods with a lot of writing requests, clients can be notified that the

server is termporaly out of memory until information is evicted

98

NOSQL STORES: CONCURRENCY CONTROL!

99

Multi version concurrency control
(MVCC)!
n  Objective: Provide concurrent access to the database and in programming languages to implement transactional memory

n  Problem: If someone is reading from a database at the same time as someone else is writing to it, the reader could see a
half-written or inconsistent piece of data.

n  Lock: readers wait until the writer is done

n  MVCC:

n  Each user connected to the database sees a snapshot of the database at a particular instant in time

n  Any changes made by a writer will not be seen by other users until the changes have been completed (until the transaction has been

committed

n  When an MVCC database needs to update an item of data it marks the old data as obsolete and adds the newer version elsewhere à

multiple versions stored, but only one is the latest

n  Writes can be isolated by virtue of the old versions being maintained

n  Requires (generally) the system to periodically sweep through and delete the old, obsolete data objects

100

