MR patterns on an elephant

Genoveva Vargas Solar

French Council of scientific research, LIG-LAFMIA, France, Genoveva.Vargas@imag.fr
Placido A. Souza Neto

IFRN, LIG, Brazil/France, placido.neto@ifrn.edu.br

http://vargas-solar.com/bigdata-fest/challenges/mr-patterns-on-an-elephant/

Roadmap

= Warming up: design aspects of a map-reduce solution
= Map reduce design patterns

m Hands on & Discussion while working

Map-reduce

m Programming model for expressing distributed computations on massive
amounts of data

m Execution framework for large-scale data processing on clusters of
commodity servers

m Market: any organization built around gathering, analyzing, monitoring,
filtering, searching, or organizing content must tackle large-data problems

m data- intensive processing is beyond the capability of any individual machine and
requires clusters

= large-data problems are fundamentally about organizing computations on
dozens, hundreds, or even thousands of machines

« Data represent the rising tide that lifts all boats—more data lead to better algorithms and
systems for solving real-world problems »

Principle

map: (ki,v1) — [(k2,v2)]
reduce: (ka, [v2]) — [(ks,v3)]

m Stage 1: Apply a user-specified computation over all input records in a dataset.
= These operations occur in parallel and yield intermediate output (key-value pairs)

m Stage 2: Aggregate intermediate output by another user-specified computation
= Recursively applies a function on every pair of the list

Counting words

see bob throw
see spot run

(URI, document) -> (term, count)

=

see
bob
throw
see
spot
run

1

R R R R R

Map

=

bob <1>
run <1>
see <1,1>
spot <1>
throw <1>

Shuffle/Sort

=

bob 1
run 1
see 2
spot 1
throw 1
Reduce

Key-value pairs

m Basic data structure in MapReduce, keys and values may be
= primitive such as integers, floating point values, strings, and raw bytes
= arbitrarily complex structures (lists, tuples, associative arrays, etc.)

m Part of the design of MapReduce algorithms involves imposing the key-
value structure on arbitrary datasets

= For a collection of web pages, keys may be URLs and values may be the
actual HTML content.

= For a graph, keys may represent node ids and values may contain the
adjacency lists of those nodes

Map reduce example

1: class MAPPER
/ j \ \ 22 method MAP(docid a, doc d)
3: for all term ¢ € doc d do
| mapper | [mapper | [mapper | [mapper | 4 EMIT(term ¢, count 1)

B2 : class REDUCER

Shuffle and Sort: aggregate values by keys method REDUCE(term t$ counts [Ch Coy ..])

1
2
% sum « 0
l l 4: for all count ¢ € counts [c;,¢y,...] do
_reducer] [reaucer | (_reducer] 5 sum « sum +c
6:

| . EMIT(term ¢, count sum)
X Y

Map-reduce phases

m |nitialisation

m Map: record reader, mapper,
combiner, and partitioner

m Reduce: shuffle, sort, reducer, and
output format

4

m Partition input (key, value) pairs
into chunks run map() tasks in
parallel

m After all map()’s have been
completed consolidate the values
for each unique emitted key

m Partition space of output map
keys, and run reduce() in parallel

Map-reduce additional elements

[AEllsElcioEl -l -

A B W

(Cmmewer) [mawer] [mawer] Conmpoer)

W B

| combiner | combiner I I combiner I | combiner '

' ! ! v
[partitioner] [partitioner] [partitioner] [partitioner]
| Shuffle and Sort: aggregate values by keys |
(115]
i

[reducer] [reducer] [reducer]

m Partitioners are responsible for dividing up the intermediate key space and
assigning intermediate key-value pairs to reducers

= the partitioner species the task to which an intermediate key-value pair must be copied

m Combiners are an optimization in MapReduce that allow for local aggregation
before the shuffle and sort phase

4

1

2:
3:
4:

1
2
3
4:
5
6

Counting words basic algorithm

. class MAPPER

method MAP(docid a, doc d)
for all term ¢ € doc d do
EMmiIT(term ¢, count 1)

: class REDUCER

method REDUCE(term ¢, counts ¢, ¢, .. .])
sum « 0
for all count ¢ € counts [ci,¢z,...] do
sum «— sum +c¢
EMmIT(term ¢, count sum)

m the mapper emits an
intermediate key-value pair for
each term observed, with the
term itself as the key and a
value of one

m reducers sum up the partial
counts to arrive at the final
count

Local aggregation

Combiner technique

= Aggregate term counts across the documents
processed by each map task

= Provide a general mechanism within the
MapReduce framework to reduce the amount
of intermediate data generated by the
mappers

= Reduction in the number of intermediate key-
value pairs that need to be shuffled across the
network

m from the order of total number of terms in
the collection to the order of the number of
unique terms in the collection

1: class MAPPER

2 method MAP(docid a, doc d)

3: H «— new ASSOCIATIVEARRAY
4: for all term ¢ € doc d do

5 H{t} «— H{t} +1

6 for all term t € H do

7 EMiIT(term ¢, count H{t})

In-mapper combining pattern: One

step further

m The workings of this algorithm critically depends on the details
of how map and reduce tasks in Hadoop are executed

1: class MAPPER
= Prior to processing any input key-value pairs, the mapper’s 2 method INITIALIZE
Initialize method is called 3 H « new ASSOCIATIVEARRAY
m mhic.:h.ti.s I?n API hook fclr user—sp(:cifisdlglodet t 4 method MAP(dOCid a, doe d)
m e initialize an associative array for holding term counts
= Since it is possible to preserve itate acrosz multiple calls of the > for all term € doc d do
Map method (for each input key-value pair), we can 6 H{t} — H{t} +1
m continue to accumulate partial term counts in the associative 7 method CLOSE
array across multiple documents,
m emit key-value pairs only when the mapper has processed all 8 for all term ¢ € H do
documents 9 EMiIT(term ¢, count H{t})

m Transmission of intermediate data is deferred until the Close
method in the pseudo-code

In-mapper combining pattern:
advantages

m Provides control over when local aggregation occurs and how it exactly takes place
» Hadoop makes no guarantees on how many times the combiner is applied, or that it is even applied at all

= The execution framework has the option of using it, perhaps multiple times, or not at all

= Such indeterminism is unacceptable, which is exactly why programmers often choose to perform their own local
aggregation in the mappers

m In-mapper combining will typically be more efficient than using actual combiners.
= One reason for this is the additional overhead associated with actually materializing the key-value pairs

Combiners reduce the amount of intermediate data that is shuffled across the network, but don’t actually reduce the
number of key-value pairs that are emitted by the mappers in the first place

The mappers will generate only those key-value pairs that need to be shuffled across the network to the reducers

Avoid unnecessary object creation and destruction (garbage collection takes time), and, object serialization and
deserialization ﬁwhen intermediate key-value pairs fill the in-memory buffer holding map outputs and need to be
temporarily spilled to disk)

In-mapper combining pattern:
limitations

m Breaks the functional programming underpinnings of MapReduce, since state is being preserved across
multiple input key-value pairs

m There is a fundamental scalability bottleneck associated with the in-mapper combining pattern

m [t critically depends on having sufficient memory to store intermediate results until the mapper has completely processed
all key-value pairs in an input split

= One common solution to limiting memory usage is to “block” input key-value pairs and “flush” in-memory data structures
periodically

= Instead of emitting intermediate data only after every key-value pair has been processed, emit partial results after
processing every n key-value pairs

m Implemented with a counter variable that keeps track of the number of input key-value pairs that have been processed

= The mapper could keep track of its own memory footprint and flush intermediate key-value pairs once memory usage
has crossed a certain threshold

m Memory size empirically determined: difficult due to concurrent access to memory

Building Effective Algorithms and Analytics
Jfor Hadoop and Other Systems

| MapReduce

MAP REDUCE PATTERNS

MapReduce design patterns, O’Relly

Map - reduce design patterns

@ DATA ORGANIZATION
Structured to hierarchical

@ JOIN
© Reduce side join

® SUMMARIZATION © FILTERING

O Numerical

Minimum, maximum,
count, average, median-
standard deviation

?

O Inverted index

Wikipedia inverted index
?

Counting
O with counters

Count number of records, a
small number of unique
instances, summations
Number of users per state

?

O Filtering @)

» Closer view of data, tracking
event threads, distributed
grep, data cleansing, simple
random sampling, remove
low scoring data

© Bloom
* Remove most of nonwatched
values, prefiltering data for a
set membership check
* Hot list, Hbase query

Top ten
® Outlier analysis, select
interesting data, catchy
dashbords
» Top ten users by reputation

© Distinct

» Deduplicate data, getting
distinct values, protecting from

inner join explosion
» Distinct user ids

Prejoining data, preparing data for
Hbase or MongoDB

* Post/comment building for
StackOverflow, Question/Answer
building

© Partitioning

Partitioning users by last access date

Binning
® Binning by Hadoop-related tags

© Total order sorting

Sort users by last visit

© Shuffling

Anonymizing StackOverflow comments

Multiple large data sets joined by
foreign key
* User-comment join

© Reduce side join with
bloom filter

Reputable user — comment join

Replicated join

® Replicated user — comment join
© Composite join
Composite user — comment join

O Cartesian product

Comment comparison

SUMMARIZATION
@) Numerical

Inverted index
@ Counting with counters

Numerical Summarization pattern

m The numerical summarizations pattern is a general pattern for calculating aggregate statistical values over a data collection

Group records together by a key field and calculate a numerical aggregate per group to get a top-level view of the larger data set

Bbe a generic numerical summarization function we wish to execute over some list of values (v,, v,, v;, ..., v,) tofindavalueA,
i.e.A=06(vy, vy, V3, ..., V,). Examples of 8 include a minimum, maximum, average, median, and standard deviation

m Motivation and applicability

Group logins by the hour of the day and perform a count of the number of records in each group, group advertisements by types to
determine how affective ads are for better targeting

Dealing with numerical data or counting
The data can be grouped by specific fields

Structure

The mapper outputs keys that consist of each field to group by,
and values consisting of any pertinent numerical items

The combiner can greatly reduce the number of intermediate
key/value pairs to be sent across the network to the reducers for

some numerical summarization functions

= If the function 6 is an associative and commutative operation, it
can be used for this purpose

= If you can arbitrarily change the order of the values and you can
group the computation arbitrarily

The reducer

= receives a set of numerical values (v,, v,, v, ..., Vv,) .
associated with a group-by key records to per%orm the functionA =
O(vy, Vy, Vi, eee, V)

= The value of A is output with the given input key

(key, summary field)
Ma (key, summary field)

(key, summary field)
(key, summary field)

(key, summary field)
Ma (key, summary field)

Partitioner

Partitioner

Partitioner

(group B, summary)
(group D, summary)

(group B, summary)
(group D, summary)

Resemblances and performance

analvsis

Resemblances Performance analysis

m Aggregations performed by

SQLThe Numerical Aggregation pattern is analogous to using aggregates after a GROUP j o) bs us i n g th iS patte n ty p i Cal |y
BY in SQL:
SEL(:CT MIN(numericalcoll), MAX(numericalcoll), perform We” When the
COUNT(*) FROM table GROUP BY groupcol2; . .
Pig v combiner is properly used

The GROUP ... BY expression, followed by a FOREACH .. GENERATE:

b = GROUP a BY groupcol2;
c = FOREACH b GENERATE group, MIN(a.numericalcoll),

oo oumer ealoot, CoN.Stances m These types of operations are
what MapReduce was built for

http://vargas-solar.com/bigdata-fest/challenges/mr-patterns-on-an-elephant/

4

C— erower i

Hadoop Ecosystem

= M workflow JEAL”—— Sueport |

Crawling Web Data

-E>
More High Level
Interfaces

il ey)

S

Unstructured Data |

Engine + Logic

| igh Level Interfaces \

i

17
amazon

N
webservices™

(

\m,

as

—{

| Analytics

Gl

-
E 9902 nino
Sacop | 94,0

Dashboard

Gangiia 4N
e 711

Intellicus Dashboards

/)

Source: http://indoos.wordpress.com/2010/08/16/hadoop-ecosystem-world-map/

Hortonworks

GOUVERNANCE ACCES AUX DONNEES SECURITE EXPLOITATION
INTEGREE

Script SQL Java/... NoSQL Stream Reche... In-Mem Autres...

Pig Hive Cascad...|| HBase Storm Solr Spark Engines
Flux de données, HCatalog Accumulo
cycle de vie et Phoenix
gourvernance Slider IS Slider Tez S/ T
Falcon . ,
YARN : systeme d'exploitation des donnéees
WebHDFS
NFS
Flume
Sqoop HDFS
Kafka Systéeme de fichiers distribué Hadoop

GESTION DES DONNEES

http://fr.hortonworks.com

Authentication,
Authorization,
Audit & Data
Protection

Stockage : HDFS
Ressources : YARN
Acces : Hive
Pipeline : Falcon
Cluster : Knox
Cluster: Ranger

22

Fournir, gérer et
surveiller

Ambari
ZooKeeper

Programmation

Oozie

Execution Join in Hadoop

m Joins are used to combine rows from two or more tables.

m Joins are possibly one of the most complex operations one can
execute in MapReduce.

m Joining two very large data sets together does not fit into the Map
Reduce paradigm gracefully....Why? Time for processing.

m Let’s go over how implement inner join on Hadoop...

Inner JOIN

Remembering Inner Join
Table A - Users

3 3738 New York, NY
4 12946 New York, NY SELECT <select List>
5 17556 San Diego, CA FROM Table A A
INNER JOIN Table B B
9 3443 Oakland, CA ki Mt
3 35314 Not sure why this is getting downvoted.
3 48002 Hehe, of course, it’s all true!
5 44921 Please see my post below.
5 44920 Thank you very much for your reply.

8 48675 HTML is not a subset of XML!

Remembering Inner Join

3 3738 New York, NY 3 35314 Not sure why this is getting downvoted.

3 3738 New York, NY 3 48002 Hehe, of course, it’s all true!

5 17556 San Diego, CA 5 44921 Please see my post below.

5 17556 San Diego, CA 5 44920 Thank you very much for your reply.
Table C - Inner Join of A + B on User ID Inner JOIN

SELECT <select_Llist>
FROM Table_A A
INNER JOIN Table_B B
ON A.Key = B.Key

Implementing Join in Hadoop

Data Set A :
N !
1 Hyor 411
Input | 1 > Join (bob, ‘md’)
Split | Mapper >
]
Yy
Input [! > Join
Split \ Mapper >
]
]
| D
nput ! > Join
Split 1 Mapper >
E
DataSetB !
|b]
! . (bob, 37)
Input [! > Join
Split | Mapper
|
]
|>]
, . (bob, 33)
Input | 1 > Join
Split | Mapper
|
]

Shuffle
and Sort

Join
Reducer

Join
Reducer

Join
Reducer

Output
Part

Output
Part

Output
Part

Beyond the control of programmers

m Where a mapper or reducer runs (i.e., on which node in the cluster)
m When a mapper or reducer begins or finishes
m Which input key-value pairs are processed by a specific mapper

m Which intermediate key-value pairs are processed by a specific
reducer

Under the control of programmers

m The ability to construct complex data structures as keys and values to store and communicate partial
results.

m The ability to execute user-specified initialization code at the beginning of a map or reduce task, and the
ability to execute user-specified termination code at the end of a map or reduce task.

m The ability to preserve state in both mappers and reducers across multiple input or intermediate keys.

m The ability to control the sort order of intermediate keys, and therefore the order in which a reducer will
encounter particular keys.

m The ability to control the partitioning of the key space, and therefore the set of keys that will be
encountered by a particular reducer.

Some remarks

] 151 Madeeduce algorithms, the extent to which efficiency can be increased through local aggregation
epends

= on the size of the intermediate key space
= the distribution of keys themselves
= the number of key-value pairs that are emitted by each individual map task

m Opportunities for aggregation come from having multiple values associated with the same key
(whether one uses combiners or employs the in-mapper combining pattern)

= Inthe word count example, local aggregation is effective because many words are encountered multiple times
within a map task
= In our word count example, we do not filter frequently-occurring words: therefore, without local aggregation, the

reducer that is responsible for computing the count of ‘the’ will have a lot more work to do than the typical reducer,
and therefore will likely be a straggler

= With local aggregation (either combiners or in-mapper combining), we substantially reduce the number of values
associated with frequently-occurring terms, which alleviates the reduce straggler problem

e
R S
B

.1 V I’yfwr

Map Reduce sub-phases

description

Map sub-phases

m Record reader translates an input split generated by input format into records
®m parse the data into records, but not parse the record itself

= It passes the data to the mapper in the form of a key/value pair. Usually the key in this context is positional information and
the value is the chunk of data that composes a record

m Map user-provided code is executed on each key/value pair from the record reader to produce zero or more new key/
value pairs, called the intermediate pairs

= The key is what the data will be grouped on and the value is the information pertinent to the analysis in the reducer

m Combiner, an optional localized reducer
= Can group data in the map phase

= It takes the intermediate keys from the mapper and applies a user-provided method to aggregate values in the small scope of
that one mapper

m Partitioner takes the intermediate key/value pairs from the mapper (or combiner) and splits them up into shards, one
shard per reducer

| <

Reduce sub phases

m Shuffle and sort takes the output files written by all of the partitioners and downloads them to
the local machine in which the reducer is running.

®m These individual data pieces are then sorted by key into one larger data list

= The purpose of this sort is to group equivalent keys together so that their values can be iterated
over easily in the reduce task

m Reduce takes the grouped data as input and runs a reduce function once per key grouping
= The function is passed the key and an iterator over all of the values associated with that key

= Once the reduce function is done, it sends zero or more key/value pair to the final step, the
output format

m Qutput format translates the final key/value pair from the reduce function and writes it out to
a file by a record writer

| <

Partitioner & combiner

How do they work?

Partitioners and combiners

Partitioners are responsible for dividing up the intermediate key space and assigning intermediate key-value pairs to
reducers, i.e., the partitioner specifies the task to which an intermediate key-value pair must be copied

= Reducers process keys in sorted order (which is how the “group by” is implemented)

m The simplest partitioner involves computing the hash value of the key and then taking the mod of that value with the number
of reducers

= This assigns approximately the same number of keys to each reducer (dependent on the quality of the hash function)

Combiners “mini-reducers” that take place on the output of the mappers, prior to the shuffle and sort phase
= Optimize MapReduce allowing for local aggregation before the shuffle and sort phase

m All key-value pairs need to be copied across the network, and so the amount of intermediate data will be larger than the
input collection itself - inefficient

m One solution is to perform local aggregation on the output of each mapper, i.e., to compute a local count for a word over
all the documents processed by the mapper

m Can emit any number of key-value pairs, but the keys and values must be of the same type as the mapper output

With this modification (assuming the maximum amount of local aggregation possible), the number of intermediate key-value pairs

will be at most the number of unique words in the collection times the number of mappers (and typically far smaller because each
mapper may not encounter every word)

| <

Map reduce execution framework

HADOOP

Overview

m |Important idea behind MapReduce is separating the what of distributed processing from the how

m A MapReduce program (job) consists of
= code for mappers and reducers packaged together with
= configuration parameters (such as where the input lies and where the output should be stored)

m Execution framework responsibilities: scheduling

= Each MapReduce job is divided into smaller units called tasks

= Inlarge jobs, the total number of tasks may exceed the number of tasks that can be run on the cluster
concurrently - manage tasks queues

= Coordination among tasks belonging to different jobs

|«

Distributed file system

m Abandons the separation of computation and storage as distinct components in a cluster
= Google File System (GFS) supports Google’s proprietary implementation of MapReduce;

= In the open-source world, HDFS (Hadoop Distributed File System) is an open-source implementation of
GFS that supports Hadoop

m The main idea is to divide user data into blocks and replicate those blocks across the local disks of
nodes in the cluster

m Adopts a master-slave architecture

= Master (namenode HDFS) maintains the file namespace (metadata, directory structure, file to block
mapping, location of blocks, and access permissions)

= Slaves (datanode HDFS) manage the actual data blocks

|«

HFDS general architecture

HDFS namenode

licati
Appllcation (file name, block id) = ffoolbar
HDFS Client | le@w block 3072

A (block id, block location)

instructions to datanode

datanode state

(block id, byte range)

HDFS datanode HDFS datanode
Linux file system Linux file system

block data

86 88

= An a%)“cation client wishing to reaa a mie (or a poruon tnereor) must Tirst contact tne namenoae 1o determine where the actual data is
store

m The namenode returns the relevant block id and the location where the block is held (i.e., which datanode)
m The client then contacts the datanode to retrieve the data.

m HDFS lies on top of the standard OS stack (e.g., Linux): blocks are stored on standard single-machine file systems

HDFS properties

m HDFS stores three separate copies of each data block to ensure both reliability, availability, and performance

m Inlarge clusters, the three replicas are spread across different physical racks,

m HfIﬁ.FS is resilient towards two common failure scenarios individual datanode crashes and failures in networking equipment that bring an entire rack
offline.

= Replicating blocks across physical machines also increases opportunities to co-locate data and processing in the scheduling of MapReduce jobs,
since multiple copies yield more opportunities to exploit locality

m To create a new file and write data to HDFS
= The application client first contacts the namenode
= The namenode
m updates the file namespace after checking permissions and making sure the file doesn’t already exist
= allocates a new block on a suitable datanode
= The application is directed to stream data directly to it
= From the initial datanode, data is further propagated to additional replicas

|«

Hadoop cluster architecture

namenode job submission node

tasktracker tasktracker

datanode daemon datanode daemon

Linux file system Linux file system

m The HDFS namenode runs the namenode daemon slave node siave node slave node

m The job submission node runs the jobtracker, which is the single point of contact for a client
wishing to execute a MapReduce job

m The jobtracker
Monitors the progress of running MapReduce jobs
Is responsible for coordinating the execution of the mappers and reducers
Tries to take advantage of data locality in scheduling map tasks I 4

Hadoop cluster architecture

m Tasktracker
= It accepts tasks (Map, Reduce, Shuffle, etc.) from JobTracker

m Each TaskTracker has a number of slots for the tasks: these are
execution slots available on the machine or machines on the same rack

= It spawns a separate JVM for execution of the tasks

= It indicates the number of available slots through the hearbeat message to
the JobTracker

|«

Execution framework

m The developer submits a MapReduce program to the submission
node of a cluster (in Hadoop, this is called the jobtracker)

m Execution framework takes care of everything else: it transparently
handles all other aspects of distributed code execution, on clusters
ranging from a single node to a few thousand nodes.

m Distribution, synchronization and failure are handled

|«

Hadoop job execution

m The input is split in M groups ()
= each group is assigned to a mapper — o ™ Reduce()
(assignment is based on the data locality e f.u’pmeo‘, m
principle) _[Master].
- M read()
= each mapper processes a group and stores ' Y result

the intermediate pairs locally

m Grouped instances are assigned to reducers
thanks to a hash function

= (Shuffle) intermediate pairs are sorted on their
key by the reducer

m grouped instances, submitted to the reduce()
function

Hadoop job execution: mapper

m In Hadoop, mappers are Java objects with a Map method (among others)
= A mapper object is instantiated for every map task by the tasktracker

m The life-cycle of this object begins with

m [nstantiation, where a hook is provided in the API to run programmer-specified code

m After initialization, the Map method is called (by the execution framework) on all key-value
pairs in the input split.

= Since these method calls occur in the context of the same Java object, it is possible to
preserve state across multiple input key-value pairs within the same map task

m After all key-value pairs in the input split have been processed, the mapper object
provides an opportunity to run programmer-specified termination code

|«

Hadoop job execution: reducer

m Each reducer object is instantiated for every reduce task.
= The Hadoop API provides hooks for programmer-specified initialization and termination
code.

m After initialization, for each intermediate key in the partition (defined by the
partitioner), the execution framework repeatedly calls the Reduce method with an

intermediate key and an iterator over all values associated with that key

m The programming model also guarantees that intermediate keys will be presented
to the Reduce method in sorted order

m Since this occurs in the context of a single object, it is possible to preserve state across
multiple intermediate keys (and associated values) within a single reduce task

|«

Other map reduce patterns

Maximum, minimum and count
example

m Problem

m Given a list of user’'s comments, determine the first and last time a user
commented and the total number of comments from that user

m Principle

= After a grouping operation, the reducer simply iterates through all the values
associated with the group and finds the min and max, as well as counts the

number of members in the key grouping

= Due to the associative and commutative properties, a combiner can be used to
vastly cut down on the number of intermediate key/value pairs that need to be

shuffled to the reducers

1<

Maximum, minimum and count
example

= Mapper

= The mapper will pre-process input values by extracting the attributes from each input record: the creation date and the
user identifier

= The output key is the user ID and the value is three columns of our future output: the minimum date, the maximum date,
and the number of comments this user has created

m Reducer
= The reducer iterates through the values to find the minimum and maxi- mum dates, and sums the counts

m Combiner

= As we are only interested in the count, minimum date, and maximum date, multiple comments from the same user do not
have to be sent to the reducer.

= The minimum and maximum comment dates can be calculated for each local map task without having an effect on the
final minimum and maximum.

1<

average example

m Problem: given a list of user’s comments, determine the average comment length per hour of day

T}Dg mapper processes each input record to calculate the average comment length based on the time
of day

m The output key is the hour of day

m The output value is two columns, the comment count and the average length of the comments for
that hour

m Because the mapper operates on one record at a time, the count is simply 1 and the average length
is equivalent to the comment length

The reducer iterates through all given values for the hour and keeps two local variables: a running count
and running sum

m For each value, the count is multiplied by the average and added to the running sum
m The count is simply added to the running count

| <

Median and standard deviation
(CH-3,)

m Given a list of user’'s comments, determine the median and standard deviation of
comment lengths per hour of day

= A median is the numerical value separating the lower and higher halves of a data set
m This requires the data set to be complete, which in turn requires it to be shuffled

m The data must also be sorted, which can present a barrier because MapReduce does
not sort values

= A standard deviation shows how much variation exists in the data from the average, thus
requiring the average to be discovered prior to reduction

1<

implementation

Mapper processes each input record to calculate the median comment length within each hour of the day

The output key is the hour of day
The output value is a single value: the comment length

The reducer iterates through the given set of values and adds each value to an in-memory list

The iteration also calculates a running sum and count

After iteration, the comment lengths are sorted to find the median value

m [f the list has an odd number of entries, the median value is set to the middle value

m If the number is even, the middle two values are averaged

Next, the standard deviation is calculated by iterating through our sorted list after finding the mean from our running sum and count
A running sum of deviations is calculated by squaring the difference between each comment length and the mean.

The standard deviation is then calculated from this sum.

Finally, the median and standard deviation are output along with the input key

1<

SUMMARIZATION
@) Numerical

Inverted index
@ Counting with counters

Inverted index pattern

m The inverted index pattern is commonly used as an example for MapReduce
analytics

m Generate an index from a data set to allow for faster searches or data enrichment
capabilities

m Motivation and applicability

= Building an inverted index, a search engine knows all the web pages related to a keyword
ahead of time and these results are simply displayed to the user

= |nverted indexes should be used when quick search query responses are required. The
results of such a query can be pre-processed and ingested into a database

Inverted index reminder

Index data structure storing a mapping from T[@] = "it is what it is” ane A2
content, such as words or numbers, to its "banana®: {2}
locations in a database file, or in a documentora T[1] = "what is it" "1s%: 10, 1, 2}
set of documents. it": {6, 1, 2}
T[2] = "it is a banana” "what": {e, 1}

The purpose of an inverted index is to allow fast m A term search for the terms "what", "is" and "it" would
full text searches, at a cost of increased give the set {0,1,2} n {0,1,2} n {0,1} = {0,1}
processing when a document is added to the Iy (2, 2)}
database "banana": {(2, 3)}

"is": {(e, 1), (0, 4), (1, 1), (2, 1)}

titt: {(e, @), (0, 3), (1, 2), (2, @)}

"what": {(o, 2), (1, 0)}

m If we run a phrase search for "what is it" we get hits
for all the words in both document 0 and |. But the terms
occur consecutively only in document |.

Structure

m The mapper outputs the desired fields for the index as the
key and the unique identifier as the value

m The combiner can be omitted if you are just using the
identity reducer

= Some implementations concatenate the values associated with a group
before outputting them to the file system. In this case, a combiner can be
used

= It won’t have as beneficial an impact on byte count as the combiners in
other patterns, but there will be an improvement

m The partitioner

= Is responsible for determining where values with the same key will
eventually be copied by a reducer for final output.

u It can be customized for more efficient load balancing if the intermediate
keys are not evenly distributed.

m The reducer will receive a set of unique record identifiers to
map back to the input key

u The identifiers can either be concatenated by some unique delimiter,
leading to the output of one key/value pair per group, or

(keyword, unique ID)
(keyword, unique ID)

Mapper

(keyword, unique ID)
(keyword, unique ID)

(keyword, unique ID)
(keyword, unique D)

(keyword A, list of IDs)
(keyword D, list of IDs)

(keyword B, list of IDs)
(keyword , list of IDs)

1<

Performance analysis

m The performance of building an inverted index depends mostly
= on the computational cost of parsing the content in the mapper
= the cardinality of the index keys
= the number of content identifiers per key

= If the number of unique keys and the number of identifiers is large, more data will be sent to the reducers. If more data is
going to the reducers, you should increase the number of reducers to increase parallelism during the reduce phase

m Inverted indexes are particularly susceptible to hot spots in the index keys, since the index keys are rarely evenly distributed

= For exa{]ntpleJE the reducer that handles the word “the” in a text search application is going to be particularly busy since “the” is seen in
so much tex

= This can slow down your entire job since a few reducers will take much longer than the others

= To avoid this problem, you might need to implement a custom partitioner, or omit common index keys that add no value to your end
goal

1<

Wikipedia inverted index (ch-3,)

= We want to add StackOverflow links to each Wikipedia page that is
referenced in a StackOverflow comment

= Given a set of user’s comments, build an inverted index of Wikipedia URLs
to a set of answer post IDs

1<

Implementation

m Mapper
m Parses the posts from StackOverflow to output the row IDs of all answer posts that contain a particular Wikipedia URL

m Reducer
m lterates through the set of input values and appends each row ID to a String, delimited by a space character
= The input key is output along with this concatenation

m Combiner can be used to do some concatenation prior to the reduce phase

= Because all row IDs are simply concatenated together, the number of bytes that need to be copied by the reducer is more
than in a numerical summarization pattern

m The same code for the reducer class is used as the combiner

1<

SUMMARIZATION
@) Numerical

@) Inverted index
@) Counting with counters

Counting with counters pattern

m This pattern utilizes the MapReduce framework’s counters utility to calculate a
global sum entirely on the map side without producing any output

= An efficient means to retrieve count summarizations of large data sets

m Motivation and applicability

= Hourly ingest record counts can be post processed to generate helpful histograms. This
can be executed in a simple “word count” manner but it can be done more efficiently
using counters

= Find the number of times your employees log into your heavily used public website every
day

1<

Principle and applicability

= |nstead of writing any key value pairs at all, simply use the framework’s counting
mechanism to keep track of the number of input records

= This requires no reduce phase and no summation!

= The framework handles monitoring the names of the counters and their associated
values, aggregating them across all tasks, as well as taking into account any failed task

attempts

= You have a desire to gather counts or summations over large data sets
= The number of counters you are going to create is small—in the double digits

1<

Structure

m The mapper processes each input record at a time to
increment counters based on certain criteria.

= The counter is either incremented by one if counting a single
instance, or incremented by some number if executing a
summation

= These counters are then

m aggregated by the TaskTrackers running the tasks and
incrementally reported to the JobTracker for overall
aggregation upon job success

= The counters from any failed tasks are disregarded by
the JobTracker in the final summation

m As this job is map only, there is no combiner,
partitioner, or reducer required

Counting
Mapper

&~
O”

(ﬂTﬁdﬂ)—v(bbTm)mﬂv

TaskTradtef

TaskTradtef

1<

