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Map-reduce!
n  Programming model for expressing distributed computations on massive 

amounts of data 


n  Execution framework for large-scale data processing on clusters of commodity 
servers


n  Market: any organization built around gathering, analyzing, monitoring, filtering, 
searching, or organizing content must tackle large-data problems

n  data- intensive processing is beyond the capability of any individual machine and requires 

clusters

n  large-data problems are fundamentally about organizing computations on dozens, 

hundreds, or even thousands of machines
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« Data represent the rising tide that lifts all boats—
more data lead to better algorithms and systems for 

solving real-world problems »






Data processing!
n  Process the data to produce other data: analysis tool, business intelligence tool, ...


n  This means


n  •  Handle large volumes of data


n  •  Manage thousands of processors


n  •  Parallelize and distribute treatments 

n  Scheduling I/O 

n  Managing Fault Tolerance

n  Monitor /Control processes


Map-Reduce provides all this easy!
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Motivation!
n  The only feasible approach to tackling large-data problems is to divide and conquer


n  To the extent that the sub-problems are independent, they can be tackled in parallel by different worker (threads in a 
processor core, cores in a multi-core processor, multiple processors in a machine, or many machines in a cluster)


n   Intermediate results from each individual worker are then combined to yield the final output


n  Aspects to consider

n  How do we decompose the problem so that the smaller tasks can be executed in parallel?

n  How do we assign tasks to workers distributed across a potentially large number of machines? (some workers are better 

suited to running some tasks than others, e.g., due to available resources, locality constraints, etc.)

n  How do we ensure that the workers get the data they need?

n  How do we coordinate synchronization among the different workers?

n  How do we share partial results from one worker that is needed by another?

n  How do we accomplish all of the above in the face of software errors and hardware faults?
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Motivation!
n  OpenMP for shared memory parallelism or libraries implementing the Message Passing Interface 

(MPI) for cluster-level parallelism provide logical abstractions that hide details of operating system 
synchronization and communications primitives 

à  developers keep track of how resources are made available to workers


n  Map-Reduce provides an abstraction hiding many system-level details from the programmer

à  developers focus on what computations need to be performed, as opposed to how those 

computations are actually carried out or how to get the data to the processes


§  Yet, organizing and coordinating large amounts of computation is only part of the challenge

§  Large-data processing requires bringing data and code together for computation to occur —no small 

feat for datasets that are terabytes and perhaps petabytes in size! 
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Approach!

n  Instead of moving large amounts of data around, it is far more efficient, if possible, to move the code to 
the data


n  The complex task of managing storage in such a processing environment is typically handled by a 
distributed file system that sits underneath MapReduce
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Centralized computing with 

distributed data storage

















Run the program at the Client, get data from the distributed system

Downsides: important data flows, no use of the cluster computing

resources


“push the program near the data”




map-reduce principle!

n  Stage 1: Apply a user-specified computation over all input records in a dataset. 

n  These operations occur in parallel and yield intermediate output  (key-value pairs)


n  Stage 2: Aggregate intermediate output by another user-specified computation

n  Recursively applies a function on every pair of the list
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Map reduce example!
Count the number of occurrences of every word in a text collection
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Key-value pairs!
n  Basic data structure in MapReduce, keys and values may be 


n  primitive such as integers, floating point values, strings, and raw bytes

n  arbitrarily complex structures (lists, tuples, associative arrays, etc.)


n  Part of the design of MapReduce algorithms involves imposing the key-
value structure on arbitrary datasets

n  For a collection of web pages, keys may be URLs and values may be the 

actual HTML content. 

n  For a graph, keys may represent node ids and values may contain the 

adjacency lists of those nodes 
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How does a map reduce job work?!
n  MapReduce job starts as data stored on the underlying distributed file system


n   The mapper 

n  is applied to every input key-value pair (split across an arbitrary number of files)

n   to generate an arbitrary number of intermediate key-value pairs.


n   The reducer 

n  is applied to all values associated with the same intermediate key 

n  to generate output key-value pairs 


n  Intermediate data arrive at each reducer in order, sorted by the key:  “group by” operation on intermediate keys


n  Output key-value pairs from each reducer are written persistently back onto the distributed file system (intermediate key-value 
pairs are transient and not preserved)
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Map reduce example!
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Map reduce example!
n  Input key-values pairs take the form of (docid, doc) pairs stored on the distributed file system, 


n  the former is a unique identifier for the document

n  the latter is the text of the document itself


n  The mapper takes an input key-value pair, tokenizes the document, and emits an intermediate key-value 
pair for every word: 

n  the word itself serves as the key, and the integer one serves as the value (denoting that we’ve seen the word once)

n  the MapReduce execution framework guarantees that all values associated with the same key are brought together in the 

reducer


n  The reducer sums up all counts (ones) associated with each word 

n  emits final key- value pairs with the word as the key, and the count as the value.

n  output is written to the distributed file system, one file per reducer
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Implementation issues: mapper and 
reducer objects!
n  Mappers and reducers are objects that implement the Map and Reduce methods, respectively


n   A mapper	
  object	
  is initialized for each map task 

n  Associated with a particular sequence of key-value pairs called an input split 

n  Map method is called on each key-value pair by the execution framework


n  A reducer object is initialized for each reduce task

n  Reduce method is called once per intermediate key


n  MapReduce programs can contain no reducers, in which case mapper output is directly written to 
disk
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Implementation issues: mapper and 
reducer objects!
n  Mappers can emit an arbitrary number of intermediate key-value pairs, and they need not be of the same 

type as the input key-value pairs. 


n  Reducers can emit an arbitrary number of final key-value pairs, and they can differ in type from the 
intermediate key-value pairs. 


n  Mappers and reducers can have side effects 

n  this is a powerful and useful feature 

n  for example, preserving state across multiple inputs is central to the design of many MapReduce algorithms 


n  Since many mappers and reducers are run in parallel, and the distributed file system is a shared global 
resource, special care must be taken to ensure that such operations avoid synchronization conflicts
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Existing solutions!
n  Google’s MapReduce implementation BigTable


n  Input and output stored in a sparse, distributed, persistent multidimensional 
sorted map


n  HBase is an open-source BigTable clone and has similar capabilities. 


n  Hadoop has been integrated with existing MPP (massively parallel 
processing) relational databases, which allows a programmer to write 
MapReduce jobs over database rows and dump output into a new 
database table
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+ Map-reduce additional elements!

n  Partitioners are responsible for dividing up the intermediate key space and 
assigning intermediate key-value pairs to reducers

n  the partitioner species the task to which an intermediate key-value pair must be copied


n  Combiners are an optimization in MapReduce that allow for local aggregation 
before the shuffle and sort phase
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Partitioners and combiners!
n  Partitioners are responsible for dividing up the intermediate key space and assigning intermediate key-value pairs to 

reducers, i.e., the partitioner specifies the task to which an intermediate key-value pair must be copied

n  Reducers process keys in sorted order (which is how the “group by” is implemented)

n   The simplest partitioner involves computing the hash value of the key and then taking the mod of that value with the number of 

reducers

n   This assigns approximately the same number of keys to each reducer (dependent on the quality of the hash function)


n  Combiners “mini-reducers” that take place on the output of the mappers, prior to the shuffle and sort phase

n  Optimize MapReduce allowing for local aggregation before the shuffle and sort phase


n  All key-value pairs need to be copied across the network, and so the amount of intermediate data will be larger than the input 
collection itself à inefficient


n  One solution is to perform local aggregation on the output of each mapper, i.e., to compute a local count for a word over all the 
documents processed by the mapper


n  Can emit any number of key-value pairs, but the keys and values must be of the same type as the mapper output 

With this modification (assuming the maximum amount of local aggregation possible), the number of intermediate key-value pairs will be at 
most the number of unique words in the collection times the number of mappers (and typically far smaller because each mapper may not 
encounter every word)
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Execution framework!
n  Important idea behind MapReduce is separating the what of distributed processing from the how


n  A MapReduce program (job) consists of 

n  code for mappers and reducers  packaged together with 

n  configuration parameters (such as where the input lies and where the output should be stored)


n  Execution framework responsibilities: scheduling

n  Each MapReduce job is divided into smaller units called tasks

n  In large jobs, the total number of tasks may exceed the number of tasks that can be run on the cluster 

concurrently à manage tasks queues

n  Coordination among tasks belonging to different jobs
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Distributed file system!
n  Abandons the separation of computation and storage as distinct components in a cluster


n  Google File System (GFS) supports Google’s proprietary implementation of MapReduce; 

n  In the open-source world, HDFS (Hadoop Distributed File System) is an open-source implementation of 

GFS that supports Hadoop


n  The main idea is to divide user data into blocks and replicate those blocks across the local disks of 
nodes in the cluster


n  Adopts a master–slave architecture 

n  Master (namenode HDFS) maintains the file namespace (metadata, directory structure, file to block 

mapping, location of blocks, and access permissions) 

n  Slaves (datanode HDFS) manage the actual data blocks
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HFDS general architecture!

n  An application client wishing to read a file (or a portion thereof) must  first contact the namenode to determine where the actual data is 
stored


n  The namenode returns the relevant block	
  id	
  and the location where the block is held (i.e., which datanode)


n  The client then contacts the datanode to retrieve the data. 


n  HDFS lies on top of the standard OS stack (e.g., Linux): blocks are stored on standard single-machine file systems 
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HDFS properties!
n  HDFS stores three separate copies of each data block to ensure both reliability, availability, and performance


n  In large clusters, the three replicas are spread across different physical racks, 

n  HDFS is resilient towards two common failure scenarios individual datanode crashes and failures in networking equipment that bring an entire rack 

offline. 

n  Replicating blocks across physical machines also increases opportunities to co-locate data and processing in the scheduling of MapReduce jobs, 

since multiple copies yield more opportunities to exploit locality


n  To create a new file and write data to HDFS

n  The application client first contacts the namenode

n  The namenode 


n  updates the file namespace after checking permissions and making sure the file doesn’t already exist

n  allocates a new block on a suitable datanode


n  The application is directed to stream data directly to it

n  From the initial datanode, data is further propagated to additional replicas
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Hadoop cluster architecture!

n  The HDFS namenode runs the namenode daemon


n  The job submission node runs the jobtracker, which is the single point of contact for a client 
wishing to execute a MapReduce job


n   The jobtracker 

n  Monitors the progress of running MapReduce jobs 

n  Is responsible for coordinating the execution of the mappers and reducers	
  
n  Tries to take advantage of data locality in scheduling map tasks 22




Hadoop cluster architecture!

n  Tasktracker	
  
n  It accepts tasks (Map, Reduce, Shuffle, etc.) from JobTracker	
  
n  Each TaskTracker has a number of slots for the tasks: these are 

execution slots available on the machine or machines on the same rack

n  It spawns a separate JVM for execution of the tasks

n  It indicates the number of available slots through the hearbeat message to 

the JobTracker	
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Hadoop infrastructure!
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Hadoop framework!
n  Hadoop Distributed File System (HDFS):  A distributed file system that provides high-throughput access to application data


n  Hadoop MapReduce:  A software framework for distributed processing of large data sets on compute clusters


n  HBase:  A scalable, distributed database that supports structured data storage for large tables


n  Hive:  A data warehouse infrastructure that provides data summarization and ad hoc querying


n  Chukwa:  A data collection system for managing large distributed systems


n  Pig:  A high-level data-flow language and execution framework for parallel computation


n  ZooKeeper: A high-performance coordination service for distributed applications
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Execution framework!

n  The developer submits a MapReduce program to the submission 
node of a cluster (in Hadoop, this is called the jobtracker)


n  Execution framework takes care of everything else: it transparently 
handles all other aspects of distributed code execution, on clusters 
ranging from a single node to a few thousand nodes.


n  Distribution, synchronization and failure are handled
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Hadoop job execution!
n  The input is split in M groups 


n  each group is assigned to a mapper 
(assignment is based on the data locality 
principle)


n  each mapper processes a group and stores 
the intermediate pairs locally


n  Grouped instances are assigned to reducers 
thanks to a hash function

n  (Shuffle) intermediate pairs are sorted on their 

key by the reducer

n  grouped instances, submitted to the reduce() 

function
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Hadoop job execution: mapper!
n  In Hadoop, mappers are Java objects with a Map method (among others)


n  A mapper object is instantiated for every map task by the tasktracker


n  The life-cycle of this object begins with

n   Instantiation, where a hook is provided in the API to run programmer-specified code

n  After initialization, the Map method is called (by the execution framework) on all key-value 

pairs in the input split. 

n  Since these method calls occur in the context of the same Java object, it is possible to 

preserve state across multiple input key-value pairs within the same map task

n  After all key-value pairs in the input split have been processed, the mapper object 

provides an opportunity to run programmer-specified termination code
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Hadoop job execution: reducer!
n  Each reducer object is instantiated for every reduce task.


n   The Hadoop API provides hooks for programmer-specified initialization and termination 
code.


n   After initialization, for each intermediate key in the partition (defined by the 
partitioner), the execution framework repeatedly calls the Reduce method with an 
intermediate key and an iterator over all values associated with that key


n  The programming model also guarantees that intermediate keys will be presented 
to the Reduce method in sorted order

n  Since this occurs in the context of a single object, it is possible to preserve state across 

multiple intermediate keys (and associated values) within a single reduce task
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Some books!
n  Hadoop The Definitive Guide – O’Reily 2011 – Tom White


n  Data Intensive Text Processing with MapReduce – Morgan & Claypool 2010 –Jimmy Lin, Chris Dyer – pages 37-65


n  Cloud Computing and Software Services Theory and Techniques– CRC Press 2011- Syed Ahson, Mohammad Ilyas – pages 93-137


n  Writing and Querying MapReduce Views in CouchDB – O’Reily 2011 –Brandley Holt – pages 5-29


n  NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence by Pramod J. Sadalage, Martin Fowler
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DESIGNING MAP REDUCE ALGORITHMS!
PATTERNS AND EXAMPLES
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Context!
n  A large part of the power of MapReduce comes from its simplicity: in addition to 

preparing the input data, the programmer needs only to implement the mapper, 
the reducer, and optionally, the combiner and the partitioner


n  any conceivable algorithm that a programmer wishes to develop must be 
expressed in terms of a small number of rigidly-defined components that must fit 
together in very specific ways.


n  Synchronization is perhaps the most tricky aspect of designing MapReduce 
algorithms processes running on separate nodes in a cluster must, at some point 
in time, come together—for example, to distribute partial results from nodes that 
produced them to the nodes that will consume them.
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Beyond the control of programmers!

n  Where a mapper or reducer runs (i.e., on which node in the cluster)


n  When a mapper or reducer begins or finishes


n  Which input key-value pairs are processed by a specific mapper


n   Which intermediate key-value pairs are processed by a specific 
reducer
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Under the control of programmers!
n  The ability to construct complex data structures as keys and values to store and communicate partial 

results.


n  The ability to execute user-specified initialization code at the beginning of a map or reduce task, and the 
ability to execute user-specified termination code at the end of a map or reduce task.


n   The ability to preserve state in both mappers and reducers across multiple input or intermediate keys.


n  The ability to control the sort order of intermediate keys, and therefore the order in which a reducer will 
encounter particular keys.


n  The ability to control the partitioning of the key space, and therefore the set of keys that will be 
encountered by a particular reducer.
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Map-reduce phases!

n  Initialisation


n  Map: record reader, mapper, 
combiner, and partitioner


n  Reduce: shuffle, sort, reducer, 
and output format


n  Partition input (key, value) pairs 
into chunks run map() tasks in 
parallel


n  After all map()’s have been 
completed consolidate the values 
for each unique emitted key


n  Partition space of output map 
keys, and run reduce() in parallel
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Map sub-phases!
n  Record reader translates an input split generated by input format into records


n   parse the data into records, but not parse the record itself

n   It passes the data to the mapper in the form of a key/value pair. Usually the key in this context is positional information and the value is the chunk of 

data that composes a record


n  Map user-provided code is executed on each key/value pair from the record reader to produce zero or more new key/value pairs, called 
the intermediate pairs

n  The key is what the data will be grouped on and the value is the information pertinent to the analysis in the reducer


n  Combiner, an optional localized reducer

n  Can group data in the map phase

n  It takes the intermediate keys from the mapper and applies a user-provided method to aggregate values in the small scope of that one mapper


n  Partitioner takes the intermediate key/value pairs from the mapper (or combiner) and splits them up into shards, one shard per reducer
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Reduce sub phases!
n  Shuffle and sort takes the output files written by all of the partitioners and downloads them to the 

local machine in which the reducer is running. 

n  These individual data pieces are then sorted by key into one larger data list 

n  The purpose of this sort is to group equivalent keys together so that their values can be iterated over 

easily in the reduce task


n  Reduce takes the grouped data as input and runs a reduce function once per key grouping

n   The function is passed the key and an iterator over all of the values associated with that key

n  Once the reduce function is done, it sends zero or more key/value pair to the final step, the output 

format


n  Output format translates the final key/value pair from the reduce function and writes it out to a file 
by a record writer
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Counting words!
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(URI,	
  document)	
  !	
  (term,	
  count)	
  

see	
  bob	
  throw	
  
see	
  spot	
  run	
  

bob	
  <1>	
  
run	
  <1>	
  
see	
  <1,1>	
  	
  
spot	
  <1>	
  	
  
throw	
  <1>	
  
	
  

see	
   	
  1	
  	
  
bob	
   	
  1	
  
throw 	
  1	
  
see	
   	
  1	
  	
  
spot 	
  1	
  	
  
run	
   	
  1	
  

bob	
   	
  1	
  
run	
   	
  1	
  
see	
   	
  2	
  	
  
spot 	
  1	
  	
  
throw 	
  1	
  
	
  

Map
 Shuffle/Sort
 Reduce




Gold standard!
n  Linear scalability: 


n  an algorithm running on twice the amount of data should take only twice as long

n  an algorithm running on twice the number of nodes should only take half as long


n  Local aggregation: in the context of data-intensive distributed processing

n  the single most important aspect of synchronization is the exchange of intermediate results, from the processes that 

produced them to the processes that will ultimately consume them

n  Hadoop, intermediate results are written to local disk before being sent over the network

n  Since network and disk latencies are relatively expensive compared to other operations, reductions in the amount of 

intermediate data translate into increases in algorithmic efficiency


n  Using the combiner and by taking advantage of the ability to preserve state across multiple inputs

à it is possible to substantially reduce both the number and size of key-value pairs that need to be shuffled from the mappers 
to the reducers
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Counting words basic algorithm!

n  the mapper emits an 
intermediate key-value pair for 
each term observed, with the 
term itself as the key and a 
value of one


n  reducers sum up the partial 
counts to arrive at the final 
count
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Local aggregation!
Combiner technique


n  Aggregate term counts across the documents 
processed by each map task


n  Provide a general mechanism within the 
MapReduce framework to reduce the amount 
of intermediate data generated by the 
mappers


n  Reduction in the number of intermediate key-
value pairs that need to be shuffled across the 
network

n  from the order of total number of terms in 

the collection to the order of the number of 
unique terms in the collection
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In-mapper combining pattern: One 
step further!
n  The workings of this algorithm critically depends on the details 

of how map and reduce tasks in Hadoop are executed


n  Prior to processing any input key-value pairs, the mapper’s 
Initialize method is called 

n  which is an API hook for user-specified code

n  We initialize an associative array for holding term counts

n  Since it is possible to preserve state across multiple calls of the 

Map method (for each input key-value pair), we can 

n  continue to accumulate partial term counts in the associative 

array across multiple documents, 

n  emit key-value pairs only when the mapper has processed all 

documents


n  Transmission of intermediate data is deferred until the Close 
method in the pseudo-code
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In-mapper combining pattern: 
advantages!
n  Provides control over when local aggregation occurs and how it exactly takes place


n  Hadoop makes no guarantees on how many times the combiner is applied, or that it is even applied at all

n  The execution framework has the option of using it, perhaps multiple times, or not at all

n  Such indeterminism is unacceptable, which is exactly why programmers often choose to perform their own local 

aggregation in the mappers


n  In-mapper combining will typically be more efficient than using actual combiners. 

n  One reason for this is the additional overhead associated with actually materializing the key-value pairs


n  Combiners reduce the amount of intermediate data that is shuffled across the network, but don’t actually reduce the 
number of key-value pairs that are emitted by the mappers in the first place


n  The mappers will generate only those key-value pairs that need to be shuffled across the network to the reducers

n  Avoid unnecessary object creation and destruction (garbage collection takes time), and, object serialization and 

deserialization (when intermediate key-value pairs fill the in-memory buffer holding map outputs and need to be 
temporarily spilled to disk)
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In-mapper combining pattern: 
limitations!
n  Breaks the functional programming underpinnings of MapReduce, since state is being preserved across 

multiple input key-value pairs


n  There is a fundamental scalability bottleneck associated with the in-mapper combining pattern

n  It critically depends on having sufficient memory to store intermediate results until the mapper has completely processed 

all key-value pairs in an input split

n  One common solution to limiting memory usage is to “block” input key-value pairs and “flush” in-memory data structures 

periodically

n  Instead of emitting intermediate data only after every key-value pair has been processed, emit partial results after 

processing every n key-value pairs

n  Implemented with a counter variable that keeps track of the number of input key-value pairs that have been processed

n  The mapper could keep track of its own memory footprint and flush intermediate key-value pairs once memory usage 

has crossed a certain threshold

n  Memory size empirically determined: difficult due to concurrent access to memory
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Some remarks!
n  In MapReduce algorithms, the extent to which efficiency can be increased through local aggregation depends 


n  on the size of the intermediate key space 

n  the distribution of keys themselves

n  the number of key-value pairs that are emitted by each individual map task


n  Opportunities for aggregation come from having multiple values associated with the same key (whether one uses combiners 
or employs the in-mapper combining pattern)

n  In the word count example, local aggregation is effective because many words are encountered multiple times within a map task

n  In our word count example, we do not filter frequently-occurring words: therefore, without local aggregation, the reducer that is 

responsible for computing the count of ‘the’ will have a lot more work to do than the typical reducer, and therefore will likely be a 
straggler


n  With local aggregation (either combiners or in-mapper combining), we substantially reduce the number of values associated with 
frequently-occurring terms, which alleviates the reduce straggler problem
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DISCUSSION OF THE FIRST PART OF 
CHALLENGE II!
COROLLARY CHALLENGE: WORD COUNT ON “STACKOVERFLOW” POSTS (pp 7-11 of MapReduce design 
patterns book)
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Map – reduce design patterns!
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SUMMARIZATION

Numerical


Inverted index


Counting 

with counters


FILTERING

Filtering


Bloom


Top ten


Distinct


DATA ORGANIZATION

Structured to hierarchical


Partitioning


Binning


Total order sorting


Shuffling


JOIN

Reduce side join


Reduce side join with 

bloom filter


Replicated join


Composite join


Cartesian product


•  Minimum, maximum, 
count, average, median-
standard deviation


•  Wikipedia inverted index


•  Count number of records, a 
small number of unique 
instances, summations


•  Number of users per state 


•  Remove most of nonwatched 
values, prefiltering data for a 
set membership check


•  Hot list, Hbase query


•  Closer view of data, tracking 
event threads, distributed 
grep, data cleansing, simple 
random sampling, remove 
low scoring data


•  Outlier analysis, select 
interesting data, catchy 
dashbords


•  Top ten users by reputation


•  Deduplicate data, getting 
distinct values, protecting from 
inner join explosion


•  Distinct user ids


•  Prejoining data, preparing data for 
Hbase or MongoDB


•  Post/comment building for 
StackOverflow, Question/Answer 
building


•  Partitioning users by last access date


•  Binning by Hadoop-related tags


•  Sort users by last visit


•  Anonymizing StackOverflow comments


•  Multiple large data sets joined by 
foreign key


•  User – comment join


•  Reputable user – comment join


•  Replicated user – comment join


•  Composite user – comment join


•  Comment comparison




Numerical Summarization pattern!
n  The numerical summarizations pattern is a general pattern for calculating aggregate statistical values over a data collection


n  Intent 

n  Group records together by a key field and calculate a numerical aggregate per group to get a top-level view of the larger data set

n  θbe a generic numerical summarization function we wish to execute over some list of values (v1,	
  v2,	
  v3,	
  ...,	
  vn)	
  to find a value λ, 

i.e. λ = θ(v1,	
  v2,	
  v3,	
  ...,	
  vn). Examples of θ include a minimum, maximum, average, median, and standard deviation


n  Motivation and applicability

n  Group logins by the hour of the day and perform a count of the number of records in each group, group advertisements by types to 

determine how affective ads are for better targeting

n  Dealing with numerical data or counting

n  The data can be grouped by specific fields
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Structure!
n  The mapper outputs keys that consist of each field to group by, 

and values consisting of any pertinent numerical items


n  The combiner can greatly reduce the number of intermediate 
key/value pairs to be sent across the network to the reducers for 
some numerical summarization functions

n  If the function θ is an associative and commutative operation, it 

can be used for this purpose

n  If you can arbitrarily change the order of the values and you can 

group the computation arbitrarily 


n  The reducer 

n  receives a set of numerical values (v1,	
  v2,	
  v3,	
  ...,	
  vn)	
   

associated with a group-by key records to perform the functionλ = 
θ(v1,	
  v2,	
  v3,	
  ...,	
  vn)	
  


n  The value of λ is output with the given input key
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Resemblances and performance 
analysis!

Resemblances
 Performance analysis


n  Aggregations performed by 
jobs using this pattern typically 
perform well when the 
combiner is properly used


n  These types of operations are 
what MapReduce was built for


50




Maximum, minimum and count 
example!
n  Problem


n  Given a list of user’s comments, determine the first and last time a user 
commented and the total number of comments from that user


n  Principle

n  After a grouping operation, the reducer simply iterates through all the values 

associated with the group and finds the min and max, as well as counts the 
number of members in the key grouping


n  Due to the associative and commutative properties, a combiner can be used to 
vastly cut down on the number of intermediate key/value pairs that need to be 
shuffled to the reducers
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Maximum, minimum and count 
example!
n  Mapper	
  

n   The mapper will pre-process input values by extracting the attributes from each input record: the creation date and the 
user identifier


n  The output key is the user ID and the value is three columns of our future output: the minimum date, the maximum date, 
and the number of comments this user has created


n  Reducer	
  
n  The reducer iterates through the values to find the minimum and maxi‐ mum dates, and sums the counts


n  Combiner	
  
n  As we are only interested in the count, minimum date, and maximum date, multiple comments from the same user do not 

have to be sent to the reducer. 

n  The minimum and maximum comment dates can be calculated for each local map task without having an effect on the 

final minimum and maximum. 
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 average example!
n  Problem: given a list of user’s comments, determine the average comment length per hour of day


n  The mapper processes each input record to calculate the average comment length based on the time 
of day

n  The output key is the hour of day 

n  The output value is two columns, the comment count and the average length of the comments for 

that hour 

n  Because the mapper operates on one record at a time, the count is simply 1 and the average length 

is equivalent to the comment length

n  The reducer iterates through all given values for the hour and keeps two local variables: a running count 

and running sum

n  For each value, the count is multiplied by the average and added to the running sum

n   The count is simply added to the running count 
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Median and standard deviation 
(CH-3a)!
n  Problem


n  Given a list of user’s comments, determine the median and standard deviation of 
comment lengths per hour of day


n  A median is the numerical value separating the lower and higher halves of a data set 

n  This requires the data set to be complete, which in turn requires it to be shuffled

n  The data must also be sorted, which can present a barrier because MapReduce does 

not sort values

n  A standard deviation shows how much variation exists in the data from the average, thus 

requiring the average to be discovered prior to reduction
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implementation!
n  Mapper processes each input record to calculate the median comment length within each hour of the day


n   The output key is the hour of day

n  The output value is a single value: the comment length


n  The reducer iterates through the given set of values and adds each value to an in-memory list

n  The iteration also calculates a running sum and count

n   After iteration, the comment lengths are sorted to find the median value 


n  If the list has an odd number of entries, the median value is set to the middle value

n  If the number is even, the middle two values are averaged


n  Next, the standard deviation is calculated by iterating through our sorted list after finding the mean from our running sum and count

n  A running sum of deviations is calculated by squaring the difference between each comment length and the mean. 

n  The standard deviation is then calculated from this sum.

n  Finally, the median and standard deviation are output along with the input key
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Inverted index pattern!
n  The inverted index pattern is commonly used as an example for MapReduce 

analytics


n  Intent 

n  Generate an index from a data set to allow for faster searches or data enrichment 

capabilities


n  Motivation and applicability

n  Building an inverted index, a search engine knows all the web pages related to a keyword 

ahead of time and these results are simply displayed to the user

n  Inverted indexes should be used when quick search query responses are required. The 

results of such a query can be pre-processed and ingested into a database
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Inverted index reminder!
n   Index data structure storing a mapping from 

content, such as words or numbers, to its 
locations in a database file, or in a document or a 
set of documents. 


n  The purpose of an inverted index is to allow fast 
full text searches, at a cost of increased 
processing when a document is added to the 
database


T[0]	
  =	
  "it	
  is	
  what	
  it	
  is"	
  

T[1]	
  =	
  "what	
  is	
  it"	
  

T[2]	
  =	
  "it	
  is	
  a	
  banana”	
  

n  A term search for the terms "what", "is" and "it" would 
give the set {0,1,2}	
  ∩	
  {0,1,2}	
  ∩	
  {0,1}	
  =	
  {0,1}	
  

	
  

n  If we run a phrase search for "what	
  is	
  it" we get hits for all the words in both document 0 and 1. 
But the terms occur consecutively only in document 1. 
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"a":	
  	
  	
  	
  	
  	
  {2}	
  
"banana":	
  {2}	
  
"is":	
  	
  	
  	
  	
  {0,	
  1,	
  2}	
  
"it":	
  	
  	
  	
  	
  {0,	
  1,	
  2}	
  
"what":	
  	
  	
  {0,	
  1}	
  

"a":	
  	
  	
  	
  	
  	
  {(2,	
  2)}	
  
"banana":	
  {(2,	
  3)}	
  
"is":	
  	
  	
  	
  	
  {(0,	
  1),	
  (0,	
  4),	
  (1,	
  1),	
  (2,	
  1)}	
  
"it":	
  	
  	
  	
  	
  {(0,	
  0),	
  (0,	
  3),	
  (1,	
  2),	
  (2,	
  0)}	
  	
  
"what":	
  	
  	
  {(0,	
  2),	
  (1,	
  0)}	
  



Structure!
n  The mapper outputs the desired fields for the index as the 

key and the unique identifier as the value


n  The combiner can be omitted if you are just using the 
identity reducer	
  
n  Some implementations concatenate the values associated with a group 

before outputting them to the file system. In this case, a combiner can be 
used


n  It won’t have as beneficial an impact on byte count as the combiners in 
other patterns, but there will be an improvement


n  The partitioner	
  	
  
n  Is responsible for determining where values with the same key will 

eventually be copied by a reducer for final output. 


n  It can be customized for more efficient load balancing if the intermediate 
keys are not evenly distributed.


n  The reducer will receive a set of unique record identifiers to 
map back to the input key

n   The identifiers can either be concatenated by some unique delimiter, 

leading to the output of one key/value pair per group, or


n  Each input value can be written with the input key, known as the identity 
reducer
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Performance analysis!
n  The performance of building an inverted index depends mostly 


n  on the computational cost of parsing the content in the mapper

n  the cardinality of the index keys

n  the number of content identifiers per key


n  If the number of unique keys and the number of identifiers is large, more data will be sent to the reducers. If more data is 
going to the reducers, you should increase the number of reducers to increase parallelism during the reduce phase


n  Inverted indexes are particularly susceptible to hot spots in the index keys, since the index keys are rarely evenly distributed

n  For example, the reducer that handles the word “the” in a text search application is going to be particularly busy since “the” is seen in 

so much text

n  This can slow down your entire job since a few reducers will take much longer than the others

n  To avoid this problem, you might need to implement a custom partitioner, or omit common index keys that add no value to your end 

goal
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Wikipedia inverted index (ch-3b)!

n  Problem 

n  We want to add StackOverflow links to each Wikipedia page that is 

referenced in a StackOverflow comment

n  Given a set of user’s comments, build an inverted index of Wikipedia URLs 

to a set of answer post IDs 
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Implementation!
n  Mapper	
  

n  Parses the posts from StackOverflow to output the row IDs of all answer posts that contain a particular Wikipedia URL


n  Reducer	
  	
  
n  Iterates through the set of input values and appends each row ID to a String, delimited by a space character 

n  The input key is output along with this concatenation


n  Combiner can be used to do some concatenation prior to the reduce phase

n  Because all row IDs are simply concatenated together, the number of bytes that need to be copied by the reducer is more 

than in a numerical summarization pattern 

n  The same code for the reducer class is used as the combiner
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Counting with counters pattern!
n  This pattern utilizes the MapReduce framework’s counters utility to calculate a 

global sum entirely on the map side without producing any output


n  Intent 

n  An efficient means to retrieve count summarizations of large data sets


n  Motivation and applicability

n  Hourly ingest record counts can be post processed to generate helpful histograms. This 

can be executed in a simple “word count” manner but it can be done more efficiently 
using counters


n  Find the number of times your employees log into your heavily used public website every 
day
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Principle and applicability!
n  Principle


n  Instead of writing any key value pairs at all, simply use the framework’s counting 
mechanism to keep track of the number of input records


n  This requires no reduce phase and no summation!

n   The framework handles monitoring the names of the counters and their associated 

values, aggregating them across all tasks, as well as taking into account any failed task 
attempts


n  Applicability

n  You have a desire to gather counts or summations over large data sets

n  The number of counters you are going to create is small—in the double digits
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Structure!
n  The mapper processes each input record at a time to 

increment counters based on certain criteria. 

n  The counter is either incremented by one if counting a single 

instance, or incremented by some number if executing a 
summation 


n  These counters are then 

n  aggregated by the TaskTrackers running the tasks and 

incrementally reported to the JobTracker for overall 
aggregation upon job success


n   The counters from any failed tasks are disregarded by 
the JobTracker in the final summation


n  As this job is map only, there is no combiner, 
partitioner, or reducer required
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