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Big is not a matter of size ...
it is a matter or representativity & consumption capacity



HOW BIG IS YOUR DATA REALLY
e s

Byte (B) 8 bits One grain of rice
Kilobyte (KB) 210 pytes A cup of rice
Megabyte (MB) 220 pytes 8 bags of rice
Gigabyte (GB) 230 pytes 3 container lorries
Terabyte (TB) 240 pytes 2 container ships
Petabyte (PB) 2°% pytes Covers Manhattan
Exabyte (EB) 20 pytes Covers the UK (3 times)
Zettabyte (ZB) 27%bytes Fills the Pacific ocean

David Wellman




Collection of data sets so large and complex that
it becomes difficult to process using
on-hand database management tools or
traditional data processing applications



‘ THE V'S & THE NEEDS OF BIG DATA

* increasing volume (amount of data)
* Velocity (speed of data in and
* Variety (range of data types a ) e
sources) ""‘:
* Veracity (data consistency) ,*H

* Value (which is the real value of dqta")
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INTERNET OF THINGS




BIG DATA AT A BRONTO SCALE

1 bit Binary digit
8 bits 1 byte

We will no longer have the luxury of

dealing with just “hig” data

http://spectrum.ieee.org/computing/software/beyond-just-big-data

1000 Petabytes 1Exabyte

1000 Exabyte 1 Zettabyte

1000 Zettabytes 1 Yottabyte




Map of the Internet, The QpteProject,

wwiop



SJW\# | ;}A C

Sefaaiee



\ DATA SCIENCE PROCESS
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What about analytics ?



PRINCIPLE

Given lots of data

Discover patterns and models that are:
* Valid: hold on new data with some certainty

* Useful: should be possible to act on the item

* Unexpected: non-obvious to the system

= Understandable: humans should be able to
interpret the pattern

J. LESKOVEC, A. RAJARAMAN, J. ULLMAN: MINING OF MASSIVE DATASETS, HTTP://WWW.MMDS.0RG



NEW TYPES OF HUGE DATA COLLECTIONS

Thick data: combines both quantitative and qualitative analysis,
Long data: extends back in time hundreds or thousands of years
Hot data: used constantly, meaning it must be easily and quickly accessible

Cold data: used relatively infrequently, so it can be less readily available

http://spectrum.ieee.org/computing/software/beyond-just-big-data



DATA COLLECTIONS

Different sizes, evolution in structure, completeness, production conditions & content,

access policies modification ...
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DATA COLLECTIONS

NOT MANAGEABLE NEITHER EXPLOITABLE AS SUCH

RAW DATA:

heterogeneous (variety), huge (volume), incomplete, unprecise, missing, contradictory (veracity), continuous releases produced at
different rates (velocity), proprietary, critical, private (valve)

Data collections’

releases
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DATA CURATION: PROBLEM STATEMENT R—

=y . Data consumers
- , S
g = — ; @
Data cleaning, processing and storage requires a lot of
DECISION MAKING
E Data scientist requires knowledge about data collections content
S
S
3 S
5%
1R @ i Qe 2R o : 1R rﬁn%.n @@\.fﬁn%.n
RS S, mESaih SSEPEU, eSS,
g-;ni!i(ré? - E"O‘ 5" DG B . i!i("é)’ﬂj -8 i’i(" e
"(T)I* O}, ¢ @ "@‘)I* G




DATA CURATION: PROBLEM STATEMENT  pplcaions &
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CAPTURING VALUE FROM ADVANCED ANALYTICS

Big Data

Predictive &
Optimization
Models

Organizational
transformation

Based on three guiding principles
Decision backwards
Step by step

Test and learn
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The “Social Graph” behind Facebook

Keith Shepherd's "Sunday Best”. http://baseballart.com/2010/07/shades-of-greatness-a-story-that-needed-to-be-told/

Network Science: Introduction




STRUCTURE OF AN ORGANIZATION

B B B : departments

. consultants

" : external experts
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BUSINESS TIES IN US BIOTECH-INDUSTRY
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Network Science: Introduction



INTERNET




Sapiens

HUMAN GENES

Homo

Drosophila
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Melanogaster

In the generic networks shown, the points represent the

Y elements of each organism’s genetic network, and the
!r[/;{&\ }2&8 dotted lines show the interactions between them.
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ECONOMIC IMPACT
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PIECING YOUR WEB TOGETHER
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Great variety of visual
Beginning of the use of BDs reat variety of visua

. resources to analyse data
& basic reports

Data was not

stored
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DATA CONTAINS VALUE & KNOWLEDGE

J. LESKOVEC, A. RAJARAMAN, J. ULLMAN: MINING OF MASSIVE DATASETS, HTTP://WWW.MMDS.ORG 30



KNOWLEDGE EXTRACTION

Data needs to be
Stored € this class

"Managed
*"ANALYZED < this class

Data Mining = Big Data =
Predictive Analytics = Data Science

J. LESKOVEC, A. RAJARAMAN, J. ULLMAN: MINING OF MASSIVE DATASETS, HTTP://WWW.MMDS.ORG 31



WHAT MATTERS WHEN DEALING WITH DATA?

Challenges
ES

Usage
Quality
Context
Streaming

Scalability
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J. LESKOVEC, A. RAJARAMAN, J. ULLMAN: MINING OF MASSIVE DATASETS, HTTP://WWW.MMDS.ORG
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\ DATA MINING: CULTURES

Data mining overlaps with:

* Databases: Large-scale data, simple queries

* Machine learning: Small data, Complex models
* CS Theory: (Randomized) Algorithms

Different cultures:

* To a DB person, data mining is an extreme form of analytic processing — queries that
examine large amounts of data
= Result is the query answer

* To a ML person, data-mining
is the inference of models

= Result is the parameters of the model

In this class we will do both! Database
systems

J. LESKOVEC, A. RAJARAMAN, J. ULLMAN: MINING OF MASSIVE DATASETS, HTTP://WWW.MMDS.ORG 33



DATA MINING TASKS

Descriptive methods

* Find human-interpretable patterns that
describe the data

* Example: Clustering

Predictive methods

* Use some variables to predict unknown
or future values of other variables

* Example: Recommender systems

J. LESKOVEC, A. RAJARAMAN, J. ULLMAN: MINING OF MASSIVE DATASETS, HTTP://WWW.MMDS.ORG
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HOW IT ALL FITS TOGETHER

High dim.
data

Locality sensitive
hashing

Clustering

Dimensionality
reduction

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Filtering data
streams

Web
advertising

Queries on
streams

Machine
learning

Decision
Trees

Perceptron,
kNN

Apps

Recommender
systems

Association
Rules

Duplicate
document
detection
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Data management guided by the RUM conjecture
(Read, Update, Memory (or storage) overhead)



‘ DEALING WITH DATA FOR DATA SCIENCE TASKS




DEALING WITH DATA FOR DATA SCIENCE TASKS

: Functional Deployment
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CHALLENGES AND OBJECTIVE

How to combine, deploy, and deliver DBMS functionalities:
Compliant to application/user requirements

Optimizing the consumption of computing resources in the presence of greedy data
processing tasks

Delivered according to Service Level Agreement (SLA) contracts

Deployed in elastic and distributed platforms

39



Final remarks & Lecture program



FINAL REMARKS

Data collections
New scales: bronto scale due to emerging loT
New types: thick, long hot, cold
New quality measures: QoS, QoE, SLA

Data processing & analytics
Complex jobs, stream analytics are still open issues

Economic cost model & business models (Big Data value & pay-as-U-go)

4
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Data as service tools: distributed storage, data access API, more complex data processing, declarative languages
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Modeling & Predictive analytics
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Graph analytics
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MODERN DATA SCIENTIST

Data Scientist, the sexiest job of the 21th century, requires a mixture of multidisciplinary skills ranging from an
intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is
hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who

MATH
& STATISTICS

Machine learning
Statistical modeling
Experiment design
Bayesian inference

Supervised learning: decision trees,

random forests, logistic regression

Unsupervised leaming: clustering,
dimensionality reduction

Optimization: gradient descent and
variants

DOMAIN KNOWLEDGE
& SOFT SKILLS

v Passionate about the business
Curious about data
Influence without authority
Hacker mindset
Problem solver

Strategic, proactive, creative,
innovative and collaborative

the modern data scientist really is.

PROGRAMMING
& DATABASE

%

Lo R R X%

Computer science fundamentals
Scripting language e.g. Python
Statistical computing packages, e.2. R
Databases: SOL and NoSQL
Relational algebra

Parallel databases and parallel query
processing

MapReduce concepts

Hadoop and Hive/Pig

Custom reducers

Experience with xaaS like AWS

COMMUNICATION
& VISUALIZATION

¢

Able to engage with senior
management

Story telling skills

Translate data-driven insights into
decisions and actions

Visual art design
R packages like geplot or lattice

Knowledge of any of visualization
tools e.g. Flare, D3 js, Tableau
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How long do data storage devices last for?

Magnetic tape

e Optical disc e
Flash

Holographic
SSD M-DISC Void-based

HDD Phase change Fused silica disc 5D Optical memory

110 100 1000 @ - - 48~ e 10°° (years)




