Case study 2: Recommendation systems

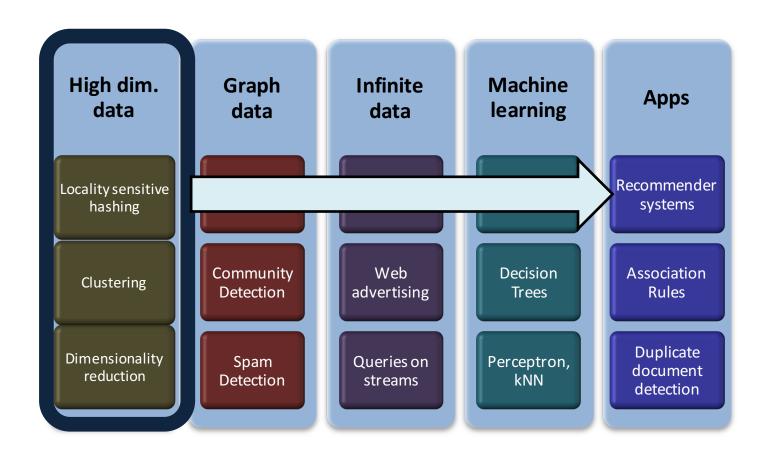
Genoveva Vargas-Solar

http://www.vargas-solar.com/big-data-analytics

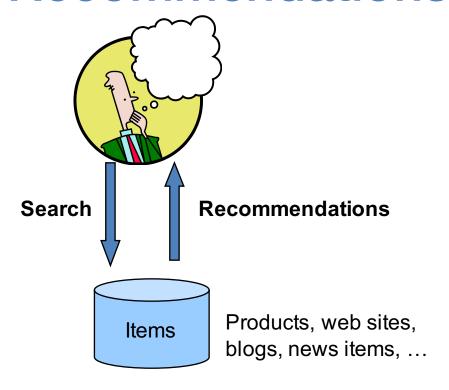
French Council of Scientific Research, LIG & LAFMIA Labs

Montevideo, 22nd November – 4th December, 2015

High dimensional data



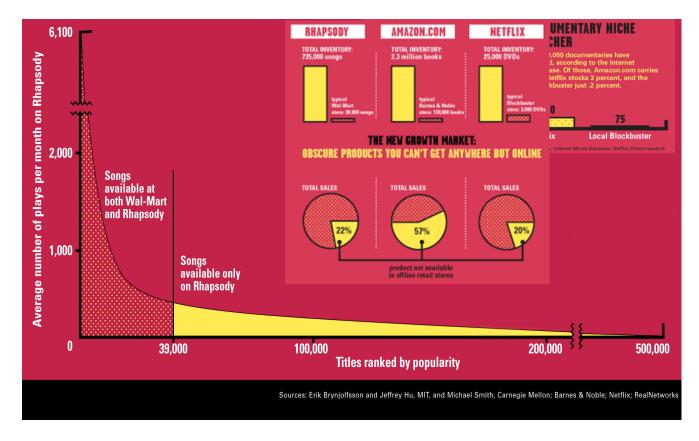
Recommendations



From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller: http://www.wired.com/wired/archive/12.10/tail.html

Sidenote: The Long Tail



J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Physical vs. Online

Read http://www.wired.com/wired/archive/12.10/tail.html to learn more!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Types of Recommendations

Editorial and hand curated

- List of favorites
- Lists of "essential" items

Simple aggregates

Top 10, Most Popular, Recent Uploads

Tailored to individual users

Amazon, Netflix, ...

Formal Model

- X = set of Customers
- S = set of Items
- Utility function $u: X \times S \rightarrow R$
 - R = set of ratings
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in [0,1]

Utility Matrix

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Key Problems

- (1) Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like
- (3) Evaluating extrapolation methods
 - How to measure success/performance of recommendation methods

(1) Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

(2) Extrapolating Utilities

- **Key problem:** Utility matrix **U** is **sparse**
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history
- **Three approaches to recommender systems:**
 - 1) Content-based
 - **2)** Collaborative
 - 3) Latent factor based

Content based recommendation systems

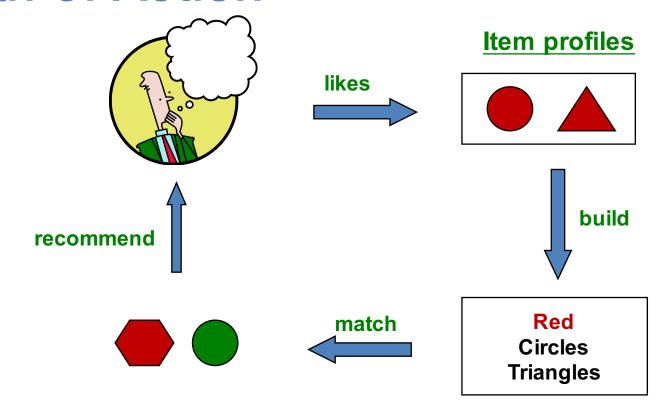
Content-based Recommendations

Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- **■** Websites, blogs, news
 - Recommend other sites with "similar" content

Plan of Action



User profile

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Item Profiles

- For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - **Text:** Set of "important" words in document
- How to pick important features?
 - Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item

Sidenote: TF-IDF

$$f_{ij}$$
 = frequency of term (feature) i in doc (item) j $TF_{ij} = rac{f_{ij}}{\max_k f_{kj}}$

 n_i = number of docs that mention term i

N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score: $w_{ii} = TF_{ii} \times IDF_i$

Doc profile = set of words with highest TF-IDF scores, together with their scores

Note: we normalize TF to discount for "longer" documents

User Profiles and Prediction

User profile possibilities:

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item
- **...**

■ Prediction heuristic:

Given user profile x and item profile i, estimate $u(x, i) = \cos(x, i) = \frac{x \cdot i}{||x|| \cdot ||i||}$

Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing contentfeatures that caused an item to be recommended

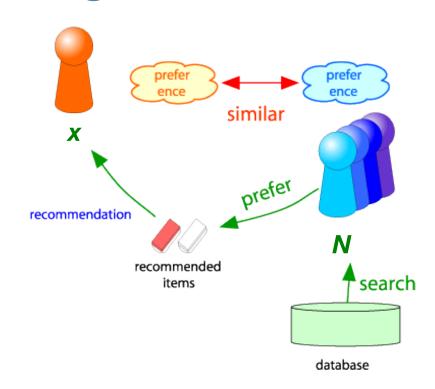
Cons: Content-based Approach

- -: Finding the appropriate features is hard
 - E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Collaborative Filtering Harnessing quality judgments of other users

Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N



Finding "Similar" Users

$$r_x = [*, _, _, *, ***]$$
 $r_y = [*, _, **, **, _]$
23

- Let r_x be the vector of user x's ratings
- **Jaccard similarity measure**
 - **Problem:** Ignores the value of the rating
- Cosine similarity measure
 - $= \operatorname{sim}(\mathbf{x}, \mathbf{y}) = \cos(\mathbf{r}_{\mathbf{x}}, \mathbf{r}_{\mathbf{y}}) = \frac{r_{\mathbf{x}} \cdot r_{\mathbf{y}}}{||r_{\mathbf{x}}|| \cdot ||r_{\mathbf{y}}||}$
 - **Problem:** Treats missing ratings as "negative"
- **Pearson correlation coefficient**
 - \mathbf{S}_{xy} = items rated by both users \mathbf{x} and \mathbf{y}

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}} \sum_{\substack{\overline{r_x}, \ \overline{r_y} \dots \text{ avg. rating of } x, \ y}}$$

$$r_x$$
, r_y as sets:
 $r_x = \{1, 4, 5\}$
 $r_y = \{1, 3, 4\}$

 r_x , r_v as points: $r_x = \{1, 0, 0, 1, 3\}$ $r_v = \{1, 0, 2, 2, 0\}$

Similarity Metric

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4
- **Cosine similarity:** 0.386 > 0.322
 - Considers missing ratings as "negative"
 - Solution: subtract the (row) mean

	l		HP3	TW	SW1	SW2	SW3
A	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
C		1/3		-5/3	1/3	4/3	
D		0					0

sim A,B vs. A,C: - 0.092 > -0.559

Notice cosine sim. is correlation when data is centered at

Rating Predictions

From similarity metric to recommendations:

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item s of user x:

$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$

Other options?

Shorthand:

$$s_{xy} = sim(x, y)$$

Many other tricks possible...

Item-Item Collaborative Filtering

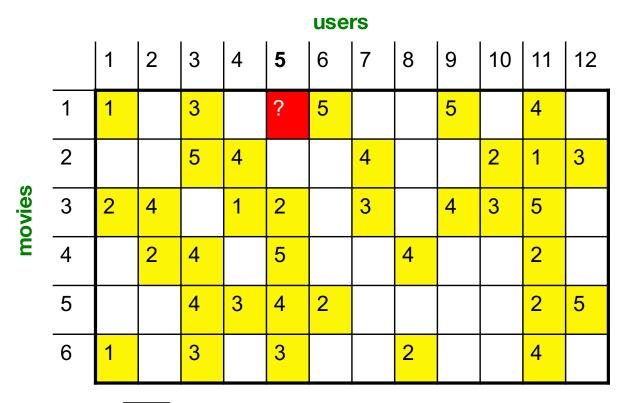
- So far: User-user collaborative filtering
- Another view: Item-item
 - For item i, find other similar items
 - Estimate rating for item i based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

 s_{ij} ... similarity of items i and j r_{xj} ...rating of user u on item j N(i;x)... set items rated by x similar to i

							use	rs					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3			5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ē	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	
- unknown rating - rating between 1 to 5												5	

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



- estimate rating of movie 1 by user 5

users

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
Ĕ	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:

- 1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

users

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
Ĕ	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Compute similarity weights:

users

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		2.6	5			5		4	
40	2			5	4			4			2	1	3
movies	<u>3</u>	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	<u>6</u>	1		3		3			2			4	

Predict by taking weighted average:

$$r_{1.5} = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6$$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{j}}{\sum s_{ij}}$$

Before:

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

CF: Common Practice Define similarity s_{ii} of items i and j

- Select k nearest neighbors N(i; x)
 - Items most similar to *i*, that were rated by *x*

Estimate rating
$$r_{xi}$$
 as the weighted average:
$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

baseline estimate for

$$b_{xi} = \mu + b_x + b_i$$

 μ = overall mean movie rating

• b_x = rating deviation of user x= (avg. rating of user \mathbf{x}) – $\boldsymbol{\mu}$

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.atings.deviation of movie i

- In practice, it has been observed that item-item often works better than user-user
- Why? Items are simpler, users have multiple tastes

Pros/Cons of Collaborative Filtering

+ Works for any kind of item

No feature selection needed

- Cold Start:

Need enough users in the system to find a match

- Sparsity:

- The user/ratings matrix is sparse
- Hard to find users that have rated the same items

- First rater:

- Cannot recommend an item that has not been previously rated
- New items, Esoteric items

- Popularity bias:

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

Tip: Add Data

Leverage all the data

- Don't try to reduce data size in an effort to make fancy algorithms work
- Simple methods on large data do best

Add more data

e.g., add IMDB data on genres

More data beats better algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org