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Recommendations 
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Items

Search Recommendations

Products, web sites, 
blogs, news items, …

Examples:



+ From Scarcity to Abundance

n Shelf space is a scarce commodity for traditional retailers 
n Also: TV networks, movie theaters,…

n Web enables near-zero-cost dissemination of information about 
products
n From scarcity to abundance

n More choice necessitates better filters
n Recommendation engines
n How Into Thin Air made Touching the Void

a bestseller: http://www.wired.com/wired/archive/12.10/tail.html
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+

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Sidenote: The Long Tail 5

Source: Chris Anderson 
(2004)



+
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Physical vs. Online 6

Read http://www.wired.com/wired/archive/12.10/tail.html to learn more!



+ Types of Recommendations

n Editorial and hand curated
n List of favorites
n Lists of “essential” items

n Simple aggregates
n Top 10, Most Popular, Recent Uploads

n Tailored to individual users
n Amazon, Netflix, …
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+ Formal Model

nX = set of Customers

nS = set of Items

nUtility function u: X × S à R
n R = set of ratings
n R is a totally ordered set
n e.g., 0-5 stars, real number in [0,1]
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+ Key Problems

n (1) Gathering “known” ratings for matrix
n How to collect the data in the utility matrix

n (2) Extrapolate unknown ratings from the known ones
n Mainly interested in high unknown ratings

n We are not interested in knowing what you don’t like but what you like

n (3) Evaluating extrapolation methods
n How to measure success/performance of recommendation methods
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+ (1) Gathering Ratings

n Explicit
n Ask people to rate items
n Doesn’t work well in practice – people 

can’t be bothered

n Implicit
n Learn ratings from user actions

n E.g., purchase implies high rating
n What about low ratings?
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+ (2) Extrapolating Utilities

n Key problem: Utility matrix U is sparse
n Most people have not rated most items
n Cold start: 

n New items have no ratings
n New users have no history

n Three approaches to recommender systems:
n 1) Content-based
n 2) Collaborative
n 3) Latent factor based
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Content based recommendation systems



+ Content-based Recommendations

n Main idea: Recommend items to customer x similar to previous 
items rated highly by x

Example:

n Movie recommendations
n Recommend movies with same actor(s), 

director, genre, …

n Websites, blogs, news
n Recommend other sites with “similar” content
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+ Item Profiles

n For each item, create an item profile

n Profile is a set (vector) of features
n Movies: author, title, actor, director,…
n Text: Set of “important” words in document

n How to pick important features?
n Usual heuristic from text mining is TF-IDF

(Term frequency * Inverse Doc Frequency)
n Term … Feature
n Document … Item
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Sidenote: TF-IDF

fij = frequency of term (feature) i in doc (item) j

ni = number of docs that mention term i

N = total number of docs

TF-IDF score: wij = TFij × IDFi

Doc profile = set of words with highest TF-IDF scores, 
together with their scores
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Note: we normalize TF
to discount for “longer” 
documents



+ User Profiles and Prediction

n User profile possibilities:
n Weighted average of rated item profiles
n Variation: weight by difference from average 

rating for item
n …

n Prediction heuristic:
n Given user profile x and item profile i, estimate 𝑢(𝒙, 𝒊) 	= 	cos	(𝒙, 𝒊) 	=
	 𝒙·𝒊
| 𝒙 |⋅| 𝒊 |
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+ Pros: Content-based Approach

n +: No need for data on other users
n No cold-start or sparsity problems

n +: Able to recommend to users with 
unique tastes

n +: Able to recommend new & unpopular items
n No first-rater problem

n +: Able to provide explanations
n Can provide explanations of recommended items by listing content-

features that caused an item to be recommended
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+ Cons: Content-based Approach

n –: Finding the appropriate features is hard
n E.g., images, movies, music

n –: Recommendations for new users
n How to build a user profile?

n –: Overspecialization
n Never recommends items outside user’s 

content profile
n People might have multiple interests
n Unable to exploit quality judgments of other users
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Collaborative Filtering
Harnessing quality judgments of other users



Collaborative Filtering

n Consider user x

n Find set N of other users 
whose ratings are “similar” to 
x’s ratings

n Estimate x’s ratings based on 
ratings of users in N
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Finding “Similar” Users
n Let rx be the vector of user x’s ratings

n Jaccard similarity measure
n Problem: Ignores the value of the rating 

n Cosine similarity measure
n sim(x, y) = cos(rx, ry) = /0⋅/1

||/0||⋅||/1||

n Problem: Treats missing ratings as “negative”

n Pearson correlation coefficient
n Sxy = items rated by both users x and y
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rx = [*, _, _, *, ***]
ry = [*, _, **, **, _]

rx, ry as sets:
rx = {1, 4, 5}
ry = {1, 3, 4}

rx, ry as points:
rx = {1, 0, 0, 1, 3}
ry = {1, 0, 2, 2, 0}

rx, ry … avg.
rating of x, y

𝒔𝒊𝒎 𝒙, 𝒚 =
∑ 𝒓𝒙𝒔 − 𝒓𝒙 𝒓𝒚𝒔 − 𝒓𝒚𝒔∈𝑺𝒙𝒚

∑ 𝒓𝒙𝒔 − 𝒓𝒙 𝟐
𝒔∈𝑺𝒙𝒚 ∑ 𝒓𝒚𝒔 − 𝒓𝒚

𝟐
𝒔∈𝑺𝒙𝒚



+ Similarity Metric

n Intuitively we want: sim(A, B) > sim(A, C)

n Jaccard similarity: 1/5 < 2/4

n Cosine similarity: 0.386 > 0.322
n Considers missing ratings as “negative”
n Solution: subtract the (row) mean
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sim A,B vs. A,C:
0.092 > -0.559
Notice cosine sim. 
is correlation when 
data is centered at 
0

𝒔𝒊𝒎(𝒙,𝒚) 	= 	
∑ 𝒓𝒙𝒊 ⋅ 𝒓𝒚𝒊𝒊

∑ 𝒓𝒙𝒊
𝟐

𝒊 ⋅ ∑ 𝒓𝒚𝒊
𝟐

𝒊

Cosine sim:



+ Rating Predictions

From similarity metric to recommendations:

n Let rx be the vector of user x’s ratings

n Let N be the set of k users most similar to x who have rated item i

n Prediction for item s of user x:

n 𝑟<= =
>
?
	∑ 𝑟@=@∈A

n 𝑟<= =
∑ B01⋅/1C1∈D
∑ B011∈D

n Other options?

n Many other tricks possible…
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Shorthand:
𝒔𝒙𝒚 = 𝒔𝒊𝒎 𝒙, 𝒚



+ Item-Item Collaborative Filtering

n So far: User-user collaborative filtering

n Another view: Item-item
n For item i, find other similar items
n Estimate rating for item i based 

on ratings for similar items
n Can use same similarity metrics and 

prediction functions as in user-user model
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Item-Item CF (|N|=2)
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- unknown rating - rating between 1 to 5 27
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Item-Item CF (|N|=2)
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+ Item-Item CF (|N|=2) 29

121110987654321

455? 311
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5224345
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users

Neighbor selection:
Identify movies similar to 
movie 1, rated by user 5

m
ov
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1.00

-0.18

0.41

-0.10

-0.31

0.59

sim(1,m)

Here we use Pearson correlation as similarity:
1) Subtract mean rating mi from each movie i

m1 = (1+3+5+5+4)/5 = 3.6
row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute cosine similarities between rows
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121110987654321
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Predict by taking weighted average:

r1.5 = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6

m
ov

ie
s

𝒓𝒊𝒙 =
∑ 𝒔𝒊𝒋 ⋅ 𝒓𝒋𝒙𝒋∈𝑵(𝒊;𝒙)

∑𝒔𝒊𝒋



CF: Common Practice
n Define similarity sij of items i and j

n Select k nearest neighbors N(i; x)
n Items most similar to i, that were rated by x

n Estimate rating rxi as the weighted average: 
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baseline estimate for 
rxi

¡ μ =		overall	mean	movie	rating
¡ bx =		rating	deviation	of	user	x

=	(avg.	rating	of	user	x) – μ
¡ bi =		rating	deviation	of	movie	i
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+ Item-Item vs. User-User 33

¡ In	practice,	 it	has	been	observed	 that	 item-item often	works	better	than	user-user
¡ Why?	Items	are	simpler,	users	have	multiple	tastes



Pros/Cons of Collaborative Filtering

n + Works for any kind of item
n No feature selection needed

n - Cold Start:
n Need enough users in the 

system to find a match

n - Sparsity: 
n The user/ratings matrix is 

sparse
n Hard to find users that have 

rated the same items

n - First rater: 
n Cannot recommend an item 

that has not been 
previously rated

n New items, Esoteric items

n - Popularity bias: 
n Cannot recommend items to 

someone with 
unique taste 

n Tends to recommend popular 
items
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+ Hybrid Methods

n Implement two or more different recommenders and 
combine predictions
n Perhaps using a linear model

n Add content-based methods to 
collaborative filtering
n Item profiles for new item problem
n Demographics to deal with new user problem
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+ Tip: Add Data

n Leverage all the data
n Don’t try to reduce data size in an effort to make fancy algorithms work
n Simple methods on large data do best

n Add more data
n e.g., add IMDB data on genres

n More data beats better algorithms
http://anand.typepad.com/datawocky/2008/03/more-data-usual.html
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