Case study I: Advertising on the Web

Genoveva Vargas-Solar

http://www.vargas-solar.com/big-data-analytics

French Council of Scientific Research, LIG & LAFMIA Labs

Montevideo, 22nd November – 4th December, 2015

Infinite data / App

Online Algorithms

Classic model of algorithms

- You get to see the entire input, then compute some function of it
- In this context, "offline algorithm"

Online Algorithms

- You get to see the input one piece at a time, and need to make irrevocable decisions along the way
- Similar to the data stream model

Online Bipartite Matching

Example: Bipartite Matching

Nodes: Boys and Girls; Edges: Preferences Goal: Match boys to girls so that maximum number of preferences is satisfied

Example: Bipartite Matching

M = {(1,a),(2,b),(3,d)} is a matching Cardinality of matching = |M| = 3

Example: Bipartite Matching

Perfect matching ... all vertices of the graph are matched **Maximum matching** ... a matching that contains the largest possible number of matches

Matching Algorithm

Problem: Find a maximum matching for a given bipartite graph

- A perfect one if it exists
- There is a polynomial-time offline algorithm based on augmenting paths (Hopcroft & Karp 1973, see <u>http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm</u>)

But what if we do not know the entire graph upfront?

Online Graph Matching Problem

- Initially, we are given the set boys
- In each round, one girl's choices are revealed
 - That is, girl's **edges** are revealed
- At that time, we have to decide to either:
 - Pair the girl with a boy
 - Do not pair the girl with any boy

Example of application: Assigning tasks to servers

Online Graph Matching: Example

10

Greedy Algorithm

Greedy algorithm for the online graph matching problem:

- Pair the new girl with any eligible boy
 - If there is none, do not pair girl

How good is the algorithm?

Competitive Ratio

For input *I*, suppose greedy produces matching *M_{greedy}* while an optimal matching is *M_{opt}*

Competitive ratio = *min*_{all possible inputs I} (|*M*_{greedy}|/|*M*_{opt}|)

(what is greedy's worst performance over all possible inputs /)

Analyzing the Greedy Algorithm

- Consider a case: $M_{greedy} \neq M_{opt}$
- Consider the set G of girls matched in M_{opt} but not in M_{greedy}
- Then every boy **B** <u>adjacent</u> to girls in **G** is already matched in **M**_{greedy}:
 - If there would exist such non-matched (by *M_{greedy}*) boy adjacent to a non-matched girl then greedy would have matched them
- Since boys **B** are already matched in M_{greedy} then (1) $|M_{greedy}| \ge |B|$

Web advertisement

History of Web Advertising

Banner ads (1995-2001)

- Initial form of web advertising
- Popular websites charged X\$ for every 1,000
 "impressions" of the ad
 - Called "CPM" rate (Cost per thousand impressions)
 - Modeled similar to TV, magazine ads
- From untargeted to demographically targeted
- Low click-through rates
 - Low ROI for advertisers

CPM...cost per *mille Mille...thousand in Latin*

Performance-based Advertising

Introduced by Overture around 2000

- Advertisers bid on search keywords
- When someone searches for that keyword, the highest bidder's ad is shown
- Advertiser is charged only if the ad is clicked on
- Similar model adapted by Google with some changes around 2002
 - Called Adwords

Ads vs. Search Results

Web

Results 1 - 10 of about 2,230,000 for geico. (0.04 seco

GEICO Car Insurance. Get an auto insurance quote and save today ...

GEICO auto insurance, online car insurance quote, motorcycle insurance quote, online insurance sales and service from a leading insurance company. www.geico.com/ - 21k - Sep 22, 2005 - Cached - Similar pages

Auto Insurance - Βυγ Auto Insurance Contact Us - Make a Paγment More results from www.geico.com »

Geico, Google Settle Trademark Dispute

The case was resolved out of court, so advertisers are still left without legal guidance on use of trademarks within ads or as keywords. www.clickz.com/news/article.php/3547356 - 44k - Cached - Similar pages

Google and GEICO settle AdWords dispute | The Register

Google and car insurance firm **GEICO** have settled a trade mark dispute over ... Car insurance firm **GEICO** sued both Google and Yahoo! subsidiary Overture in ... www.theregister.co.uk/2005/09/09/google_geico_settlement/ - 21k - <u>Cached</u> - <u>Similar pages</u>

GEICO v. Google

... involving a lawsuit filed by Government Employees Insurance Company (GEICO). GEICO has filed suit against two major Internet search engine operators, ... www.consumeraffairs.com/news04/geico_google.html - 19k - <u>Cached</u> - <u>Similar pages</u>

Sponsored Links

<u>Great Car Insurance Rates</u> Simplify Buying Insurance at Safeco See Your Rate with an Instant Quote www.Safeco.com

Free Insurance Quotes

Fill out one simple form to get multiple quotes from local agents. www.HometownQuotes.com

5 Free Quotes, 1 Form.

Get 5 Free Quotes In Minutes! You Have Nothing To Lose. It's Free sayyessoftware.com/Insurance Missouri

Web 2.0

Performance-based advertising works!

Multi-billion-dollar industry

Interesting problem:

What ads to show for a given query?

If I am an advertiser, which search terms should I bid on and how much should I bid?

Adwords Problem

Given:

- **1.** A set of bids by advertisers for search queries
- **2.** A click-through rate for each advertiser-query pair
- **3.** A budget for each advertiser (say for 1 month)
- 4. A limit on the number of ads to be displayed with each search query

Respond to each search query with a set of advertisers such that:

- **1.** The size of the set is no larger than the limit on the number of ads per query
- **2.** Each advertiser has bid on the search query
- **3.** Each advertiser has enough budget left to pay for the ad if it is clicked upon

Adwords Problem

- A stream of queries arrives at the search engine: q_1, q_2, \dots
- Several advertisers bid on each query
- When query q_i arrives, search engine must pick a subset of advertisers whose ads are shown
- Goal: Maximize search engine's revenues
 - Simple solution: Instead of raw bids, use the "expected revenue per click" (i.e., Bid*CTR –Click Through Rate)
- Clearly we need an online algorithm!

The Adwords Innovation

Advertiser	Bid	CTR	Bid * CTR
Α	\$1.00	1%	1 cent
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.125 cents
		Click through rate	Expected revenue

The Adwords Innovation

Advertiser	Bid	CTR	Bid * CTR
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.125 cents
Α	\$1.00	1%	1 cent

Complications: Budget

Two complications:

- Budget
- CTR of an ad is unknown

Each advertiser has a limited budget

Search engine guarantees that the advertiser will not be charged more than their daily budget

Complications: CTR

CTR: Each ad has a different likelihood of being clicked

- Advertiser 1 bids \$2, click probability = 0.1
- Advertiser 2 bids \$1, click probability = 0.5
- Clickthrough rate (CTR) is measured historically

Very hard problem: Exploration vs. exploitation
 Exploit: Should we keep showing an ad for which we have good estimates of click-through rate or
 Explore: Shall we show a brand new ad to get a better sense of its aliak through rate

click-through rate

Greedy Algorithm

Our setting: Simplified environment

- There is **1** ad shown for each query
- All advertisers have the same budget B
- All ads are equally likely to be clicked
- Value of each ad is the same (=1)

Simplest algorithm is greedy:

- For a query pick any advertiser who has bid 1 for that query
- Competitive ratio of greedy is 1/2

Bad Scenario for Greedy

Two advertisers A and B

- A bids on query x, B bids on x and y
- Both have budgets of \$4

Query stream: x x x y y y y

- Worst case greedy choice: **B B B B** _ _ _ _
- Optimal: **A A A A B B B B**
- Competitive ratio = 1/2

This is the worst case!

• Note: Greedy algorithm is deterministic – it always resolves draws in the same way

BALANCE Algorithm [MSVV]

BALANCE Algorithm by Mehta, Saberi, Vazirani, and Vazirani

- For each query, pick the advertiser with the largest unspent budget
 - Break ties arbitrarily (but in a deterministic way)

Example: BALANCE

Two advertisers A and B

- A bids on query *x*, **B** bids on *x* and *y*
- Both have budgets of \$4
- Query stream: x x x y y y y
- BALANCE choice: A B A B B B _ _
 - Optimal: **A A A A B B B B**

In general: For BALANCE on 2 advertisers Competitive ratio = 34

Analyzing BALANCE

Consider simple case (w.l.o.g.):

- **2** advertisers, A_1 and A_2 , each with budget **B** (≥ 1)
- Optimal solution exhausts both advertisers' budgets

BALANCE must exhaust at least one advertiser's budget:

- If not, we can allocate more queries
 - Whenever BALANCE makes a mistake (both advertisers bid on the query), advertiser's unspent budget only decreases
 - Since optimal exhausts both budgets, one will for sure get exhausted
- Assume BALANCE exhausts A₂'s budget, but allocates x queries fewer than the optimal
- Revenue: BAL = 2B x

BALANCE: General Result

In the general case, worst competitive ratio of BALANCE is 1–1/e = approx. 0.63

Interestingly, no online algorithm has a better competitive ratio!

Let's see the worst case example that gives this ratio

Worst case for BALANCE

• N advertisers: $A_1, A_2, \dots A_N$

Each with budget **B** > **N**

Queries:

• *N*·*B* queries appear in *N* rounds of *B* queries each

Bidding:

- Round 1 queries: bidders A₁, A₂, ..., A_N
- Round 2 queries: bidders A₂, A₃, ..., A_N
- Round *i* queries: bidders
 A_i, ..., A_N

Optimum allocation:

Allocate round i queries to A_i

Optimum revenue **N·B**

BALANCE assigns each of the queries in round 1 to N advertisers. After k rounds, sum of allocations to each of advertisers A_k, \dots, A_N

is
$$S_k = S_{k+1} = \dots = S_N = \sum_{i=1}^{k-1} \frac{B}{N-(i-1)}$$

If we find the smallest k such that $S_k \ge B$, then after k rounds

J. Leskovec, A. Rajarawae cannot vallocate any queries to vany advectiser

BALANCE: Analysis

BALANCE: Analysis

- So after the first k=N(1-1/e) rounds, we cannot allocate a query to any advertiser
- Revenue = $B \cdot N (1-1/e)$
- Competitive ratio = 1-1/e

General Version of the Problem

Arbitrary bids and arbitrary budgets!

- Consider we have 1 query *q*, advertiser *i*
 - Bid = **x**_i
 - Budget = b_i

In a general setting BALANCE can be terrible

- Consider two advertisers A₁ and A₂
- $A_1: x_1 = 1, b_1 = 110$
- $A_2: x_2 = 10, b_2 = 100$
- Consider we see 10 instances of q
- BALANCE always selects A₁ and earns 10
- Optimal earns 100

Generalized BALANCE

- Arbitrary bids: consider query q, bidder i
 - Bid = **x**_i
 - Budget = b_i
 - Amount spent so far = *m_i*
 - Fraction of budget left over f_i = 1-m_i/b_i
 - Define $\psi_i(q) = x_i(1 e^{-f_i})$
- Allocate query q to bidder i with largest value of $\psi_i(q)$
- Same competitive ratio (1-1/e)