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+ Online Algorithms

n Classic model of algorithms
n You get to see the entire input, then compute some function of it
n In this context, “offline algorithm”

n Online Algorithms
n You get to see the input one piece at a time, and need to make 

irrevocable decisions along the way
n Similar to the data stream model
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Online Bipartite Matching
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Example: Bipartite Matching 5
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Nodes:	Boys	and	Girls;	Edges:	Preferences
Goal:	Match	boys	to	girls	so	that	maximum	

number	of	preferences	is	satisfied
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Example: Bipartite Matching 6

M	=	{(1,a),(2,b),(3,d)} is	a	matching
Cardinality	of	matching	=	|M|	=	3

1

2

3

4

a

b

c

dBoys Girls



+

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Example: Bipartite Matching 7

1

2

3

4

a

b

c

dBoys Girls

M	=	{(1,c),(2,b),(3,d),(4,a)} is	a	
perfect	matching

Perfect matching … all vertices of the graph are matched
Maximum matching …  a matching that contains the largest possible number of matches



+ Matching Algorithm

n Problem: Find a maximum matching for a given bipartite 
graph
n A perfect one if it exists

n There is a polynomial-time offline algorithm based on 
augmenting paths (Hopcroft & Karp 1973, see 
http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm)

n But what if we do not know the entire graph upfront?
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+ Online Graph Matching Problem

n Initially, we are given the set boys

n In each round, one girl’s choices are revealed
n That is, girl’s edges are revealed

n At that time, we have to decide to either:
n Pair the girl with a boy
n Do not pair the girl with any boy

n Example of application: Assigning tasks to servers
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+ Greedy Algorithm

n Greedy algorithm for the online graph matching problem:
n Pair the new girl with any eligible boy

n If there is none, do not pair girl

n How good is the algorithm?
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+ Competitive Ratio

n For input I, suppose greedy produces matching Mgreedy while an 
optimal matching is Mopt

Competitive ratio = minall possible inputs I (|Mgreedy|/|Mopt|)

(what is greedy’s worst performance over all possible inputs I)
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+ Analyzing the Greedy Algorithm

n Consider a case: Mgreedy≠ Mopt

n Consider the set G of girls 
matched in Mopt but not in Mgreedy

n Then every boy B adjacent to girls 
in G is already matched in Mgreedy:
n If there would exist such non-matched 

(by Mgreedy) boy adjacent to a non-matched 
girl then greedy would have matched them

n Since boys B are already matched in Mgreedy then 
(1) |Mgreedy|≥ |B|
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Web advertisement



+ History of Web Advertising

n Banner ads (1995-2001)
n Initial form of web advertising
n Popular websites charged 

X$ for every 1,000 
“impressions” of the ad
n Called “CPM” rate 

(Cost per thousand impressions)
n Modeled similar to TV, magazine ads

n From untargeted to demographically targeted
n Low click-through rates

n Low ROI for advertisers

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

15

CPM…cost per mille
Mille…thousand in Latin



+ Performance-based Advertising

n Introduced by Overture around 2000
n Advertisers bid on search keywords
n When someone searches for that keyword, the highest bidder’s ad is 

shown
n Advertiser is charged only if the ad is clicked on

n Similar model adapted by Google with some changes around 
2002
n Called Adwords

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

16



+

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Ads vs. Search Results 17



+ Web 2.0

n Performance-based advertising works!
n Multi-billion-dollar industry

n Interesting problem:
What ads to show for a given query? 

n If I am an advertiser, which search terms should I bid on and 
how much should I bid? 
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Adwords Problem

n Given:
n 1. A set of bids by advertisers for search queries
n 2. A click-through rate for each advertiser-query pair
n 3. A budget for each advertiser (say for 1 month)
n 4. A limit on the number of ads to be displayed with each search query
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n Respond to each search query with a set of advertisers such that:
n 1. The size of the set is no larger than the limit on the number of ads per query
n 2. Each advertiser has bid on the search query
n 3. Each advertiser has enough budget left to pay for the ad if it is clicked upon
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+ Adwords Problem

n A stream of queries arrives at the search engine: q1, q2, …

n Several advertisers bid on each query

n When query qi arrives, search engine must pick a subset of 
advertisers whose ads are shown

n Goal: Maximize search engine’s revenues
n Simple solution: Instead of raw bids, use the “expected revenue per 

click” (i.e., Bid*CTR –Click Through Rate)

n Clearly we need an online algorithm!
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+ Complications: Budget

n Two complications:
n Budget
n CTR of an ad is unknown

n Each advertiser has a limited budget
n Search engine guarantees that the advertiser will not be charged 

more than their daily budget
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+ Complications: CTR

n CTR: Each ad has a different likelihood of being clicked
n Advertiser 1 bids $2, click probability = 0.1
n Advertiser 2 bids $1, click probability = 0.5
n Clickthrough rate (CTR) is measured historically

n Very hard problem: Exploration vs. exploitation
Exploit: Should we keep showing an ad for which we have 
good estimates of click-through rate 
or
Explore:  Shall we show a brand new ad to get a better sense of its 
click-through rate
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+ Greedy Algorithm

n Our setting: Simplified environment
n There is 1 ad shown for each query
n All advertisers have the same budget B
n All ads are equally likely to be clicked
n Value of each ad is the same (=1)

n Simplest algorithm is greedy:
n For a query pick any advertiser who has 

bid 1 for that query
n Competitive ratio of greedy is 1/2
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+ Bad Scenario for Greedy

n Two advertisers A and B
n A bids on query x, B bids on x and y
n Both have budgets of $4

n Query stream: x x x x y y y y
n Worst case greedy choice: B B B B _ _ _ _ 
n Optimal: A A A A B B B B
n Competitive ratio = ½

n This is the worst case!
n Note: Greedy algorithm is deterministic – it always resolves draws in the same way
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+ BALANCE Algorithm [MSVV]

n BALANCE Algorithm by Mehta, Saberi, Vazirani, and Vazirani
n For each query, pick the advertiser with the 

largest unspent budget
n Break ties arbitrarily (but in a deterministic way)
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+ Example: BALANCE

n Two advertisers A and B
n A bids on query x, B bids on x and y
n Both have budgets of $4

n Query stream: x x x x y y y y

n BALANCE choice: A B A B B B _ _
n Optimal: A A A A B B B B

n In general: For BALANCE on 2 advertisers Competitive ratio = ¾
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+ Analyzing BALANCE

n Consider simple case (w.l.o.g.): 
n 2 advertisers, A1 and A2, each with budget B (≥1)
n Optimal solution exhausts both advertisers’ budgets

n BALANCE must exhaust at least one advertiser’s budget:
n If not, we can allocate more queries

n Whenever BALANCE makes a mistake (both advertisers bid on the 
query), advertiser’s unspent budget only decreases

n Since optimal exhausts both budgets, one will for sure get exhausted
n Assume BALANCE exhausts A2’s budget, 

but allocates x queries fewer than the optimal
n Revenue: BAL = 2B - x
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Analyzing  Balance 31
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Assume Balance gives revenue = 2B-x = B+y

Unassigned queries should be assigned to A2
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Goal: Show we have y ≥ x
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+ BALANCE: General Result

n In the general case, worst competitive ratio of BALANCE is 
1–1/e = approx. 0.63
n Interestingly, no online algorithm has a better competitive ratio!

n Let’s see the worst case example that gives this ratio
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+ Worst case for BALANCE

n N advertisers: A1, A2, … AN
n Each with budget B > N

n Queries:
n N∙B queries appear in N rounds of B queries each

n Bidding:
n Round 1 queries: bidders A1, A2,       …, AN

n Round 2 queries: bidders       A2, A3, …, AN

n Round i queries:  bidders             Ai, …,  AN

n Optimum allocation: 
Allocate round i queries to Ai

n Optimum revenue N∙B
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BALANCE Allocation 34
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B/(N-1)
B/(N-2)

BALANCE	assigns	 each	of	the	queries	 in	round	1	to	N advertisers.	
After	k rounds,	sum	of	allocations	 to	each	of	advertisers	Ak,…,AN

is	𝑺𝒌 = 	𝑺𝒌-𝟏 = ⋯ = 𝑺𝑵 = ∑ 𝑩
𝑵2(𝒊2𝟏)

𝒌2𝟏
𝒊6𝟏

If	we	find	the	smallest	k such	that	Sk ≥ B,	then	after	k
rounds
we	cannot	allocate	any	queries	to	any	advertiser
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BALANCE: Analysis
n Fact: 𝑯𝒏 = ∑ 𝟏/𝒊𝒏

𝒊6𝟏 ≈ 𝐥𝐧 𝒏 for large n
n Result due to Euler

n 𝑺𝒌 = 𝟏 implies: 𝑯𝑵2𝒌 = 𝒍𝒏	(𝑵) − 𝟏 = 𝒍𝒏	(𝑵𝒆)

n We also know: 𝑯𝑵2𝒌 = 𝒍𝒏	(𝑵 − 𝒌)

n So: 𝑵 − 𝒌 = 𝑵
𝒆	

n Then: 𝒌 = 𝑵(𝟏 − 𝟏
𝒆)J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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1/1   1/2   1/3  …  1/(N-(k-1)) … 1/(N-1)   1/N

Sk = 1

ln(N)

ln(N)-1

N terms sum to ln(N).
Last k terms sum to 1.
First N-k terms sum
to ln(N-k) but also to ln(N)-1



+ BALANCE: Analysis

n So after the first k=N(1-1/e) rounds, we 
cannot allocate a query to any advertiser

n Revenue = B∙N (1-1/e)

n Competitive ratio = 1-1/e
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+ General Version of the Problem

n Arbitrary bids and arbitrary budgets!

n Consider we have 1 query q, advertiser i
n Bid = xi

n Budget = bi

n In a general setting BALANCE can be terrible
n Consider two advertisers A1 and A2

n A1: x1 = 1, b1 = 110
n A2: x2 = 10, b2 = 100
n Consider we see 10 instances of q
n BALANCE always selects A1 and earns 10
n Optimal earns 100
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Generalized BALANCE
n Arbitrary bids: consider query q, bidder i

n Bid = xi
n Budget = bi
n Amount spent so far = mi
n Fraction of budget left over fi = 1-mi/bi
n Define ψi(q) = xi(1-e-fi)

n Allocate query q to bidder i with largest 
value of ψi(q)

n Same competitive ratio (1-1/e)
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