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The study of network representations of physical, biological, and social

phenomena leading to predictive models of these phenomena




Network science fields

The field draws on theories and methods including
= graph theory from mathematics
m statistical mechanics from physics
= data mining and information visualization from computer science
= inferential modelling from statistics
= social structure from sociology



A SIMPLE STORY (1)

The fate of Saddam and network science
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The faith of Saddamm Hussein
and network science

The capture of Saddam Hussein:
m Shows the strong predictive power of networks

m Underlies the need to obtain accurate maps of the networks; and the
often heroic difficulties we encounter during the mapping process.

m demonstrates the remarkable stability of these networks:

m the capture of Hussein was not based on fresh intelligence, but rather
on his pre-invasion social links, unearthed from old photos stacked in
his family aloum.

m Shows that the choice of network we focus on makes a huge difference:

m the hierarchical tree, that captured the official organization of the lraqi
government, was of no use when it came to Saddam Hussein's
whereabouts



Behind each complex system there is a network, that

defines the interactions between the component




The “Social Graph” behind Facebook

Keith Shepherd's "Sunday Best". http://baseballart.com/2010/07/shades-of-greatn ess-a-story-that-needed-to-be-told/
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STRUCTURE OF AN ORGANIZATION
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The subtle financial networks
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The not so subtle financial networks: 2011
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BUSINESS TIES IN US BIOTECH-INDUSTRY

Nodes:
Companies
Investment
Pharma
Research Labs
Public
Biotechnology

Links:
Collaborations
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In the generic networks shown, the points
represent the elements of each organism’s genetic
network, and the dotted lines show the
interactions between them.
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Complex systems
Made of many non-identical elements connected by

diverse interactions.
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THE ROLE OF NETWORKS

Behind each system studied in complexity there is an intricate wiring
diagram, or a network, that defines the interactions between the
component.

We will never understand
complex system unless we
map out and understand
the networks behind them.



TWO FORCES HELPED THE
EMERGENCE OF NETWORK
SCIENCE



THE HISTORY OF NETWORK ANALYSIS

Graph theory: 1735, Euler
Social Network Research: 1930s, Moreno
Communication networks/internet: 1960s

Ecological Networks: May, 1979.



THE CHARACTERISTICS OF
NETWORK SCIENCE



THE CHARACTERISTICS OF NETWORK SCIENCE

Interdisciplinary



THE CHARACTERISTICS OF NETWORK SCIENCE

Empirical, data driven



THE CHARACTERISTICS OF NETWORK SCIENCE

Quantitative and Mathematical
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THE CHARACTERISTICS OF NETWORK SCIENCE

Computational
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THE IMPACT OF NETWORK
SCIENCE



ECONOMIC IMPACT
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DRUG DESIGN, METABOLIC ENGINEERING:
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DRUG DESIGN, METABOLIC ENGINEERING
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HUMAN DISEASE NETWORK
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Network Biology/Network Medicine
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FIGHTING TERRORISM AND MILITARY
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FIGHTING TERRORISM AND MILITARY
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The network behind a military engagement
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Predicting the HIN1 pandemic

Feb 18 2009
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EPIDEMIC FORECAST Predicting the HIN1 pandemic

Real Projected

Worst case scenario
Calibration up to May 6
Average number of cases

Real cases as of May 24, 2009
Fraction of max number of cases per cell
<1%
1% - 10%
I 10% - 50% N 10% - 50%
B s0% - 75% = ) . N 50% - 100% .y
B 75% - 100% - 43 GLEaMviz.org B 75% - 100% ) - ‘, GLEaMviz.org

Fraction of max number of cases per cell
May 24, 2009

<1%

1% - 10%



BRAIN RESEARCH

In September 2010 the National Institutes of
Health awarded $40 million to researchers at
Harvard, Washington University in St. Louis,
the University of Minnesota and UCLA, to
develop the technologies that could
systematically map out brain circuits.

The Human Connectome Project (HCP) with
the ambitious goal to construct a map of the
complete structural and functional neural
connections in vivo within and across
individuals.

Network Science: Introduction




Management

Barabasi Lab
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MOST IMPORTANT I Networks Really Matter

If you were to understand the spread of diseases,

If you were to understand the WWW structure,
searchabillity, etc,

If you want to understand human diseases,

Network Science: Introduction
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Networks and graphs



COMPONENTS OF ACOMPLEX SYSTEM

-

S

= components: nodes, vertices N

= interactions: links, edges L

= system: network, graph (N : L)



NETWORKS OR GRAPHS?

network often refers to real systems

"WWW,
*social network
metabolic network.

Language: (Network, node, link)

graph: mathematical representation of a network

*web graph,
social graph (a Facebookterm)

Language: (Graph, vertex, edge)

We will try to make this distinction whenever it is appropriate,
but in most cases we will use the two terms interchangeably.



A COMMON LANGUAGE

.:; ;‘ I _-_‘{\.:

Marblon uBféndo
o/ =

Viva Zapata!

=\

Michelle Pfeiffer

& 1
l%c

Henry Silva




CHOOSING A PROPER REPRESENTATION

The choice of the proper network representation determines our
ability to use network theory successfully.

In some cases there is a unique, unambiguous representation.
In other cases, the representation is by no means unique.

For example, the way we assign the links between a group of
individuals will determine the nature of the question we can study.
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CHOOSING A PROPER REPRESENTATION
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CHOOSING A PROPER REPRESENTATION
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CHOOSING A PROPER REPRESENTATION

If you connectindividuals based on their first name
(all Peters connected to each other), you will be

exploring what?

It is a network, nevertheless.



UNDIRECTED VS. DIRECTED NETWORKS

Undirected

Links: undirected (symmetrical)

Graph:

Undirected links :
coauthorship links
Actor network

protein interactions

Directed

Links: directed (arcs).

Digraph = directed graph:

Directed links :

URLs on the www
phone calls
metabolic reactions

Anundirected
linkis the
superposition of
two opposite
directed links.



NETWORK NODES LINKS DIRECTED N L
UNDIRECTED
Internet Routers Internet connections Undirected 192,244 609,066
www Webpages Links Directed 325,729 1,497,134
Power Grid Power plants, transformers Cables Undirected 4,941 6,594
Mobile Phone Calls Subscribers Calls Directed 36,595 91,826
Email Email addresses Emails Directed 57,194 103,731
Science Collaboration Scientists Co-authorship Undirected 23,133 93,439
Actor Network Actors Co-acting Undirected 702,388 29,397,908
Citation Network Paper Citations Directed 449,673 4,689,479
E. Coli Metabolism Metabolites Chemical reactions Directed 1,039 5,802
Protein Interactions Proteins Binding interactions Undirected 2,018 2,930




Degree, Average Degree and Degree
Distribution



NODE DEGREES

geo] Node degree: the number of links connected to the node.
() A
wfd
o
= k, =1 k, =4
© B
c O\
=
b In directed networks we can define an in-degree and out-degree.
B

The (total) degree is the sum of in- and out-degree.

G /Ep k'"=2 k=1 k.=3
A O\
F

Source: a node with k"= 0; Sink: a node with k°ui=0.

Directed



Four key quantities characterize
a sample of Nvalues x,, ..., x,;:

Average (mean):

The nt*" moment:

n n n N
<x”>: X, +Xx,+...+Xxy :lzx?
Nz'=1

N

A BIT OF STATISTICS

BRIEF STATISTICS REVIEW

Standard deviation:

Distribution of x:

1
px_ stx’xi

where p_follows

2. =1 ( poax=1)

1



AVERAGE DEGREE

)=y Dk (k==

(/) N — the number of nodes in the graph

Undirected

Directed



Average Degree

NETWORK

Internet

WWWwW

Power Grid

Mobile Phone Calls
Email

Science Collaboration
Actor Network
Citation Network

E. Coli Metabolism

Protein Interactions

NODES

Routers

Webpages

Power plants, transformers
Subscribers

Email addresses

Scientists

Actors

Paper

Metabolites

Proteins

LINKS

Internet connections
Links

Cables

Calls

Emails
Co-authorship
Co-acting

Citations

Chemical reactions

Binding interactions

DIRECTED
UNDIRECTED

Undirected
Directed
Undirected
Directed
Directed
Undirected
Undirected
Directed
Directed

Undirected

192,244
325,729
4,941
36,595
57194
23,133
702,388
449,673
1,039
2,018

609,066
1,497,134
6,594
91,826
103,731
93,439
29,397,908
4,689,479
5,802

2,930

(k)

6.33
4.60
2.67
2.51
1.81
8.08
83.71
10.43
5.58
2.90

Network Science: Graph Theory



DEGREE DISTRIBUTION

Degree distribution

P(k): probability that a o n

randomly chosen node 6 c

has degree k o . I .

k
o ®e
® %
® P g
Nk = # nodes with degree k Y ‘
0. g ®
k

P(k)=N«/N = plot



Adjacency matrix



ADJACENCY MATRIX

S~ [

Il—1 if there is a link between node jand j

A“—O if nodes /and j are not connected to each

other.
0O 1 0 1 O 0 0 O
1 0 0 1 o 1 0 0 1
A=119 0 0 1 Ai=119 0 0 1
1 1 1 0 1 0 0 O

Note thatfor a directed graph (right) the matrix is not symmetric.

A;; = 1 ifthere is a link pointing from node jand i

A;; = 0 if there is no link pointing from jto i.



BIPARTITE NETWORKS



BIPARTITE GRAPHS

bipartite graph (or bigraph) is a graph whose nodes can be divided
into two disjoint sets U and V such that every link connects a node in Uto

one in V: that is, Uand V are independent sets.

Projection U

U

Vv

Projection V

A

Examples:

Hollywood actor network
Collaboration networks
Disease network (diseasome)



GENE NETWORK - DISEASE NETWORK

DISEASOME PHENOME

CTNNET)

CCHEK2) sLC22A1E

Gene network

Goh, Cusick, Valle, Childs, Vidal & Barabasi, PNAS (2007)

GENOME

Ofrolaryngeal cancer

Li Fraumeni syndrome
Wilms tumor |

Prostate cancer

| Colon cancer

Leukemia

{
! Melnoma

|Fanconi anemia
|
Pancreatic cancer

Bladder cancer
Breast cancer

[_Histiocyloma |

Lung cancer ]
Polyposis
Hepatic adenoma

Juvenile polyposis

Stomach cancer

Adrenal cortical carcinoma

Peutz-Jeghers syndrome

Juvenils polyposis Li Fraumeni syndrome

Orolaryngeal cancer
Polyposis
Melnoma Wilms tumor

77 ] Prostate cancer
Peuiz-Jeghers syndrome.
Fanconi anemia

Pancreatic cancar
Breast cancer

{Adrenal corticall |
carcinoma
Leukemia | Bladder cancer
‘Stomach _cancer

Colon cancer { LUI;IQ‘ e
Histiocytoma ]

Hepatic adenoma

Disease network



HUMAN DISEASE NETWORK
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Ingredient-Flavor Bipartite Network

A Ingredients Flavor compounds B Flavor network
shrimp 1-penten-3-ol
= ‘ white 2-hexenal
‘§ wine 2-isobutyl thiazole
0 mozzarella 2,3-diethylpyrazine Prevalence
o 2,4-nonadienal
© parmesan 3-hexen-1-ol
£ 4-hydroxy-5-methyl...
i) olive 4-methylpentanolc acld
© oil acetylpyrazine 30%
% allyl 2-furoate
= alpha-terpineol
g' parsley oe':a-cymoxmn
o cis-3-hexenal
(3] dihydroxyacetone 10 %
<4 R dimethyl succinate Q
& ethyl proplonate
£ hexy! alcohol O 1%
5 isoamyl alcohol
garlic isobutyl acetate
Isobutyl alcohol
lauric acid
w z limonene (d-|-, and di-)
2 ‘ Soalion I-malic acid
2 @ sesameoil methyl butyrate Shared compounds
= methyl hexanoate
o . starch methyl propyl trisulfide
ol soy nonanoic acid 100
- . sauce phenethyl alcohol
» hut propenyl propy! disulfide 30
S propionaldehyde
%! ‘(3’“\ black propyl disulfide 1
{ " pepper p-mentha-1,3-diene
L p-menth-1-ene-9-al
terpinyl acetate
. sake tetrahydrofurfuryl alcohol
mussel trans, trans-2,4-hexadienal

Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, A.-L. Barabasi Flavor network and the principles
of food pairing, Scientific Reports 196, (2011).

Network Science: Graph Theory



Categories
() fruits
dairy
@ wwioes
. alcoholic beverages
() nuts and seeds

. sealoods
. meals
’ herbs

. plant derivatives
. vegetables

. flowers

. animal products

’ plants

| cereal

Prevalence

@ -

@ 0%

® 1%

Shared
compounds

— 150
-_— 50
10




PATHOLOGY



PATHS

A path is a sequence of nodes in which each node is adjacent to the next one

Py.in Of length n between nodes iy and i, is an ordered collection of n+7 nodes and nlinks

Pn :{ioailaiza"'ain} 1)11 — {(lo 9i1)a(i13i2)9(i2 9i3)9°-°9(in_1 9ln)}

* In a directed network, the path can follow only the direction of an arrow.



B The distance (shortest path, geodesic path) between two
A nodes is defined as the number of edges along the shortest
path connecting them.

O
(3
D *If the two nodes are disconnected, the distance is infinity.
B In directed graphs each path needs to follow the direction of
A the arrows.
Thus in a digraph the distance from node A to B (on an AB
J c path) is generally different from the distance from node B to A
D

(on a BCA path).



NUMBER OF PATHS BETWEEN TWO NODES

N;,;number of paths between any two nodes /and ;:

Length n=1: If there is a link between /and j, then Aj=1 and A;=0 otherwise.

Length n=2: If there is a path of length two between /and j, then A, A =1, and AyA=0

otherwise.
The number of paths of length 2:

N,-(jz) = zAikAkj = [Az]ij
k=1

Length n: In general, if there is a path of length n between jand j, then Ay...A=1

and Ay...A=0 otherwise.
The number of paths of length nbetween iand jis’

Ni(jn) — [An]ij

*holds for both directed and undirected networks.



FINDING DISTANCES: BREADTH FIRST SEARCH

Distance between node 0 and node 4:

1.Start at 0.
5 3 4
\ 2<
4 —03 2 1 ? 1< 3 —u
/ 2
A | \ R
. 4 / \ g 4



FINDING DISTANCES: BREADTH FIRST SEARCH

Distance between node 0 and node 4:

1.Start at 0.
2.Find the nodes adjacent to 1. Mark them as at distance 1. Put them in a queue.

4/3

[
N\l

©,

|

A
AN

1



FINDING DISTANCES: BREADTH FIRST SEARCH

Distance between node 0 and node 4:

1.Start at 0.
2.Find the nodes adjacent to 0. Mark them as at distance 1. Put them in a queue.

3.Take the first node out of the queue. Find the unmarked nodes adjacent to it in the

graph. Mark them with the label of 2. Put them in the queue.

3 3 4
TG \”? D
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FINDING DISTANCES: BREADTH FIRST SEARCH

Distance between node 0 and node 4:

1.Repeat until you find node 4 or there are no more nodes in the queue.
2.The distance between 0 and 4 is the label of 4 or, if 4 does not have a label, infinity.

3)



NETWORK DIAMETER AND AVERAGE DISTANCE

Diameter: dmyax the maximum distance between any pair of nodes in the

graph.

Average path length/distance, <d>, fora connected graph:

1

<d> = — d. where d;; is the distance from node j to
2L L /
max i,j#i

node j

1
In an undirected graph dj; =d;;, so we only need to count them once: <d> = L— Zdij

max i, j>i



PATHOLOGY: summary

Shortest
Path

lisa =3

l1—>5 =2

The path with the shortest
length between two nodes
(distance).



PATHOLOGY: summary

Diameter Average Path Length

liso + 153+ lia+
+ 15+ lasg +losat
+loy5 +1l3a + I35+
lis) /10 = 1.6

The longest shortest path The average of the shortest paths
in a graph for all pairs of nodes.



PATHOLOGY: summary

Self-avoiding Path

A path with the same start A path that does not
and end node. intersect itself.



PATHOLOGY: summary

Eulerian Path Hamiltonian Path

A path that traverses each A path that visits each
link exactly once. node exactly once.



CONNECTEDNESS



CONNECTIVITY OF UNDIRECTED GRAPHS

Connected (undirected) graph: any two vertices can be joined by a path.
A disconnected graph is made up by two or more connected components.

G

B
B
g | & o l
A
C
DF> DFI>©C
F
F
G

Bridge: if we erase it, the graph becomes disconnected.

Largest Component:
Giant Component

The rest: Isolates



CONNECTIVITY OF UNDIRECTED GRAPHS

The adjacency matrix of a network with several components can be written in a block-
diagonal form, so that nonzero elements are confined to squares, with all other elements
being zero:

(a) ('0 I 0 0 0 0\
il

B 0 0 0 0
0o 0o o I
0 0 0
00 0

\ 0 0 0

-0 o
—— O
S = =

=

0 0 n\
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0 0 0

b :
(b) (2

b
0 0
0 0 0
00 0

\ 0 0 0
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o -
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CONNECTIVITY OF DIRECTED GRAPHS

Strongly connected directed graph: has a path from each node to
every other node and vice versa (e.g. AB path and BA path).

Weakly connected directed graph: it is connected if we disregard the
edge directions.

Strongly connected components can be identified, but not every node is part
of a nontrivial strongly connected component.

B
E
A B F
A
D E (o
O/OF
G

In-component: nodes that can reach the scc,
Out-component: nodes that can be reached from the scc.



FINDING THE CONNECTED COMPONENTS OF A NETWORK

1. Start from a randomly chosen node i and perform a BFS (BOX
2.5). Label all nodes reached thiswaywithn=1

2. [f the total number of labeled nodes equals N, then the network
is connected. If the number of labeled nodes is smaller than N, the
network consists of several components. To identify them, pro-
ceed to step 3.

3. Increase the label n — n + 1. Choose an unmarked node j, label
it with n. Use BFS to find all nodes reachable from j, label them all
with n. Return to step 2.



Clustering coefficient



CLUSTERING COEFFICIENT

% Clustering coefficient:

what fraction of your neighbors are connected?

* Node i with degree Kki

* Giin[0,1]

2e.

l

C, =
ki (ki - 1)

Watts & Strogatz, Nature 1998.



CLUSTERING COEFFICIENT

% Clustering coefficient:

what fraction of your neighbors are connected?

* Node i with degree ki

* Giin[0,1]

2e.

l

C, =
ki (ki - 1)

Watts & Strogatz, Nature 1998.



Section 11 .

summary



THREE CENTRAL QUANTITIES IN NETWORK SCIENCE

Degree distribution: P(k)
Path length:
<d> Ci — 261’
ki (ki _ 1)

Clustering coefficient:

Network Science: Graph Theory



GRAPHOLOGY jj

Undirected

(0 1 1 0)
1 0 1 1
A, =
711 1 0 O
0 1 0 0
A; =0 A;=A,

1 & 2L
L:—EAN < k>=—
27 N

Actor network, protein-protein interactions

Directed

A

(0O 1 0 O0)
O 0 1 1
A, =
P11 0 0 0
0 0 0 o0
A. =0 A, %A,

x L
L=2Aij <k>:ﬁ

i,j=1

WWW, citation networks



GRAPHOLvEY

Unweighted

(undirected)

(0 1 1 O0)
1 0 1 1
A, =

711 1 0 o0
o 1 0 0

A, =0 A=A,
ZA < k >= 2—L

N

1]1

protein-protein interactions, www

Weighted

(undirected)

(0 2 05 0)
2 0 1 4
A, =
7105 1 0 0
L 0 4 0 0
A.=0 A, =A,

N
= 1 Znonzero(Aij) < k>= 2L

i,j=1

Call Graph, metabolic networks



Self- Multigraph
interacti (undirected)

1 1 1 0) (0 2 1 0)
1 0 1 1 L 0) 1 3
A, = A, =
! 1 1 0 0 / 1 1 0) 0)
\O 1 0 l) \O 3 0) O)
A, #0 A, =A, A, =0 A, =A,
1 < < N ;1 i N oo 2L
L=5 2 A, +2Aii ? =5 2 1nonzero( i) <k>=—
i,j=1,i#j =1 i,j=

Protein interaction network, www Social networks, collaboration networks



Complete Graph

(undirected)

[+ ] [* ]
" ] ("]
(0 1 1 1) ° °
1 O 1 1 ° °
A, =
/ 1 1 O 1 ' °
\1 1 1 O) ¢ ° ¢
Aii:O Ai;ﬁjzl
L=Lm=M <k>=N-1

Actor network, protein-protein interactions



GRAPHOLOGY: Real networks can have multiple characteristics

WWW > directed multigraph with self-interactions

Protein Interactions > undirected unweighted with self-interactions

Collaboration network > undirected multigraph or weighted.
Mobile phone calls > directed, weighted.
Facebook Friendship links > undirected,

unweighted.



Network properties

Density: The density D of a network is defined as a ratio of the number of edges E to the =
number of possible edges,

Size: The size of a network can refer to the number of nodes N or, less commonly, the
number of edges E which can range from N-1 (a tree) to E_{max} (a complete graph).

Average degree: The degree k of a node is the number of edges connected to it. Closely
related to the density of a network is the average degree, <k> = \tfrac{2E{N}. In the ER
random graph model, we can compute <k> = p(N-1) where p is the probability of two
nodes being connected.

Average path length: Average path length is calculated by finding the shortest path
between all pairs of nodes, adding them up, and then dividing by the total number of
pairs. This shows us, on average, the number of steps it takes to get from one member of
the network to another.

Diameter of a network: As another means of measuring network graphs, we can define
the diameter of a network as the longest of all the calculated shortest paths in a network.
It is the shortest distance between the two most distant nodes in the network. In other
words, once the shortest path length from every node to all other nodes is calculated, the
diameter is the longest of all the calculated path lengths. The diameter is representative of
the linear size of a network.

[ ] Clustering coefficient

Connectedness: The way in which a network is connected plays a large part into how
networks are analyzed and interpreted.

[ Clique/Complete Graph: a completely connected network, where all nodes are connected to every
other node. These networks are symmetric inthat all nodes have in-inks and out-links from all
others.

[] Giant Component: A single connected component which contains most of the nodes in the
network.

[] Weakly Connected Component: A collection of nodes in which there exists a path from any node

toany other, ignoring directionality —of the edges.

[ ] Strongly Connected Component: A collection of nodes in which there exists a directed path from
any node to any other.

Node centrality: Centrality indices produce rankings which seek to identify the most
important nodes in a network model. Different centrality indices encode different contexts
for the word "importance.”

[] The betweenness centrality, for example, considers a node highly important if it form bridges
between many other nodes.

[] The eigenvalue centrality, in contrast, considers anode highly important if many other highly
important nodes link toit. Hundreds of such measures have been proposed in the literature.

Node influence: In graph theory and network analysis, node influence metrics are
measures that rank or quantify the influence of every node (also called vertex) within a
graph. They are related to centrality indices. Applications include measuring the influence
of each person in a social network, understanding the role of infrastructure nodes in
transportation networks, the Intemet, or urban networks, and the participation of a given
node in disease dynamics.



THREE CENTRAL QUANTITIES IN NETWORK SCIENCE

<A>2L$3.
{ C’mxz— % |

S . M:”;’L
A. Degree distribution: Px
B. Path length: <d>
. 2e
C. Clustering coefficient: l k;(k, —1)

Network Science: Graph Theory






Network models



Erdos—-Rényi Random Graph
model

m Used for generating random graphs in which edges are set between nodes
with equal probabilities

= prove the existence of graphs satisfying various properties, or

] proviﬁle a rigorous definition of what it means for a property to hold for almost all
graphs.

m Generating an Erdés—-Rényi model
= the number of nodes in the graph generated as N
= the probability that a link should be formed between any two nodes as p
= A constant (k) may derived from these two components with the formula
m (ky=2 E/N=p - (N-1), where
m E is the expected number of edges

http://igraph.org/r/doc/erdos.renyi.game.html



Watts-Strogatz Small World model |H

m A random graph generation model that produces graphs with small-
world properties

m An initial lattice structure is used to generate a Watts-Strogatz
model.

m Each node in the network is initially linked to its <k> closest neighbours
m Another parameter is specified as the rewiring probability:

m Each edge has a probability p that it will be rewired to the graph as a
random edge.

m The expected number of rewired links in the model is pE = pN<k>/2.

http://www.mathworks.com/help/matlab/math/build-watts-strogatz-small-world-graph-model.html



Barabasi—Albert (BA) Preferential
Attachment model

m Random network model used to demonstrate a preferential attachment
= "rich-get-richer" effect
= An edge is most likely to attach to nodes with higher degrees
m The network begins with an initial network of m0 nodes
= mO=>2
= the degree of each node in the initial network should be at least 1,
m otherwise it will always remain disconnected from the rest of the network.
m New nodes are added to the network one at a time.

m Eachnew node is connectedto m existing nodes

= With a probability that is proportional to the number of links that the existing nodes
already have




Barabasi—Albert (BA) Preferential
Attachment model

m Random network model used to demonstrate a preferential attachment

Some remarks
Heavily linked nodes ("hubs") tend to quickly accumulate even more links,
Nodes with only a few links are unlikely to be chosen as the destination for a new

link.
New nodes have a "preference" to attach themselves to the already heavily linked
nodes.

Each new node is connectedto m existing nodes

With a probability that is proportional to the number of links that the existing nodes
already have






Network analysis




Network analysis

m Social network analysis
= Examines the structure of relationships between social entities

= Entities are often people, but may also be groups, organizations
nation states, web sites, scholarly publications

m Dynamic network analysis:

= examines the shifting structure of relationships among different
classes of entities in complex socio-technical systems effects

= reflects social stability and changes such as the emergence of new
groups, topics, and leaders



Network analysis

m Biological network analysis
= closelyrelatedto social network analysis
= focusing on local patterns in the network
m network motifs are small sub-graphs that are over-represented in the network.
m analysis of biological networks has led to the development of network medicine

m Link analysis
= Exploring associations between objects.

= examining the addresses of suspects and victims, the telephone numbers they have
dialled and financial transactions that they have partaken in during a given
timeframe, and the familial relationships between these subjects as a part of police
investigation.

= Link analysis here provides the crucial relationships and associations between very
mfany objects of different types that are not apparent from isolated pieces of
information

= Pandemic analysis, Web link analysis, Page Rank, ..



Analysis of large graphs



Graph data

High dim.
data

Infinite Machine

data learning Apps

Recommender
systems

Locality sensitive PageRank, Filtering data
hashing SimRank streams

Association
Rules

Community Web Decision

Clusteri . .
ustering Detection advertising Trees

Duplicate
document
detection

Dimensio_nality Spam Querieson Perceptron,
reduction Detection streams kNN




Web as a Graph

m Web as a directed graph:
Nodes: Webpages

eecn & Edges: Hyperlinks
class on
Networks. CS224\W:
Classes
\/ are in the
Gates Computer
building Science
\/ Departme
nt at
Stanford S
\_/ University

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Web as a Graph

m Web as a directed graph:
Nodes: Webpages

eecn & Edges: Hyperlinks
class on
Networks. CS224\W:
Classes
\/\ are in the
Gates Computer
building~ Science
\/ \ Departme
nt at
St Stanford
\) University

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org \/



Web as a Directed Graph

I'm a student
at Univ. of X

I'm applying to
college

| teach at
Univ. of X

Blog post about
college rankings

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Broad Question

> 5 YAHOO! & 9 &

L T Opuone

= How to organize the Web? S R
m First try: Human curated S S
Web directories o

= Yahoo, DMOZ, LookSmart B S

e

m Second try: Web Search

= Information Retrieval investigates:
Find relevant docs in a small
and trusted set

m Newspaper articles, Patents, etc.
= But: Web is huge, full of untrusted documents, random things, web spam, etc.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Web Search: 2 Challenges

2 challenges of web search:

m (1) Web contains many sources of information
Who to “trust”?

= Trick: Trustworthy pages may point to each other!

= (2) What is the “best” answer to query “newspaper”?
= No single right answer

= Trick: Pages that actually know about newspapers might all be
pointing to many newspapers

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org




Ranking Nodes on the Graph

m All web pages are not equally “important”
www.joe-schmoe.com vs. www.stanford.edu

m There is large diversity
iIn the web-graph
node connectivity.
Let’s rank the pages by
the link structure!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Link Analysis Algorithms

= Link Analysis approaches for computing importances of
nodes in a graph:

= Page Rank
= Topic-Specific (Personalized) Page Rank
= Web Spam Detection Algorithms

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org






Links as Votes

m ldea: Links as votes
= Page is more important if it has more links
m In-coming links? Out-going links?

m Think of in-links as votes:
= www.stanford.edu has 23,400 in-links
= www.joe-schmoe.com has 1 in-link

m Are all in-links are equal?
= Links from important pages count more
= Recursive question!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Example: PageRank Scores

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Simple Recursive Formulation

m Each link’s vote is proportional to the importance of its source
page

m If page j with importance r; has n out-links, each link gets r;/ n

votes
m Page j’s own importance is the sum qf e,vgtes on its in-links
/3 /1,14
r;=r/3+r/4 JR~y3
/3 \ri/3
—, ./

J. Leskovec, A. Rajaraman, J. Uliman: Mining of Massive Datasets, https#/www: m(*;.org



PageRank: The “Flow” Model

= A “vote” from an important page is y/2
worth more

= A page is important if it is pointed to by a/2
other important pages y/2
: m
= Define a “rank” r; for page j a/2
E “Flow” equations:
r, =r,/2+r,
= d, p

r, =ry/2+ry
Iy =1, /2

. out-degree of node i

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



PageRank: Three Questions

(t+1) E

le‘]

d.

= Does this converge?
= Does it converge to what we want?

m Are results reasonable?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



PageRank: Problems

2 problems:

m (1) Some pages are
dead ends (have no out-links)

m Random walk has “nowhere” to go to
m Such pages cause importance to “leak out”

m (2) Spider traps:
(all out-links are within the group)
m Random walked gets “stuck” in a trap

m And eventually spider traps absorb all importance

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Dead end

Spider tl’ap




Solution: Teleports!

m The Google solution for spider traps: At each time step, the
random surfer has two options

With prob. B, follow a link at random
With prob. 1-8, jump to some random page
Common values for 8 are in the range 0.8 to 0.9

= Surfer will teleport out of spider trap

within a few time steps z)
> Lt
ﬁ@ &

J. Leskovec, A. Rajaraman, J. Uliman: Mining of Massive Datasets, http://www.mmds.org



Some Problems with Page Rank

m Measures generic popularity of a page
m Biased against topic-specific authorities
m Solution: Topic-Specific PageRank (next)

m Uses a single measure of importance
m Other models of importance
= Solution: Hubs-and-Authorities

m Susceptible to Link spam
m Artificial link topographies created in order to boost page rank
m Solution: TrustRank

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Challenge: implement a map reduce page rank algorithm




Community detection



Networks & Communities

m We often think of networks being organized into modules,
cluster, commur

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Find Densely Linked Clusters

Goal

J. LeSkoVeC, A. gjairairniail, v. viiiiar . iwvi 1Y VI IVIAOOI VT LVAlAOoTLO, TILLMJ// VVVVVVLITINTIUOD. VY



Movies and Actors

m Clusters in Movies-to-Actors graph:

[Andersen, Lang: Communities from seed sets, 2006]

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Twitter & Facebook

m Discovering social circles, circles of trust:

friends under the same advisor

CS department friends family members

highschool friends
[McAuley, Leskovec: Discovering social circles in ego networks, 2012]



How to find communities?




Method 1: Strength of Weak Ties
m Edge betweenness: Number of
shortest paths passing over the edge T

® Intuition:

Edge strengths (call
volume)
in a real network

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org network

betweenness

in a real




Method 1: Girvan-Newman

m Divisive hierarchical clustering based on the notion of edge
betweenness:

Number of shortest paths passing through the edge

m Girvan-Newman Algorithm:
m Undirected unweighted networks
= Repeat until no edges are left:
m Calculate betweenness of edges
m Remove edges with highest betweenness
m Connected components are communities
m Gives a hierarchical decomposition of the network

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Girvan-Newman: Example

Need to re-compute
betweenness at
every step

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmas.org



Girvan-Newman: Results

o\

J. Leskovec, A. Rajaraman, J. Ullman:



We need to resolve 2 questions

1. How to compute betweenness?

2, How to select the number of clusters?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Trawling

= Searching for small communities in the Web graph

® What is the signature of a community / discussion in a Web
graph?

Use this to define “topics”:
What the same people on
the left talk about on the right
o o Remember HITS!

Dense 2-layer graph

Intuition: Many people all talking about the same things
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, httg/ www.mmds.org




Searching for Small Communities

= A more well-defined problem:
Enumerate complete bipartite subgraphs K,

= Where K ; : s nodes on the “left” where each links to the same ¢ other
nodes on the “right”

Full

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Da¥sets, http://www.mmds.org

connected



Overlapping communities




ldentifying Communities

\V
J. Leskovec, A. Rajaraman, J. Uliman: Mining of Massive Datasets, http://www.mmds.org

JNET Can we identify
/ node groups?
LA N (communities,
=SS AN modules, clusters)

Nodes: Football
Teams

Edges: Games
played



NCAA Football Network

NCAA conferences

Big East

Atlantic Coast
SEC
Conference USA
Big 12

Western Athletic
Pacific 10
Mountain West
Big 10

Sun Belt

O e 0 0O0e0Ooeo

Independents

Nodes: Football Teams
Edges: Games played

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Protein-Protein Interactions

VSR TS . ; Can we identify
W G e W functional
S modules?

Nodes: Proteins
Edges: Physical interactions

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasbi.:s_, http://www.mmds.org



Protein-Protein Interactlons

Functional modules :‘%\

Nodes: Proteins
Edges: Physical interactions




Facebook Network

Can we identify

S social
. ) communities?
TR Nodes: Facebook Users

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.%%ges’: Friendships



Facebook Network

Summer
internship

Nodes: Facebook Users
Edges: Friendships

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Overlapping Communities

= Non-overlapping vs. overlapping communities

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Non-overlapping Communities

Nodes
000000000000

Nodes
0000000000 0O0

Network Adjacency matrix

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Communities as Tiles!

= What is the structure of community overlaps:
Edge density in the overlaps is higher!

Communities as “tiles”

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Recap so far...

s w=m) S
Communities This is what we want!

in a network

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Plan of attack

m 1) Given a model, we generate the network:

Generative
model for

networks

m 2) Given a network, find the “best” model

Generative
model for
networks

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org




Model of networks

m Goal: Define a model that can generate networks

The model will have a set of “parameters” that we will later want to
estimate (and detect communities)

Generative
model for
networks

m Q: Given a set of nodes, how do communities “generate”
edges of the network?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Community-Affiliation Graph

Communities, C p, DB
Memberships, M

Nodes, V
Model Network

= Generative model B(V, C, M, {p_}) for graphs:
Nodes V, Communities C, Memberships M
Each community ¢ has a single probability p.
Later we fit the model to networks to detect communities

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



AGM: Generative Process

Communities, C py4 DB ‘
Memberships, M

Nodes, V
Community Affiliations Network

= AGM generates the links: For each
For each pair of nodes in community A, we connect them with prob. p4
The overall edge probability is:
Pu,v)=1- []a-p)

=M NM M, ... set of communities
u \4
If u, v share no communities: P(u,v) = ¢  N°de u belongsto

Think of this as an “OR” function: If at least 1 community says “YES” we create an edge



Recap: AGM networks

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



AGM: Flexibility .

= AGM can express a variety of
community structures:
Non-overlapping, Overlapping,
Nested

A B C

A7

D@
A A
AN



More detalls at...

= Overlapping Community Detection at Scale: A Nonnegative Matrix
Factorization Approach by J. Yang, J. Leskovec. ACM International
Conference on Web Search and Data Mining (WSDM), 2013.

m Detecting Cohesive and 2-mode Communities in Directed and
Undirected Networks by J. Yang, J. McAuley, J. Leskovec. ACM
International Conference on Web Search and Data Mining (\(WSDM),
2014.

= Community Detection in Networks with Node Attributes by J. Yang,
J. McAuley, J. Leskovec. IEEE International Conference On Data
Mining (ICDM), 2013.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Let’s go for it !



