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The study of network representations of physical, biological, and social 
phenomena leading to predictive models of these phenomena



+ Network science fields

The field draws on theories and methods including
n graph theory from mathematics
n statistical mechanics from physics
n data mining and information visualization from computer science 
n inferential modelling from statistics
n social structure from sociology
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A SIMPLE STORY (1)      The fate of Saddam and network science
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+ The faith of Saddamm Hussein 
and network science
The capture of Saddam Hussein:

n Shows the strong predictive power of networks
n Underlies the need to obtain accurate maps of the networks; and the 

often heroic difficulties we encounter during the mapping process.
n demonstrates the remarkable stability of these networks:  

n the capture of Hussein was not based on fresh intelligence, but rather 
on his pre-invasion social links, unearthed from old photos stacked in 
his family album.

n Shows that the choice of network we focus on makes a huge difference: 
n the hierarchical tree, that captured the official organization of the Iraqi 

government, was of no use when it came to Saddam Hussein's 
whereabouts
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Behind each complex system there is a network, that 
defines the interactions between the component



Keith Shepherd's "Sunday Best”. http://baseballart.com/2010/07/shades-of-greatness-a-story-that-needed-to-be-told/

The “Social Graph” behind Facebook
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: departments

: consultants

: external experts

www.orgnet.com

STRUCTURE OF AN ORGANIZATION
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Human Brain 
has between
10-100 billion 
neurons.

Network Science: Introduction



The subtle financial networks
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The not so subtle financial networks: 2011
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+

Nodes:

Links: 
http://ecclectic.ss.uci.edu/~drwhite/Movie

BUSINESS TIES IN US BIOTECH-INDUSTRY

Companies

Investment

Pharma

Research Labs

Public

Biotechnology

Collaborations

Financial

R&D
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INTERNET

domain2

domain1

domain3

router
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Drosophila
Melanogaster

Homo
Sapiens

In the generic networks shown, the points 
represent the elements of each organism’s genetic 
network, and the dotted lines show the 
interactions between them. 

HUMANS GENES
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Complex systems
Made of many non-identical elements connected by 
diverse interactions.

NETWORK

HUMANS GENES

Drosophila
Melanogaster

Homo
Sapiens
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THE ROLE OF NETWORKS

Network Science: Introduction 

Behind each system studied in complexity there is an intricate wiring 
diagram, or a network, that defines the interactions between the 
component. 

We will never understand 
complex system unless we 
map out and understand 
the networks behind them.



TWO FORCES HELPED THE 
EMERGENCE OF NETWORK 

SCIENCE 

Section 5
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Graph theory: 1735, Euler

Social Network Research:  1930s, Moreno

Communication networks/internet: 1960s

Ecological Networks: May, 1979.

THE HISTORY OF NETWORK ANALYSIS
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THE CHARACTERISTICS OF 
NETWORK SCIENCE 

Section 6
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Interdisciplinary

Quantitative and Mathematical 

Computational

Empirical
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Interdisciplinary

Quantitative and Mathematical 

Computational

Empirical, data driven
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Interdisciplinary

Quantitative and Mathematical 

Computational

Empirical
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Interdisciplinary

Quantitative and Mathematical 

Computational

Empirical
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THE IMPACT OF NETWORK 
SCIENCE 

Section 7
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Google
Market Cap(2010 Jan 1): 
$189 billion

Cisco Systems
networking gear Market 
cap (Jan 1, 2919): 
$112 billion

Facebook
market cap: 
$50 billion

www.bizjournals.com/austin/news/2010/11/
15/facebooks... - Cached
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ECONOMIC IMPACT



Reduces 
Inflammation
Fever
Pain

Prevents
Heart attack
Stroke

Causes
Bleeding
Ulcer

Reduces the risk of 
Alzheimer's Disease

COX2

Reduces the risk of 
breast cancer
ovarian cancers
colorectal cancer

DRUG DESIGN, METABOLIC ENGINEERING:
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DRUG DESIGN, METABOLIC ENGINEERING:



HUMAN DISEASE NETWORK



Network Biology/Network Medicine



http://www.slate.com/id/2245232
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FIGHTING TERRORISM AND MILITARY



http://www.ns-cta.org/ns-cta-blog/
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FIGHTING TERRORISM AND MILITARY
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The network behind a military engagement 



Thex

Predicting the H1N1 pandemic
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Real Projected
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EPIDEMIC FORECAST        Predicting the H1N1 pandemic



Thex

In September 2010 the National Institutes of 
Health awarded $40 million to researchers at 
Harvard, Washington University in St. Louis, 
the University of Minnesota and UCLA, to 
develop the technologies that could 
systematically map out brain circuits. 

The Human Connectome Project (HCP) with 
the ambitious goal to construct a map of the 
complete structural and functional neural 
connections in vivo within and across 
individuals.

http://www.humanconnectomeproject.org/overview/
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BRAIN RESEARCH



Barabasi Lab

Management



Barabasi Lab



Barabasi Lab





Thex

If you were to understand the spread of diseases, 
can you do it without networks?

If you were to understand the WWW structure, 
searchability, etc, hopeless without invoking the 
Web’s topology.

If you want to understand human diseases, it is 
hopeless without considering the wiring 
diagram of the cell.

Network Science: Introduction 

MOST IMPORTANT        Networks Really Matter        
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Networks and graphs

Section 2



COMPONENTS OF A COMPLEX SYSTEM

Network Science: Graph Theory 

§ components: nodes, vertices N

§ interactions:  links, edges L

§ system:  network, graph (N,L)



network often refers to real systems
•www, 
•social network
•metabolic network. 

Language: (Network, node, link)

graph: mathematical representation of a network
•web graph, 
•social graph (a Facebook term)

Language: (Graph, vertex, edge)

We will try to make this distinction whenever it is appropriate, 
but in most cases we will use the two terms interchangeably.

NETWORKS OR GRAPHS?

Network Science: Graph Theory 



A COMMON LANGUAGE

Network Science: Graph Theory 

N=4
L=4



The choice of the proper network representation determines our 
ability to use network theory successfully.

In some cases there is a unique, unambiguous representation. 
In other cases, the representation is by no means unique.

For example, the way we assign the links between a group of 
individuals will determine the nature of the question we can study.

CHOOSING A PROPER REPRESENTATION

Network Science: Graph Theory 



If you connect individuals 
that work with each other, 
you will explore 
the professional network.

CHOOSING A PROPER REPRESENTATION
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If you connect those that 
have a romantic and 
sexual relationship, you 
will be exploring the 
sexual networks.

CHOOSING A PROPER REPRESENTATION

Network Science: Graph Theory 



If you connect individuals based on their first name 
(all Peters connected to each other), you will be 
exploring what? 

It is a network, nevertheless.

CHOOSING A PROPER REPRESENTATION

Network Science: Graph Theory 



Links: undirected (symmetrical) 

Graph:

Directed links :
URLs on the www
phone calls 
metabolic reactions

Network Science: Graph Theory 

UNDIRECTED VS. DIRECTED NETWORKS

Undirected Directed

A

B

D

C

L

MF

G

H

I

Links:  directed (arcs). 

Digraph = directed graph:

Undirected links :
coauthorship links
Actor network
protein interactions

An undirected 
link is the 
superposition of 
two opposite 
directed links.

A
G

F

B
C

D

E



Reference Networks

NETWORK NODES LINKS N L kDIRECTED
UNDIRECTED

WWW

Power Grid

Mobile Phone Calls

Email

Science Collaboration

Actor Network

Citation Network

E. Coli Metabolism

Protein Interactions

Webpages

Power plants, transformers

Subscribers

Email addresses

Scientists

Actors

Paper

Metabolites

Proteins

Links

Cables

Calls

Emails

Co-authorship

Co-acting

Citations

Chemical reactions

Binding interactions

Directed

Undirected

Directed

Directed

Undirected

Undirected

Directed

Directed

Undirected

325,729

4,941

36,595

57,194

23,133

702,388

449,673

1,039

2,018

1,497,134

6,594

91,826

103,731

93,439

29,397,908

4,689,479

5,802

2,930

Internet Routers Internet connections Undirected 192,244 609,066 6.33

4.60 

2.67

2.51

1.81

8.08

83.71

10.43

5.58

2.90



Degree, Average Degree and Degree 
Distribution



Node degree: the number of links connected to the node.

� 

kB = 4

NODE DEGREES
U

nd
ire

ct
ed

In directed networks we can define an in-degree and out-degree. 

The (total) degree is the sum of in- and out-degree.

Source: a node with kin= 0; Sink: a node with kout= 0.

2k inC = 1koutC = 3=Ck

D
ire

ct
ed

A
G

F

B
C

D

E

A

B

� 

kA =1
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A BIT OF STATISTICS
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DEGREE, AVERAGE DEGREE,
AND DEGREE DISTRIBUTION

SECTION 2.3

A key property of each node is its degree, representing the number of 
links it has to other nodes. The degree can represent the number of mobile 
phone contacts an individual has in the call graph (i.e. the number of dif-
ferent individuals the person has talked to), or the number of citations a 
research paper gets in the citation network. 

Degree

We denote with ki the degree of the ith node in the network. For exam-
ple, for the undirected networks shown in Figure 2.2 we have k1=2, k2=3, 
k3=2, k4=1. In an undirected network the total number of links, L, can be 
expressed as the sum of the node degrees: 

         
      .

Here the 1/2 factor corrects for the fact that in the sum (2.1) each link is 
counted twice. For example, the link connecting the nodes 2 and 4 in Figure 
2.2 will be counted once in the degree of node 1 and once in the degree of 
node 4. 

Average Degree

An important property of a network is its average degree (BOX 2.2), which 
for an undirected network is

         
    

In directed networks we distinguish between incoming degree, ki
in, rep-

resenting the number of links that point to node i, and outgoing degree,        
ki

out, representing the number of links that point from node i to other 
nodes. Finally, a node’s total degree, ki, is given by

         
    

For example, on the WWW the number of pages a given document 
points to represents its outgoing degree, kout, and the number of docu-
ments that point to it represents its incoming degree, kin. The total number 

GRAPH THEORY

(2.1)

(2.2)

(2.3)

BOX 2.2
BRIEF STATISTICS REVIEW

Four key quantities characterize 
a sample of N values x1, ... , xN : 

Average (mean):

The nth moment:

   
 

Standard deviation:
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Here the 1/2 factor corrects for the fact that in the sum (2.1) each link is 
counted twice. For example, the link connecting the nodes 2 and 4 in Figure 
2.2 will be counted once in the degree of node 1 and once in the degree of 
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N – the number of nodes in the graph

∑
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Average Degree

NETWORK NODES LINKS N L kDIRECTED
UNDIRECTED

WWW

Power Grid

Mobile Phone Calls

Email

Science Collaboration

Actor Network

Citation Network

E. Coli Metabolism

Protein Interactions

Webpages

Power plants, transformers

Subscribers

Email addresses

Scientists

Actors

Paper

Metabolites

Proteins

Links

Cables

Calls

Emails

Co-authorship

Co-acting

Citations

Chemical reactions

Binding interactions

Directed

Undirected

Directed

Directed

Undirected

Undirected

Directed

Directed

Undirected

325,729

4,941

36,595

57,194

23,133

702,388

449,673

1,039

2,018

1,497,134

6,594

91,826

103,731

93,439

29,397,908

4,689,479

5,802

2,930

Internet Routers Internet connections Undirected 192,244 609,066 6.33

4.60 

2.67

2.51

1.81

8.08

83.71

10.43

5.58

2.90



Degree distribution

P(k): probability that a

randomly chosen node 

has degree k

Nk = # nodes with degree k

P(k) = Nk / N     ➔ plot

DEGREE DISTRIBUTION



Adjacency matrix

Section 2.4



Aij=1 if there is a link between node i and j

Aij=0 if nodes i and j are not connected to each 
other.

Network Science: Graph Theory 

ADJACENCY MATRIX

Note that for a directed graph (right) the matrix is not symmetric.

4

2 3

1
2 3

1

4

Aij = 1

Aij = 0

if there is a link pointing from node j and i

if there is no link pointing from j to i.

Aij =

0

BB@

0 0 0 0
1 0 0 1
0 0 0 1
1 0 0 0

1

CCAAij =

0

BB@

0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0

1

CCA



BIPARTITE NETWORKS 

Section 2.7



bipartite graph (or bigraph) is a graph whose nodes can be divided 
into two disjoint sets U and V such that every link connects a node in U to 
one in V; that is, U and V are independent sets. 

Examples:

Hollywood actor network
Collaboration networks
Disease network (diseasome)

BIPARTITE GRAPHS

Network Science: Graph Theory 



Gene network

GENOME

PHENOMEDISEASOME  

Disease network

Goh, Cusick, Valle, Childs, Vidal & Barabási, PNAS (2007)

GENE NETWORK – DISEASE NETWORK

Network Science: Graph Theory 



HUMAN DISEASE NETWORK



Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, A.-L. Barabási  Flavor network and the principles 
of food pairing , Scientific Reports 196, (2011).

Ingredient-Flavor Bipartite Network

Network Science: Graph Theory 





PATHOLOGY



A path is a sequence of nodes in which  each node is adjacent to the next one

Pi0,in  of length n between nodes i0 and in is an ordered collection of n+1 nodes and n links 

� 

Pn = {i0,i1,i2,...,in}

� 

Pn = {(i0 ,i1),(i1,i2 ),( i2 ,i3 ),...,( in−1,in )}

• In a directed network, the path can follow only the direction of an arrow. 
Network Science: Graph Theory 

PATHS



The distance (shortest path, geodesic path) between two 
nodes is defined as the number of edges along the shortest 
path connecting them.

*If the two nodes are disconnected, the distance is infinity.

In directed graphs each path needs to follow the direction of 
the arrows.
Thus in a digraph the distance from node A to B (on an AB 
path) is generally different from the distance from node B to A 
(on a BCA path).

Network Science: Graph Theory 

DISTANCE IN A GRAPH        Shortest Path, Geodesic Path

D
C

A

B

D
C

A

B



Nij,number of paths between any two nodes i and j: 
Length n=1: If there is a link between i and j, then Aij=1 and Aij=0 otherwise. 

Length n=2: If there is a path of length two between i and j, then AikAkj=1, and AikAkj=0 
otherwise.
The number of paths of length 2:

� 

N
ij

(2) = Aik
k=1

N

∑ Akj = [A2 ]ij

Length n: In general, if there is a path of length n between i and j, then Aik…Alj=1 
and Aik…Alj=0 otherwise.
The number of paths of length n between i and j is*

� 

N
ij

(n) = [An ]ij

*holds for both directed and undirected networks.
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NUMBER OF PATHS BETWEEN TWO NODES        Adjacency Matrix



Distance between node 0 and node 4:

1.Start at 0.
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FINDING DISTANCES: BREADTH FIRST SEARCH
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0
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1 11

1

2

2

22

2

3

3

3
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Distance between node 0 and node 4:
1.Start at 0.
2.Find the nodes adjacent to 1. Mark them as at distance 1. Put them in a queue.
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FINDING DISTANCES: BREADTH FIRST SEARCH

0 11

1
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1 11

1

2

2

22

2

3

3

3

3

3

3

3

3

44

4

4

4

4

4

4

Distance between node 0 and node 4:
1.Start at 0.
2.Find the nodes adjacent to 0. Mark them as at distance 1. Put them in a queue.
3.Take the first node out of the queue. Find the unmarked nodes adjacent to it in the 
graph. Mark them with the label of 2. Put them in the queue.
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FINDING DISTANCES: BREADTH FIRST SEARCH

0 11

1

2

2

22

2
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1

1



Distance between node 0 and node 4:

1.Repeat until you find node 4  or there are no more nodes in the queue.
2.The distance between 0 and 4 is the label of 4 or, if 4 does not have a label, infinity.

FINDING DISTANCES: BREADTH FIRST SEARCH

Network Science: Graph Theory 

0 11

1

2

2

22

2

3

3

3

3

3

3

3

3

44

4

4

4

4

4

4



Diameter: dmax the maximum distance between any pair of nodes in the 

graph. 

Average path length/distance, <d>,  for a connected graph:

where dij is the distance from node i to 

node j

In an undirected graph dij =dji , so we only need to count them once:� 

d ≡
1

2Lmax
dij

i, j≠ i
∑

� 

d ≡
1
Lmax

dij
i, j> i
∑
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NETWORK DIAMETER AND AVERAGE DISTANCE
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PATHOLOGY: summary

2 5

43

1
l1!4

l1!4

l1!5

Shortest 
Path 

l1!5 = 2

l1!4 = 3

The path with the shortest 
length between two nodes 

(distance). 
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PATHOLOGY: summary

2 5

43

1

Diameter

l1!4 = 3

2 5

43

1

Average Path Length

(l1!2 + l1!3 + l1!4+

+ l1!5 + l2!3 + l2!4+

+ l2!5 + l3!4 + l3!5+

+ l4!5) /10 = 1.6

The longest shortest path 
in a graph

The average of the shortest paths 
for all pairs of nodes.
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PATHOLOGY: summary

2 5

43

1
Cycle

2 5

43

1
Self-avoiding Path

A path with the same start 
and end node. 

A path that does not 
intersect itself.
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PATHOLOGY: summary

2 5

43

1

2 5

43

1
Eulerian Path Hamiltonian Path

A path that visits each 
node exactly once.

A path that traverses each 
link exactly once.



CONNECTEDNESS



Connected (undirected) graph: any two vertices can be joined by a path.
A disconnected graph is made up by two or more connected components.   

Bridge: if  we erase it, the graph becomes disconnected. 

Largest Component: 
Giant Component

The rest: Isolates

Network Science: Graph Theory 

CONNECTIVITY OF UNDIRECTED GRAPHS

D
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The adjacency matrix of a network with several components can be written in a block-
diagonal form, so that nonzero elements are confined to squares, with all other elements 
being zero:

Network Science: Graph Theory 

CONNECTIVITY OF UNDIRECTED GRAPHS        Adjacency Matrix



Strongly connected directed graph: has a path from each node to 
every other node and vice versa (e.g. AB path and BA path).
Weakly connected directed graph: it is connected if we disregard the
edge directions.

Strongly connected components can be identified, but not every node is part
of a nontrivial strongly connected component.   

In-component: nodes that can reach the scc, 
Out-component: nodes that can be reached from the scc. 

Network Science: Graph Theory 

CONNECTIVITY OF DIRECTED GRAPHS

D C
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Clustering coefficient



Clustering coefficient: 

what fraction of your neighbors are connected?

Node i with degree ki

Ci in [0,1]

Network Science: Graph Theory 

CLUSTERING COEFFICIENT

Watts & Strogatz, Nature 1998.



Clustering coefficient: 

what fraction of your neighbors are connected?

Node i with degree ki

Ci in [0,1]

Network Science: Graph Theory 

CLUSTERING COEFFICIENT

Watts & Strogatz, Nature 1998.

SECTION 10

CLUSTERING COEFFICIENT

The local clustering coefficient captures the degree to 
which the neighbors of a given node link to each other.  For 
a node i with degree ki the local clustering coefficient is de-
fined as [5].
        
      (19)

where Li represents the number of links between the ki 
neighbors of node i. Note that Ci is between 0 and 1:

Ci = 0 if none of the neighbors of node i link to each 
other; 

Ci = 1 if the neighbors of node i form a complete 
graph, i.e. they all link to each other (Image 2.7). 

In general Ci is the probability that two neighbors of a 
node link to each other: C = 0.5 implies that there is a 
50% chance that two neighbors of a node are linked. 

In summary Ci measures the network’s local density: 
the more densely interconnected the neighborhood 
of node i, the higher is Ci.

The degree of clustering of a whole network is captured by 
the average clustering coefficient, <C>, representing the av-
erage of Ci over all nodes i = 1, ..., N [5],
        
                .  (20)

In line with the probabilistic interpretation <C> is the 
probability that two neighbors of a randomly selected node 
link to each other. 

While Eq. (19) is defined for undirected networks, the 
clustering coefficient can be generalized to directed and 
weighted [6,7,8,9]) networks as well. Note that in the net-
work literature one also often encounters the global clus-
tering coefficient, defined in Appendix A.

=
−

C L
k k
2
( 1)i

i

i i

∑=
=

C N C1
i

i

N

1

Image 2.15
Clustering Coefficient.

The local clustering coefficient, Ci , of the central node with degree ki=4 
for three different configurations of its neighborhood. The clustering 
coefficient measures the local density of links in a node’s vicinity. The 
bottom figure shows a small network, with the local clustering coefficient 
of a node shown next to each node. Next to the figure we also list the 
network’s average clustering coefficient <C>, according to Eq. (20), and 
its global clustering coefficient C, declined in Appendix A, Eq. (21). Note 
that for nodes with degrees ki=0,1, the clustering coefficient is taken to be 
zero. 
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Degree distribution: P(k)

Path length: 
<d>

Clustering coefficient:
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Network Science: Graph Theory 

GRAPHOLOGY: Real networks can have multiple characteristics

WWW >     directed multigraph with self-interactions

Protein Interactions >  undirected unweighted with self-interactions

Collaboration network >           undirected multigraph or weighted.

Mobile phone calls >                           directed, weighted.        

Facebook Friendship links >                                  undirected, 
unweighted.



+ Network properties
n Density: The density D of a network is defined as a ratio of the number of edges E to the 

number of possible edges, 

n Size: The size of a network can refer to the number of nodes N or, less commonly, the 
number of edges E which can range from N-1 (a tree) to E_{max} (a complete graph).

n Average degree: The degree k of a node is the number of edges connected to it. Closely 
related to the density of a network is the average degree, <k> = \tfrac{2E}{N}. In the ER 
random graph model, we can compute <k> = p(N-1) where p is the probability of two 
nodes being connected.

n Average path length: Average path length is calculated by finding the shortest path 
between all pairs of nodes, adding them up, and then dividing by the total number of 
pairs. This shows us, on average, the number of steps it takes to get from one member of 
the network to another.

n Diameter of a network: As another means of measuring network graphs, we can define 
the diameter of a network as the longest of all the calculated shortest paths in a network. 
It is the shortest distance between the two most distant nodes in the network. In other 
words, once the shortest path length from every node to all other nodes is calculated, the 
diameter is the longest of all the calculated path lengths. The diameter is representative of 
the linear size of a network.

n Clustering coefficient

n Connectedness: The way in which a network is connected plays a large part into how 
networks are analyzed and interpreted.

n Clique/Complet e Graph: a completely connected network, where all nodes are connected to every 
other node. These networks are symmetric in that all nodes have in-links and out-links from all 
others.

n Giant Component: A single connected component which contains most of the nodes in the 
network.

n Weakly Connected Component: A collection of nodes in which there exists a path from any node 
to any other, ignoring directionality of the edges.

n Strongly Connected Component: A collection of nodes in which there exists a directed path from 
any node to any other.

n Node centrality: Centrality indices produce rankings which seek to identify the most 
important nodes in a network model. Different centrality indices encode different contexts 
for the word "importance.”

n The betweenness centrality, for example, considers a node highly important if it form bridges 
between many other nodes. 

n The eigenvalue centrality, in contrast, considers a node highly important if many other highly 
important nodes link to it. Hundreds of such measures have been proposed in the literature.

n Node influence: In graph theory and network analysis, node influence metrics are 
measures that rank or quantify the influence of every node (also called vertex) within a 
graph. They are related to centrality indices. Applications include measuring the influence 
of each person in a social network, understanding the role of infrastructure nodes in 
transportation networks, the Internet, or urban networks, and the participation of a given 
node in disease dynamics.



A. Degree distribution: pk

B. Path length: <d>

C. Clustering coefficient:
Network Science: Graph Theory 
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Network models



+ Erdős–Rényi Random Graph 
model
n Used for generating random graphs in which edges are set between nodes 

with equal probabilities
n prove the existence of graphs satisfying various properties, or 
n provide a rigorous definition of what it means for a property to hold for almost all 

graphs.

n Generating an Erdős–Rényi model
n the number of nodes in the graph generated as N
n the probability that a link should be formed between any two nodes as p 
n A constant 〈k〉 may derived from these two components with the formula 

n 〈k〉 = 2 ⋅ E / N = p ⋅ (N − 1), where 
n E is the expected number of edges

98

http://igraph.org/r/doc/erdos.renyi.game.html



+ Watts-Strogatz Small World model

n A random graph generation model that produces graphs with small-
world properties

n An initial lattice structure is used to generate a Watts-Strogatz
model. 
n Each node in the network is initially linked to its <k> closest neighbours
n Another parameter is specified as the rewiring probability:

n Each edge has a probability p that it will be rewired to the graph as a 
random edge. 

n The expected number of rewired links in the model is pE = pN<k>/2.

99

http://www.mathworks.com/help/matlab/math/build-watts-strogatz-small-world-graph-model.html



+ Barabási–Albert (BA) Preferential 
Attachment model
n Random network model used to demonstrate a preferential attachment 

n "rich-get-richer" effect
n An edge is most likely to attach to nodes with higher degrees 

n The network begins with an initial network of m0 nodes 
n m0 ≥ 2 
n the degree of each node in the initial network should be at least 1, 
n otherwise it will always remain disconnected from the rest of the network.

n New nodes are added to the network one at a time. 
n Each new node is connected to m existing nodes 
n With a probability that is proportional to the number of links that the existing nodes 

already have

10
0



+ Barabási–Albert (BA) Preferential 
Attachment model
n Random network model used to demonstrate a preferential attachment 

n "rich-get-richer" effect
n An edge is most likely to attach to nodes with higher degrees 

n The network begins with an initial network of m0 nodes 
n m0 ≥ 2 
n the degree of each node in the initial network should be at least 1, 
n otherwise it will always remain disconnected from the rest of the network.

n New nodes are added to the network one at a time. 
n Each new node is connected to m existing nodes 
n With a probability that is proportional to the number of links that the existing nodes 

already have

10
1

Some remarks
• Heavily linked nodes ("hubs") tend to quickly accumulate even more links, 
• Nodes with only a few links are unlikely to be chosen as the destination for a new 

link. 
• New nodes have a "preference" to attach themselves to the already heavily linked 

nodes.
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+ Network analysis

n Social network analysis 
n Examines the structure of relationships between social entities
n Entities are often people, but may also be groups, organizations 

nation states, web sites, scholarly publications

n Dynamic network analysis:  
n examines the shifting structure of relationships among different 

classes of entities in complex socio-technical systems effects
n reflects social stability and changes such as the emergence of new 

groups, topics, and leaders

10
4



+ Network analysis
n Biological network analysis

n closely related to social network analysis
n focusing on local patterns in the network 

n network motifs are small sub-graphs that are over-represented in the network. 
n analysis of biological networks has led to the development of network medicine

n Link analysis
n Exploring associations between objects. 
n examining the addresses of suspects and victims, the telephone numbers they have 

dialled and financial transactions that they have partaken in during a given 
timeframe, and the familial relationships between these subjects as a part of police 
investigation. 

n Link analysis here provides the crucial relationships and associations between very 
many objects of different types that are not apparent from isolated pieces of 
information

n Pandemic analysis, Web link analysis, Page Rank, ..

10
5
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+ Graph data 10
7
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+ Web as a Graph

n Web as a directed graph:
n Nodes: Webpages
n Edges: Hyperlinks

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Web as a Directed Graph 11
0



+ Broad Question

n How to organize the Web?
n First try: Human curated

Web directories
n Yahoo, DMOZ, LookSmart

n Second try: Web Search
n Information Retrieval investigates:

Find relevant docs in a small 
and trusted set
n Newspaper articles, Patents, etc.

n But: Web is huge, full of untrusted documents, random things, web spam, etc.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Web Search: 2 Challenges

2 challenges of web search:

n (1) Web contains many sources of information
Who to “trust”?
n Trick: Trustworthy pages may point to each other!

n (2) What is the “best” answer to query “newspaper”?
n No single right answer
n Trick: Pages that actually know about newspapers might all be 

pointing to many newspapers

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

11
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+ Ranking Nodes on the Graph

n All web pages are not equally “important”
www.joe-schmoe.com vs. www.stanford.edu

n There is large diversity 
in the web-graph 
node connectivity.
Let’s rank the pages by 
the link structure!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Link Analysis Algorithms

n Link Analysis approaches for computing importances of 
nodes in a graph:
n Page Rank
n Topic-Specific (Personalized) Page Rank
n Web Spam Detection Algorithms

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Links as Votes

n Idea: Links as votes
n Page is more important if it has more links

n In-coming links? Out-going links?

n Think of in-links as votes:
n www.stanford.edu has 23,400 in-links
n www.joe-schmoe.com has 1 in-link

n Are all in-links are equal?
n Links from important pages count more
n Recursive question! 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Simple Recursive Formulation

n Each link’s vote is proportional to the importance of its source 
page

n If page j with importance rj has n out-links, each link gets rj / n
votes

n Page j’s own importance is the sum of the votes on its in-links

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ PageRank: The “Flow” Model

n A “vote” from an important page is 
worth more

n A page is important if it is pointed to by 
other important pages

n Define a “rank” rj for page j

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ PageRank: Three Questions

n Does this converge?

n Does it converge to what we want?

n Are results reasonable?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ PageRank: Problems

2 problems:

n (1) Some pages are 
dead ends (have no out-links)
n Random walk has “nowhere” to go to
n Such pages cause importance to “leak out”

n (2) Spider traps:
(all out-links are within the group)
n Random walked gets “stuck” in a trap
n And eventually spider traps absorb all importance

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Dead end



+ Solution: Teleports!

n The Google solution for spider traps: At each time step, the 
random surfer has two options
n With prob. β, follow a link at random
n With prob. 1-β, jump to some random page
n Common values for β are in the range 0.8 to 0.9

n Surfer will teleport out of spider trap 
within a few time steps

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Some Problems with Page Rank

n Measures generic popularity of a page
n Biased against topic-specific authorities
n Solution: Topic-Specific PageRank (next)

n Uses a single measure of importance
n Other models of importance
n Solution: Hubs-and-Authorities

n Susceptible to Link spam
n Artificial link topographies created in order to boost page rank
n Solution: TrustRank

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Challenge: implement a map reduce page rank algorithm
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Community detection



+ Networks & Communities

n We often think of networks being organized into modules, 
cluster, communities:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Goal: Find Densely Linked Clusters 12
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+ Movies and Actors
n Clusters in Movies-to-Actors graph:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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[Andersen, Lang: Communities from seed sets, 2006]



+ Twitter & Facebook
n Discovering social circles, circles of trust:

12
9

[McAuley, Leskovec: Discovering social circles in ego networks, 2012]



130

How to find communities?



+ Method 1: Strength of Weak Ties
n Edge betweenness: Number of 

shortest paths passing over the edge

n Intuition:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Method 1: Girvan-Newman

n Divisive hierarchical clustering based on the notion of edge 
betweenness:

Number of shortest paths passing through the edge

n Girvan-Newman Algorithm:
n Undirected unweighted networks

n Repeat until no edges are left:
n Calculate betweenness of edges
n Remove edges with highest betweenness

n Connected components are communities
n Gives a hierarchical decomposition of the network

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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[Girvan-Newman ‘02]
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J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Girvan-Newman: Example 13
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betweenness at 

every step
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J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Girvan-Newman: Example 13
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Step 1: Step 2:

Step 3: Hierarchical network decomposition:
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J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Girvan-Newman: Results 13
5

Communities in physics collaborations 



+ We need to resolve 2 questions

1. How to compute betweenness?

2. How to select the number of clusters?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Trawling
n Searching for small communities in the Web graph

n What is the signature of a community / discussion in a Web 
graph?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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[Kumar et al. ‘99]

Dense 2-layer graph

Intuition: Many people all talking about the same things

… …

Use this to define “topics”:
What the same people on 
the left talk about on the right
Remember HITS!



+ Searching for Small Communities

n A more well-defined problem:
Enumerate complete bipartite subgraphs Ks,t

n Where Ks,t : s nodes on the “left” where each links to the same t other 
nodes on the “right”

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Overlapping communities
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Identifying Communities 14
0

Nodes: Football 
Teams
Edges: Games 
played

Can we identify 
node groups?
(communities, 

modules, clusters)
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NCAA conferences

Nodes: Football Teams
Edges: Games played
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Protein-Protein Interactions 14
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functional 
modules?

Nodes: Proteins
Edges: Physical interactions



+ Protein-Protein Interactions 14
3

Functional modules

Nodes: Proteins
Edges: Physical interactions
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Facebook Network 14
4

Can we identify 
social 

communities?

Nodes: Facebook Users
Edges: Friendships
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+ Overlapping Communities

n Non-overlapping vs. overlapping  communities

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Communities as Tiles!

n What is the structure of community overlaps:
Edge density in the overlaps is higher!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Communities as “tiles”
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Recap so far… 14
9

This is what we want!Communities
in a network



+ Plan of attack

n 1) Given a model, we generate the network:

n 2) Given a network, find the “best” model

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Model of networks

n Goal: Define a model that can generate networks
n The model will have a set of “parameters” that we will later want to 

estimate (and detect communities)

n Q: Given a set of nodes, how do communities “generate” 
edges of the network?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Community-Affiliation Graph

n Generative model B(V, C, M, {pc}) for graphs:
n Nodes V, Communities C, Memberships M
n Each community c has a single probability pc

n Later we fit the model to networks to detect communities

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ AGM: Generative Process

n AGM generates the links: For each 
n For each pair of nodes in community 𝑨, we connect them with prob. 𝒑𝑨
n The overall edge probability is:

15
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Nodes, V
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If 𝒖, 𝒗 share no communities: 𝑷 𝒖,𝒗 = 𝜺
Think of this as an “OR” function: If at least 1 community says “YES” we create an edge

𝑴𝒖 … set of communities 
node 𝒖 belongs to
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J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Network



AGM: Flexibility

n AGM can express a variety of 
community structures:
Non-overlapping, Overlapping, 
Nested

15
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+ More details at…

n Overlapping Community Detection at Scale: A Nonnegative Matrix 
Factorization Approach by J. Yang, J. Leskovec. ACM International 
Conference on Web Search and Data Mining (WSDM), 2013.

n Detecting Cohesive and 2-mode Communities in Directed and 
Undirected Networks by J. Yang, J. McAuley, J. Leskovec. ACM 
International Conference on Web Search and Data Mining (WSDM), 
2014.

n Community Detection in Networks with Node Attributes by J. Yang, 
J. McAuley, J. Leskovec. IEEE International Conference On Data 
Mining (ICDM), 2013.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Let’s go for it !


