Data management on the cloud

for data at different scales

Genoveva Vargas-Solar
http://www.vargas-solar.com
French Council of Scientific Research, LIG & LAFMIA Labs

Montevideo, 23@ November — 4th December, 2015 I_afn“a ‘

The cloud

The cloud

Software as a service i?@
PaaS PAYG
[Plaorm as a service * lllusion of infinite resources
* No up-front cost
Paas * Fine-grained billing(e.g.
Infrastructure as a service hourly)
laaS

m Promotes a style of computing in which dynamically scalable and often
virtualized resources are provided as a service over the Internet

m PaaS: allows customers to rent computers (virtual machines) on which to
run their own computer applications.

The cloud

Individual users & applications

{; A A

Software as a service (SaaS)

e.g., Salesforce, Google Apps

A 24

Platform as a service (PaaS)
e.g., Microsoft Azure, Google App Engine
f

Infrastructure as a service (laaS)

e.g., Amazon EC2, GoGrid, Rackspace

) S

Enabling tecnologies (hardware & software)
[FurhtEscalante2010]

The cloud

m Computing power is elastic,
but noly if workload is
parallelizable

Software as a service
PaaS

m Shared-nothing architecture

[Platform as a service

PaaS m Data is stored at un-trusted
[Infrastructure as a service hosts

laaS m Solution: encrypting data

m Data is replicated, across
large geographic distances

= Availability and durability

The cloud as

data management environment

Cloud data management: services
VIEWS

* Definition * Storage (persistency)
* Querying and exploiting » Efficientretrieval (indexing, caching)
* Manipulation * Fault tolerance (recovery, replication)

* Maintenance

<2 tape
T3 magnetic
| |
)
=== P

Data Volume

ﬁ Cloud

Hardware

Data management with resources
constraints

STORAGE
SUPPORT

DgO
o000

ARCHITECTURE &
RESOURCES AWARE

Algorithms

Systems

Efficiently manage and exploit data sets according to given specific storage,
memory and computation resources

Cloud data management: services
VIEWS

* Definition * Storage (persistency)
* Querying and exploiting » Efficientretrieval (indexing, caching)
* Manipulation * Fault tolerance (recovery, replication)

* Maintenance

<2 tape

T3 magnetic
s s
| s |
s s

Cloud

RAID

Hardware

Data management without
resources constraints

ELASTIC

COSTAWARE

Algorithms S

Systems

Reduce the cost to manage and exploit data sets according to unlimited
storage, memory and computation resources

Cloud data management wish list

Scalability and elasticity are the keys in cloud data management

= Quality: efficiency, economic cost, provenance, user preferences and constraints
= Multi-tenancy: managing large number of small tenants

= Consistency and replication

Fault Tolerance
= If a query must restart each time a node fails, then long, complex queries are difficult to

complete
Run in heterogeneous environments

= Should prevent the slowest node from making a disproportionate affect on total query
performance

Operate on encrypted data

Interface with data analytics and exploitation services

Cloud data management: aspects
to consider

m Security [Agrawal2] m Multi-tenancy
= Confidentiality = For OLTP [Agrawall]
= Privacy = For OLAP [Wong 2013]
m Data Analytics m Consistency, scalability and

= Large scale processing of elasticity [Agrawall]

complex queries = Replication and consistency

= Machine learning and data models

mining at large scale = Elasticity

SQL as a Service

User applications

Relational Cloud storage service

Relational
DBMS

Relational model and SQL as a
Service e.g. Amazon relational

database service (RDS), MS SQL Azure

Implemented on top of
parallel clusters of common
DBMS servers e.qg., MySQL
MS SQL Server

Cloud data management:
functions view

Individual users & applications

High level languages for
accessing data and controlling
processing

[Query language]

A

[- i] Performance for complex operations
| Distributed processing system] (SQL like joins & grouping, data
analysis)

A

Simple & flexible data model (key-value),
] basic access operations (lookup API)

[Structured data system

1

. . l Performance for data access
[Distributed storage system faulttolerance, availability, scalability

Cloud data management:
functions view

Individual users & applications

Query language
HiveQL, JaQL, Pig on top of Hadoop Map-Reduce

.!! Distributed processing system
Google/Hadoop MapReduce

. Structured data system l

Google BigTable & otherBigTable implementations like Hbase, Cassandra, Amazon SimpleDB
Distributed storage system

Distributed file systems:

Google file system, Hadoop Distributed File System, CloudStore
Cloud-based file Service: Amazon S3

P2P-like file service: Amazon Dynamo

Database landscape

\ /Relational

Research :
Analytic) Teradata Aster IBM Netezza ParAccel Kognitio SAP Sybase |Q\
Hadoop Blccolo Hadapt |nfobright LucidDB EMC Greenplum IBM InfoSphere
Non-relational HPCC RainStor Teradata Calpont Actian VectorWise SC¢iDBHp vertica
o NoSQL SAP HANA IBM Informix \
| DataStax Enterprise = Oracle Percona |BM DB2 MariaDB \
MarkLogic || Castle Acunu SkySQL MySQL postgreSQL sQL Server)
Shnsleat Hypertable (.as-a-Service FathomDB
i -as-a- athom 2
Versant BerkeleyDB Cassandra HBase Infir.uteGrap Amazon RDS Actian Ingres
B | OrlentDB Database.com
Oracle NoSQL || Big tables Postgres Plus Cloud (learDB EnterpriseDB
Membrain App Engine ' Rackspace Cloud Databases
HandlerSocket* Datastore uvolaBas Google Cloud SQL SQL Azure SAP Sybase ASE
McObject Riak Redis-to-go
levelpp SimpleDB Ng@
DynamoDB
Progress Redis NuoDB Voltps New databases |
g ris Mongo M°“3°'CIouda -as-a-Service MemsSQL JustOneDB SQLFire
Veldernort “Couchlab HQ StormDB Drizzle Akiban Translattice
Couchbase Ra"e"DB FXeroundssser L S choonerSQL==Clustrix
MongoDB CouchDB " Tokutek v ScaleArc ParElastic
Objectivity RethinkDB / Storage ScaleDB Zimory Scale Continuent
MySQL Cluster Galera cogeFytures
Lotus Notes Document engines 'kScaleBase mmnm
Starcounter InterSystems Cache

© 2012 by The 451 Group. All rights reserved

Next generation of
data management systems

DBMS evolution

m No more monolithic DBMS m Components are providing
= Extensible, lightweight DBMS Services
m Blur the boundaries between

= Unbundled technology* 0S & DBMS

Component-based
. P m Self-adaptive Systems

architectures™ (thick-grain vs.
fine-grain) m Multi-tier architectures, Web,

s OO Frameworks P2P, GRID, CLOUD,...

* See Dittrich, Geppert, Eds, “Component Database Systems”, MK 2000
* Chaudhuri & Weikum, Rethinking Database System Architecture: Towards a Self-tuning RISC-style Database System, VLDB 2000

Service oriented DBMST

Extension services
Streaming, XML, procedures,
queries, replication

Data
services Additional
_____________ extension
Access services
services
Storage Other
services services

"lonut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business,

Technologie und Web (BTW 2007)
Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000.

Service oriented DBMST

Extension services
Streaming, XML, procedures,
queries, replication

services

~. -

services

/’
~. -

m Service level agreement: the contracted delivery time of the service or performance

m Required SLA: agreements between the user and SDBMS expressed as a combination
of weighted measures associated to a query

"lonut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business,
Technologie und Web (BTW 2007)
Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000.

Service oriented DBMST

. . Extension services
Sel‘Vlce (o rlented DBMS1 Streaming, XML, procedures,

queries, replication

Data
services Additional
_____________ extension
Access services
services
Storage Other
services services

m Service level agreement: the contracted delivery time of the service or performance

m Required SLA: agreements between the user and SDBMS expressed as a combination

of weighted measures associated to a query

"lonut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business,

Technologie und Web (BTW 2007)
Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000.

Challenges and objective

m How to combine, deploy, and deliver DBMS functionalities:
= Compliant to application/user requirements

= Optimizing the consumption of computing resources in the presence of
greedy data processing tasks

= Delivered according to Service Level Agreement (SLA) contracts
m Deployed in elastic and distributed platforms

* See Dittrich, Geppert, Eds, “Component Database Systems”, MK 2000
* Chaudhuri & Weikum, Rethinking Database System Architecture: Towards a Self-tuning RISC-style Database System, VLDB 2000

Open Source Big Data Stacks

HiveQL PigLatin Jagl script

< L L

: HiveQL/Pig/jaql Hadoop M/R Job NOteS.
e - . * Giant byte sequence

at the bottom
 Map, sort, shuffle,

Get/Put ops.
Hadoop MapReduce *

Dataflow Layer reduce Iayer in middle
in middle as well
Hadoop Distributed File System e HLLs now at the top
(Byte-oriented file abstraction)

From Mike Carey ::

ASTERIXDB Project @ UCI

“8’@
UCIRVINE

http://isg.ics.uci.edu

Intensive
Computing

“One Size Fits a Bunch”

http://asterixdb.ics.uci.edu

*Inside “Big Data Management”: Ogres, Onions, or Parfaits?, Vinayak Borkar, Michael J. Carey, Chen Li, EDBT/CDT 2012 Joint Conference Berlin

*Data Services, Michael J. Carey, Nicola Onose, Michalis Petropoulos
CACM June 2012, (Vol55, N.6)

The ASTERIX Software Stack

AsterixQL

Piglet

Asterix
Data
Mgmt.
System [/ Hivesterix

Other HLL Hadoop Pregel
Compilers M/R Job Job

<$ L

Algebricks Hadoop M/R
Algebra Layer Compatibility

Pregelix

Hyracks Data-parallel Platform

#AsterixDB #AsterixDB

IMRU
Job

9

IMRU

Hyracks Job

-

25

Google BigQuery

Key Differences

BigQuery

MapReduce

What is it?

Query service for large
datasets

Programming model for
processing large datasets

Common use cases

Ad hoc and trial-and- error
interactive query of large
dataset for quick analysis
and troubleshooting

Batch processing of

large dataset for time-
consuming data conversion
or aggregation

Sample use cases

OLAP/BI use case

Yes

No

Data Mining use case

Partially (e.g. preflight data
analysis for data mining)

Yes

Very fast response Yes No (takes minutes - days)
Easy to use for non- Yes No (requires Hive/Tenzing)
programmers (analysts,

tech support, etc)

Programming complex data No Yes

processing logic

Processing unstructured data Partially (regular expression Yes

matching on text)

Google BigQuery
Pricing

BigQuery uses a columnar data structure, which means that for a given query,
you are only charged for data processed in each column, not the entire table.
The first 100GB of data processed per month is at no charge

Pricing Table
Resource Pricing Default Limits
Storage $0.12 (per GB/month) 2TB
Interactive Queries $0.035 (per GB Processed) ** 20,000 Queries Per Day (QPD)

20TB of Data Processed Per Day

Batch Queries $0.02 (per GB processed) 20,000 Total Queries Per Day (QPD)

Google bigquery

COMPOSE QUERY New Qu... v
Query History 1 select owrgg) from publicdata:samples.wikipedia
2 where REGEXP_MATCH(title, '[0-9]*") AND wp_namespace = 0;
Job History
testdata B
v publicdata:samples
Show previous query results
#i github_timeline
i gsod
&1 natality Ql.lery Results 3:13pm, 31 Oct 2« Download as CSV Save as Table Chart View
i shakespeare Row f0_
i trigrams 1 223163387
25 wikipedia

Figure 1 Querying Sample Wikipedia Table on BigQuery
(You can try out BigQuery by simply sign up for it.)

National Science Foundation
a Expeditions in Computing

ABOUT PEOPLE PAPERS PROJECTS SOFTWARE BLOG SPONSORS PHOTOS
ALGORITHMS MACHINES PEOPLE Founding Sponsors
By ‘ Working at the intersection of three massive trends: powerful machine %Tgﬁger; GO \)816

learning, cloud computing, and crowdsourcing, the AMPLab is creating

Next generation of analytics data stack

» Berkeley data analytics stack (BADS)
» Release as open source

Spark & Tachyon New Features, @
Baidu, Sunnyvale, October 28th,
6:00pm (registration required)

® Mesos making news and vying for

Silicon Valley is Migrating Unicorn” status - 08.19.15 @ &‘u informatica

AMPCamp 6 Big Data Bootcamp, North - 09.21.15 ® Mike Jordan and BDAS in Science - HOAWE!

Berkeley, CA, Nov 19-20, 2015 07.31.15
(registration required) :I@ Microsoft “
NetApp
Pivotal g™ Schiumberger
Featured Project: Award-Winning Ph.D. Research
Each year the ACM Doctoral Dissertation Award recognizes outstanding Computer Science doctoral dissertations vmware

completed the previous year. We're happy to announce that this year AMPLab Ph.D.s garnered two of the

three nwarde niven warld-wide

;.?'u”" T E R ALA B Le projet La communauté Calendrier Contact

Mines-Télécom

ABOUT

Le GENES

Le groupe des Ecoles Nationales
d'Economie et Statistique est un
établissement public d'enseignement
supérieur et de recherche rattaché au
ministére de |'économie et des finances, et
dont I'INSEE assure ainsi la tutelle

technique.

BIG DATA

Ambition TeralLab

TeralLab est un « Projet d’Investissement
d’Avenir » (PIA) lauréat de I’appel a projet
Big Data de 2012.

Where is the cloud?

Map Reduce on Azure

BR Windows Azure

7
P

) /7 @ 20130720json |
- —
Cloudtplore @ 20130721,json

=8 Azure Blob Storage

4 E bghdistorage
< airlineperformance
> < bluegranite

4 . socialmedia
| Input M
» | Output <_°-

4 | user PiPA

> L Haddop -e—b HDInsight

GOUVERNANCE ACCES AUX DONNEES SECURITE EXPLOITATION
INTEGREE

Script SQL Java/... NoSQL Stream Reche... In-Mem Autres...

) Pig Hive Cascad...| | HBase Storm Solr Spark Engines
Flux de don.nees, HCatalog Accumulo Authentication, Fournir, gérer et
cycle de vie et Phoenix Authorization, surveiller
gourvernance Slider | Slider | Tez S/ 1] Audit & Data
Protection Ambari
Falcon \ g A . ZooKeeper
YARN : systeme d'exploitation des donnees
Stockage : HDFS
WebHDFS Ressources : YARN p i
NFS Acces : Hive rogrammation
Flume HDES Pipeline : Falcon Oozie
Sqgoop . | e | Cluster : Knox
Kafka Systeme de fichiers distribué Hadoop

Cluster: Ranger

GESTION DES DONNEES

http://fr.hortonworks.com

Conclusions & Perspectives

Conclusions

m Data collections
» New scales: bronto scale due to emerging loT
= New types: thick, long hot, cold
= New quality measures: QoS, QoE, SLA

m Data processing & analytics
m Complex jobs, stream analytics are still open issues
m Economic cost model & business models (Big Data value & pay-as-U-go)

= Multi-cloud: elasticity, quality, SLA

Genoveva Vargas-Solar

French Council of Scientific Research, LIG & LAFMIA Labs

Lafmia

INFORMATIQUE

Distributed file system

m Abandons the separation of computation and storage as distinct components in
a cluster

= Google File System (GFS) supports Google’s proprietary implementation of MapReduce;

= Inthe open-source world, HDFS (Hadoop Distributed File System) is an open-source
implementation of GFS that supports Hadoop

m The main idea is to divide user data into blocks and replicate those blocks across
the local disks of nodes in the cluster

m Adopts a master-slave architecture

= Master (hamenode HDFS) maintains the file namespace (metadata, directory structure, file
to block mapping, location of blocks, and access permissions)

= Slaves (datanode HDFS) manage the actual data blocks

Distributed File System

m Chunk servers

File is split into contiguous chunks
Typically each chunk is 16-64MB

Each chunk replicated (usually 2x
or 3X)

Try to keep replicas in different
racks

m Master node

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets,

a.k.a. Name Node in Hadoop’s
HDFS

Stores metadata about where files
are stored

Might be replicated

m Client library for file access

m Talks to master to find chunk
servers

= Connects directly to chunk
servers to access data

http://www.mmds.org

Distributed File System

m Reliable distributed file system

m Data kept in “chunks” spread across machines

m Each chunk replicated on different machines
m Seamless recovery from disk or machine failure

Chunk server1 Chunk server2 Chunk server3 Chunk server N

Bring computation directly to the datal

Chunk servers also serve as compute servers

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

HFDS general architecture

m An application client wishing to read a
file (or a portion thereof) must first

contact the namenode to determine HDFS namenode
where the actual data is stored Application , ffoolbar
(file name, block id) -
HDFS Client |, Elo namespace block 342
(block id, block location)
m The namenode returns the relevant 1 R /&
block id and the location where the
block is held (i.e., which datanode)
instructions to datanode
m The client then contacts the datanode to (block i, byte range) datanode state
retrieve the data. HDFS datanode HDFS datanode

block dala Linux file system Linux file system

m HDFS lies on top of the standard OS LEﬁL@ L@“Eﬁ

stack (e.g., Linux): blocks are stored on
standard single-machine file systems

Hadoop cluster architecture

namenode job submission node

tasktracker

datanode daemon datanode daemon

Linux file system Linux file system

m The HDFS namenode runs the namenode daemon siave node siave node siave node

m The job submission node runs the jobtracker, which is the single point of contact for a client
wishing to execute a MapReduce job

m T[he jobtracker
Monitors the progress of running MapReduce jobs
Is responsible for coordinating the execution of the mappers and reducers
Tries to take advantage of data locality in scheduling map tasks

Hadoop cluster architecture

m Tasktracker

It accepts tasks (Map, Reduce, Shuffle, etc.) from JobTracker

Each TaskTracker has a number of slots for the tasks: these are
execution slots available on the machine or machines on the same
rack

It spawns a separate JVM for execution of the tasks

It indicates the number of available slots through the hearbeat
message to the JobTracker

HDFS properties

m HDFS stores three separate copies of each data block to ensure both reliability, availability, and
performance

m Inlarge clusters, the three replicas are spread across different physical racks,

» HDFSis resilient towards two common failure scenarios individual datanode crashes and failures in networking equipment
that bring an entirerack offline.

= Replicating blocks across phgsical machines also increases opportunities to co-locate data and processingin the
scheduling of MapReduce jobs, since multiple copies yield more opportunities to exploit locality

m To create a new file and write data to HDFS
= The application client contacts the namenode
= Thenamenode
m updates the file namespace after checking permissions and making sure the filedoesn’t already exist
m allocates a new block on a suitable datanode
®m The applicationis directed to stream data directly to it
» Fromtheinitial datanode, datais further propagated to additional replicas

NoSQL stores characteristics

= Simple operations m High performance
m Key lookups reads and writes of one record or a m Efficient use of distributed indexes and RAM for
small number of records data storage
m No complex queries or joins m Weak consistency model
= Ability to dynamically add new attributes to m Limited transactions

data records

= Horizontal scalability
m Distribute data and operations over many servers
m Replicate and distribute data over many servers

m No shared memory or disk

Next generation databases mostly addressing some of the points: being non-relational,
distributed, open-source and horizontally scalable [http://nosql-database.org]

¢o now we have NoS@L- databageg

example; inclvde

 Data model Availability

e Consistency °* Query support CouchDB

 Storage o k
 Durability A\ "q
1‘ ’ /a-g;fCassandra
AR PRACHE
[Data stores tlesigned to scale simple oA WY FRaASE

[OLTP—ster application loads]

We should also remember Google’s
é = Bigtable and Amazon’s SimpleDB. While
I these are tied to their host’s cloud
service, they certainly fit the general

Read/Write operations operating characteristics
by thousands/millions of users

Important design goals

m Scale out: designed for scale
» Commodity hardware
= Low latency updates
m Sustain high update/insert throughput

m Elasticity — scale up and down with load

m High availability — downtime implies lost revenue
m Replication (with multi-mastering)
m Geographic replication
m Automated failure recovery

Lower priorities

m No Complex querying functionality
= No support for SQL
m CRUD operations through database specific API

m No support for joins
m Materialize simple join results in the relevant row
m Give up normalization of data?

m No support for transactions
m Most data stores support single row transactions
m Tunable consistency and availability (e.g., Dynamo)

- Achieve high scalability

Non functional properties

Fault-tolerant
partitioning

Availability —_— Consistency

m CAP theorem': a system can have two of the three properties

m NoSQL systems sacrifice consistency

1 Eric Brewer, "Towards robust distributed systems." PODC. 2000 http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

Visual guide to NoSQL systems

Availability: A
each client can
alwaysread & write

Relational

Key-Value
Column oriented Tabular
Document oriented

Data models

C-A A-P

- RDBM’ s - Aster Data - Dynamo - Cassandra
- MySQL - GreenPlum - Voldemort - SimpleDB
- Postgres - Vertica - Tokyo Cabinet - CouchDB

- etc - KAI - Riak

Consistency: C
all clients always have

the same view Ofde data —

P Partition tolerance:
The system works well despite

hysical network partitions
C - P phy p
- BigTable - MongoDB - BerkeleyDB
- HyperTable - TerraStore - MemcacheDB

- Hbase - Scalaris - Redis

Why sacrifice consistency?

m It is a simple solution
= nobody understands what sacrificing P means
= sacrificing A is unacceptable in the Web
= possible to push the problem to app developer

m C not needed in many applications
= Banks do not implement ACID (classic example wrong)
= Airline reservation only transacts reads (Huh?)
= MySQL et al. ship by default in lower isolation level

m Datais noisy and inconsistent anyway
= making it, say, 1% worse does not matter

Consistency model

m ACID semantics (transaction semantics in RDBMS)

= Atomicity: either the operation (e.g., write) is performed on all replicas or is not
performed on any of them

= Consistency: after each operation all replicas reach the same state

= Isolation: no operation (e.g., read) can see the data from another operation (e.g.,
write) in an intermediate state

= Durability: once a write has been successful, that write will persist indefinitely

m BASE semantics (modern Internet systems)
= Basically Available
= Soft-state (or scalable)
= Eventually consistent

Consistency models

update(D)
Do > D

Distributed
Storage system

m Strong consistency:

After the update completes, every subsequent access from A, B, C will
return D,

m Weak consistency:

Does not guaranty that any subsequent accesses return D, -> a number
of conditions need to be met before D, is returned

m Eventual consistency: Special form of weak consistency

Guaranty that if no new updates are made, eventually all accesses will
return D,

Variations of eventual consistency |

m Causal consistency:
= If A notifies Babout the update, B will read D1 (but not C!)

m Read your writes:
= A willalways read D1 after its own update

m Sessionconsistency:
= Read yourwrites insidea session

m Monotonic reads:
m If aprocess has seen Dk, any subsequent access will never return any Di withi < k

= Monotonic writes:
» Guarantyto seiralize the writes of the same process

ACID vs BASE

ACID

m Strong consistency for
transactions highest priority

m Availability less important
m Pessimistic
m Rigorous analysis

m Complex mechanisms

m Availability and scaling highest
priorities

m Weak consistency
m Optimistic
m Best effort

m Simple and fast

56

Map reduce

The new software stack

Map Reduce

m Much of the course will be devoted to large scale computing
for data mining

= Challenges:
= How to distribute computation?
= Distributed/parallel programming is hard

m Map-reduce addresses all of the above
= Google’s computational/data manipulation model
= Elegant way to work with big data

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Single Node Architecture

CPU

Machine Learning, Statistics
Memory

“Classical” Data Mining
Disk \

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Motivation: Google Example

m 20+ billion web pages x 20KB = 400+ TB

m 1 computer reads 30-35 MB/sec from disk
= ~4 months to read the web

m ~1,000 hard drives to store the web

m Takes even more to do something useful
with the data!

m Today, a standard architecture for such problems is emerging:
m Cluster of commodity Linux nodes
= Commodity network (ethernet) to connect them

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Cluster Architecture

2-10 Gbps backbone between racks

1 Gbps between
any pair of nodes

in a rack
CPU CPU CPU CPU
Mem Mem Mem Mem

Disk I Disk I Disk I Disk I

Each rack contains 16-64 nodes
In 2011 it was guestimated that Google had 1M machines, http://bit.ly/ShhORO

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

J. Leskovec,

Large-scale Computing

m Large-scale computing for data mining problems on commodity
hardware

= Challenges:

m How do you distribute computation?
= How can we make it easy to write distributed programs?
m Machines fail:

m One server may stay up 3 years (1,000 days)

m If you have 1,000 servers, expect to loose 1/day

m People estimated Google had ~1M machines in 2011

= 1,000 machines fail every day!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

ldea and Solution

m Issue: Copying data over a network takes time

m Ildea:
= Bring computation close to the data
m Store files multiple times for reliability

= Map-reduce addresses these problems
= Google’s computational/data manipulation model
= Elegant way to work with big data
= Storage Infrastructure - File system
m Google: GFS. Hadoop: HDFS
= Programming model
m Map-Reduce

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Storage Infrastructure

m Problem:
= If nodes fail, how to store data persistently?

m Answer:
= Distributed File System:
m Provides global file namespace
m Google GFS; Hadoop HDFS;

m Typical usage pattern
= Huge files (100s of GB to TB)
m Data is rarely updated in place
m Reads and appends are common

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Programming Model: Map Reduce |kl

Warm-up task:
m We have a huge text document

m Count the number of times each
distinct word appears in the file

= Sample application:
= Analyze web server logs to find popular URLs

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Task: Word Count

Case 1:
m File too large for memory, but all <word, count> pairs fit in memory

Case 2:

m Count occurrences of words:
m words (doc.txt) | sort | uniqg -c

m where words takes a file and outputs the words in it, one per a line

m Case 2 captures the essence of MapReduce
m Great thing is that it is naturally parallelizable

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Map Reduce: Overview

m Sequentially read a lot of data

= Map:
m Extract something you care about

m Group by key: Sort and Shuffle

m Reduce:
m Aggregate, summarize, filter or transform

m Write the result Outline stays the same, Map and

Reduce change to fit the problem

J. Leskovec, A. Rajaraman, J. Uliman: Mining of Massive Datasets, http://www.mmds.org

MapReduce: The Map Step

Input Intermediate
key-value pairs key-value pairs

S L7
ey 4
N LY 4

AT oM

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Map Reduce: The Reduce Step

_ Output
Intermediate Key-value groups key-value pairs

key-value pairs

reduce
oA <oANN=—o0
duce
g = @
ov ey @ [

g 4
g 4

oM <N >0

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

More Specifically

m Input: a set of key-value pairs

m Programmer specifies two methods:
= Map(k, v) — <k’, v’>*
m Takes a key-value pair and outputs a set of key-value pairs
» E.g., key is the filename, value is a single line in the file
m There is one Map call for every (k,v) pair
® Reduce(k’, <v’>*) — <k’, v’>*

m All values v’ with same key k’ are reduced together
and processed in v’ order

m There is one Reduce function call per unique key k’

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Map Reduce: Word Counting

The crew of the space
shuttle Endeavor recently
retumed to Earth as
A e
of a new era of space
exploration. Scientists at
=MASA s cavinathattha 1,
recent assembly of the
Dextre bot is the frst step
in a longterm space-
based man/mache
partnership. "The work
we're doing now - the
robotics we're doing - is
what we're going to need

Big document

Provided by the
programmer

MAP:
Read input and
produces a set

of key-value
pairs

Group by
key:
Collect all pairs
with same key

(The, 1)
(crew, 1)
(of, 1)
(the, 1)
(space, 1)
(shuttle, 1)
(Endeavor, 1)
(recently, 1)

(crew, 1)
(crew, 1)
(space, 1)
(the, 1)
(the, 1)
(the. 1)
(shuttle, 1)
(recently, 1)

(key, value)

(key, value)

Provided by the
programmer

Reduce:
Collect all values
belonging to the

key and output

reads

(crew, 2)
(space, 1)
(the, 3)
(shuttle, 1)

IS,
T
(O}
>
o
(recently, 1) 3
)
c
@)

(key, value)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Word Count Using Map Reduce

map (key, value):
// key: document name; value: text of the document
for each word w in value:

emit (w, 1)

reduce (key, values):
// key: a word; value: an iterator over counts
result = 0
for each count v in values:
result += v
emit (key, result)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Map-Reduce: Environment

Map-Reduce environment takes care of:
m Partitioning the input data

m Scheduling the program’s execution across a
set of machines

m Performing the group by key step
m Handling machine failures

m Managing required inter-machine communication

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Map-Reduce: A diagram

Input

MAP:
Read input and

produces a set of
key-value pairs

Intermediate

Group by
key:
Collect all pairs
with same key

(Hash merge,
Shuffle, Sort,

Reduce:
Collect all values

belonging to the
key and output

Big documen

> G0 G

kl:vkl:vk2:v

k4:v

kl:vk3:v

Grouped |kl:v,v,v,v

k5:v

foot—|

Output

J. LeSkoveC, A. Rajarama. I, Uo UG L. IVITHIT Y VT IVIADDI VG LUALADGLI, |ILLI.// VWV VLI IUD.UI Y

Map-Reduce: In Parallel

Map Task |

EXT

Map Task 2

© 9

k3:v kd:w | kd:v k5w

Map Task 3

Ex)

klw klw k2

Partitioning Function

k4 v kl:v k3w

prpe e

Partitioning Function

Partitioning Function
Cemp——— _J_ _- = = 4
— — —— —

Sort and Group

Sort and Group
k2:v | kd:vwvv | k5:v klvwvwy | k3:v,v

XX 5

Reduce Task 1 Reduce Task 2

All phases are distributed with many tasks doing the work

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Map-Reduce

m Programmer specifies:

Map and Reduce and input files

m Workflow:

Read inputs as a set of key-value-pairs

Map transforms input kv-pairsinto a new set of
k'v'-pairs

Sorts & Shufflesthek'v'-pairs to output nodes

All K'v’-pairs with a given k’ are sent to the same
reduce

Reduce processes all k'v'-pairs grouped by key
intonew K''v''-pairs

Write theresulting pairs tofiles

m All phases are distributed with many tasks doing
the work

@

Map 2

Map 0

Map 1

Shuffle

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Data Flow

= Input and final output are stored on a distributed file system
(FS):

m Scheduler tries to schedule map tasks “close” to physical storage
location of input data

m Intermediate results are stored on local FS
of Map and Reduce workers

m Output is often input to another
MapReduce task

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Coordination: Master

m Master node takes care of coordination:
= Task status: (idle, in-progress, completed)
= ldle tasks get scheduled as workers become available

= When a map task completes, it sends the master the location and
sizes of its R intermediate files, one for each reducer

= Master pushes this info to reducers

m Master pings workers periodically to detect failures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Dealing with Failures

m Map worker failure
m Map tasks completed or in-progress at worker are reset to idle
m Reduce workers are notified when task is rescheduled on another worker

m Reduce worker failure
m Only in-progress tasks are reset to idle
m Reduce task is restarted

m Master failure
m Map Reduce task is aborted and client is notified

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

How many Map and Reduce jobs?

m M map tasks, R reduce tasks

m Rule of a thumb:
= Make M much larger than the number of nodes in the cluster
= One DFS chunk per map is common

= Improves dynamic load balancing and speeds up recovery from
worker failures

m Usually R is smaller than M
= Because output is spread across R files

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Task Granularity & Pipelining

m Fine granularity tasks: map tasks >> machines
= Minimizes time for fault recovery
= Can do pipeline shuffling with map execution
= Better dynamic load balancing

Process Time >

User Program [MapReduce() ... wait ...

Master Assign tasks to worker machines...
Worker 1 Map | Map 3

Worker 2 Map 2
Worker 3 Reduce 1
Worker 4 Reduce 2

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Refinements: Backup Tasks

m Problem
= Slow workers significantly lengthen the job completion time:
m Other jobs on the machine
m Baddisks
m Weird things

m Solution
= Near end of phase, spawn backup copies of tasks
m Whichever one finishes first “wins”

m Effect
= Dramatically shortens job completion time

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Refinement: Combiners

m Often a Map task will produce many pairs of the form (k,v,), (k,v5), ...
for the same key k

m E.g., popular words in the word count example

m Can save network time by

Fre-aggregating values in
he mapper:

m combine(k, list(v4)) =2 v,

= Combiner is usually same
as the reduce function

m Works only if reduce o
function is commutative and associative

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Refinement: Combiners

m Back to our word counting example:
m Combiner combines the values of all keys of a single mapper (single

machine),
(A.B) (8,))
(AL ©n (8.2)
(A.IE)) 0.1) n
= (B,E) (E) (0.2)
£ (8D 0.1 (E]) (A 12 (A.2)
(C.8) (8.1 (B, 1211 } (8.3)
(, 0 €.2)
~ [(CD) @) (0, 12.2D (0,4)
g (CA) (A1) (0,2) (E, (1) (ED)
@ |(0M | | Tianearl| |(AD (2
(EC) | | === |(C)) cn
(EB) [, (B.) (8.1)
{ED) 0,)

= Much less data needs to be copied and shuffled!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Refinement: Partition Function

= Want to control how keys get partitioned
m |Inputs to map tasks are created by contiguous splits of input file

m Reduce needs to ensure that records with the same intermediate key end
up at the same worker

m System uses a default partition function:
» hash(key) mod R

m Sometimes useful to override the hash function:

» E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in
the same output file

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Map reduce

Suited problems

Example: Host size

m Suppose we have a large web corpus

m Look at the metadata file
m Lines of the form: (URL, size, date, ...)

m For each host, find the total number of bytes
m That is, the sum of the page sizes for all URLs from that particular host

m Other examples:
» Link analysis and graph processing
m Machine Learning algorithms

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Example: Language Model

m Statistical machine translation:

= Need to count number of times every 5-word sequence occurs in a
large corpus of documents

m Very easy with MapReduce:
= Map:
m Extract (5-word sequence, count) from document

» Reduce:
m Combine the counts

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Example: Join By Map-Reduce

= Compute the natural join R(A,B) ~ S(B,C)
m R and S are each stored in files

m Tuples are pairs (a,b) or (b,c)

Al B B | c I A | c
a b b, C1 as C1

a b, > b, C, — as Cy
as b, b, Cs3 a, Cs3
dy b3 3

R

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Map Reduce complex jobs 93

the actual join

s |3

[) o
®
: ® : e Each mapper produces
‘ z A 2 the join key & the record
A pairs
Each mapper
. .c - / processes one block

A A ,///// { ..A /’//’ ’ /.

@A » i o AjlaAa /e A HDEFS stores
° “ .'A data blocks
'Y) l’ l

Map-Reduce Join

m Use a hash function h from B-values to 1...k

m A Map process turns:
m Each input tuple R(a,b) into key-value pair (b,(a,R))
= Each input tuple S(b,c) into (b,(c,S))

m Map processes send each key-value pair with key b to Reduce
process h(b)

m Hadoop does this automatically; just tell it what k is.

m Each Reduce process matches all the pairs (b, (a,R)) with all (b,(c,S))
and outputs (a,b,c).

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Cost Measures for Algorithms

] In MapReduce we quantify the cost of an algorithm using
1. Communication cost = total I/O of all processes

2. Elapsed communication cost = max of I/O along any path

3. (Elapsed) computation cost analogous, but count only running time of processes

Note that here the big-O notation is notthe mostuseful
(adding more machines is always an option)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Example: Cost Measures

m For a map-reduce algorithm:

= Communication cost = input file size + 2 x (sum of the sizes of all
files passed from Map processes to Reduce processes) + the sum of
the output sizes of the Reduce processes.

= Elapsed communication cost is the sum of the largest input +
output for any map process, plus the same for any reduce process

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

What Cost Measures Mean

m Either the /0O (communication) or processing (computation) cost
dominates

= Ignore one or the other

m Total cost tells what you pay in rent from
your friendly neighborhood cloud

m Elapsed cost is wall-clock time using parallelism

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Cost of Map-Reduce Join

m Total communication cost
= O(|R|+[S|+|R = 8])

m Elapsed communication cost = O(s)

= We’re going to pick k and the number of Map processes so that the I/O limits is
respected

= We put a limits on the amount of input or output that any one process can have. s
could be:

m What fits in main memory
m What fits on local disk

m With proper indexes, computation cost is linear in the input + output size
= So computation cost is like comm. cost

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Map reduce summary

m Highly fault tolerant = Schema embedded in
application code

m Relatively easy to write
“arbitrary” distributed

m A lack of shared schema

computations over very large = Makes sharing data between
amounts of data applications difficult
Makes lots of DBMS “goodies”
= MR framework removes burden - suihegs?nsa%es, integrgigt?/o 8
of dealing with failures from constraints, views, ... impossible
programmer

m No declarative query language

Pointers and further reading

Implementations

m Google
= Not available outside Google

m Hadoop
= An open-source implementation in Java
= Uses HDFS for stable storage
= Download: http://lucene.apache.org/hadoop/

m Aster Data
m Cluster-optimized SQL Database that also implements MapReduce

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Reading

m Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified
Data Processing on Large Clusters

= http://labs.google.com/papers/mapreduce.html

m Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung: The
Google File System

= http://labs.google.com/papers/gfs.html

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Resources

m Hadoop Wiki
Introduction
= http://wiki.apache.org/lucene-hadoop/
Getting Started
= _http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
Map/Reduce Overview
= _http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
= _http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
Eclipse Environment
= http://wiki.apache.org/lucene-hadoop/Eclipse Environment

m Javadoc
http://lucene.apache.org/hadoop/docs/api/

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Resources

m Releases from Apache download mirrors
http://www.apache.org/dyn/closer.cqgi/lucene/hadoop/

m Nightly builds of source
http://people.apache.org/dist/lucene/hadoop/nightly/

m Source code from subversion
http://lucene.apache.org/hadoop/version control.html

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Further Reading

m Programming model inspired = Locality optimization has parallels
by functional language with Active Disks/Diamond work
primitives = Active Disks ['01], Diamond ['04]

= Partitioning/shuffling similar to = Backup tasks similarto Eager

Scheduling in Charlotte system

many large-scale sorting
= Charlotte ['96]

systems
= NOW-Sort ['97] = Dynamic load balancing solves similar
problem as River's distributed queues
m Re-execution for fault tolerance = River['99]

= BAD-FS ['04] and TACC ['97]

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Pig

“Pig Latin: A Not-So-Foreign Language for Data Processing”

= Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar,
Andrew Tomkins (Yahoo! Research)

= http://www.sigmod08.org/program_glance.shtml#sigmod_industrial_p
rogram

= http://infolab.stanford.edu/~usriv/papers/pig-latin.pdf

Pig

General description

High level data flow language for
exploring very large datasets

Compiler that produces sequences of
MapReduce programs

Structure is amenable to substantial
parallelization

Operates on filesin HDFS

Metadata not required, but used
when available

Provides an engine for executing data
flows in parallel on Hadoop

Kev properties

m Ease of programming

Trivial to achieve parallel execution of
simple and parallel data analysis
tasks

= Optimization opportunities

Allows the user to focus on semantics
rather than efficiency

m Extensibility

Users can create their own functions
to do special-purpose processing

109

Example

Top 5 pages accessed by users between 18 and 25 year

:\1_TheFifth

File Edit Selection Find View Gotce Tools Project Preferences Help
top_5_sites.pig x l

1 |users = load 'users.csv' as (username:chararray, age:int);

2 users_1825 = filter users by age >= 18 and age <= 25;

4 pages = load 'pages.csv' as (username:chararray, url:chararray);

S5

6 joined = join users_1825 by username, pages by username;

7 grouped = group jocined by url;

8 summed = foreach grouped generate group as url, COUNT(joined) as views;

9 sorted = order summed by views desc;

1@ top_S5 = limit sorted 5;

11

12 store top_5 into 'top_5_ sites.csv’';

Load Users

Filter by Age

lusers = load ‘users.csv' as |

sers_1825 = filter users by

ages = load 'pages.csv' as |

Join on Name —>joined = join users_1825 by 1

grouped = group joined by ur:

summed = foreach grouped gent

sorted = order summed by vie

Group on url op_5 = limit sorted 5;

store top_5 into '"top_5_site:

Count Clicks

Order by
Clicks

Take Top 5

Save results

Equivalent Java map reduce code |I

F——————— T . e O . b]
> 1e- oA ema v lesesPuss . olanels
20.00,000 Sreee Soetett ant Sellest e sebess D T e &
®oe g0 P “reese/eshes/pesee b b,

- -

- —————
Fowt . A s -l

WL T

- e
sy 0‘

Belen e d mag | g
O pru b L L

L L ——

22, Tea8 she ey eea

Tean www.
T R b e AR
.

. - -
—— - » -
R R
- —— . w—t, — S r——— b —
S A S o g A A ¢ P e amn
» - . . b b
P e wan b s . -hamn
. V., Wmmn, Smess 4 » -y
A hm—
sntlie weid mepilengeriteble b Sees val. —— Ry, w— —— b — —
e e ~T—— »

F 5 Pwa -y - Petise stetie slese -T.-...-o ——
-l g ke = wa cllltull. e B mcmummau Alakie, Raagwyitinle. 1
. » e e —m—t o Taan

- e 0
P ——R— . — — o, —

--... etwe -

B S | ——— | a
*

Fhrms . vl - w——
—

Querying with resources
constraints

Distribution and organization of
Swap memory- disk / P y data on disk
atla nanS'qufj Iffj Efj

Query and data processing

on server

Q17: Which are the most popular products Q2: Which are the consumption rules of
at Starbucks ? Starbucks clients ?

===

Efficiency => time cost
Optimizing memory and computing
cost

Efficiently manage and exploit data sets according to given specific storage,
memory and computation resources

Querying without resources
constraints

Costly => minimizing cost, energy
consumption

m Query evaluation> How and under which limits ?

Is not longer completely constraint by resources availability: computing, RAM, storage, network services
Decision making process determined by resources consumption and consumer requirements

m Datainvolved in the query, particularly in the result can have different costs: top 5 gratis and
the rest available in return to a credit card number

m Results storage and exploitation demands more resources

