
Montevideo, 23rd November – 4th December, 2015

Data management on the cloud
for data at different scales

1

Genoveva Vargas-Solar
http://www.vargas-solar.com
French Council of Scientific Research, LIG & LAFMIA Labs

I N F O R M A T I Q U E

2

The cloud

+ The cloud

n Promotes a style of computing in which dynamically scalable and often
virtualized resources are provided as a service over the Internet

n PaaS: allows customers to rent computers (virtual machines) on which to
run their own computer applications.

3

Infrastructure as a service
IaaS

Platform as a service
PaaS

Software as a service
PaaS

• Illusion of infinite resources
• No up-front cost
• Fine-grained billing (e.g.

hourly)

+ The cloud 4

Infrastructure as a service (IaaS)
e.g., Amazon EC2, GoGrid, Rackspace

Platform as a service (PaaS)
e.g., Microsoft Azure, Google App Engine

Software as a service (SaaS)
e.g., Salesforce, Google Apps

Enabling tecnologies (hardware & software)
[FurhtEscalante 2010]

Individual users & applications

+ The cloud 5

Infrastructure as a service
IaaS

Platform as a service
PaaS

Software as a service
PaaS

n Computing power is elastic,
but noly if workload is
parallelizable
n Shared-nothing architecture

n Data is stored at un-trusted
hosts
n Solution: encrypting data

n Data is replicated, across
large geographic distances
n Availability and durability

6

The cloud as
data management environment

+ Cloud data management: services
views

7

Data	Volume

Peta
1015

Exa
1018Zetta

1021Yota
1024

Hardware

Cloud

tape
magnetic

• Storage (persistency)
• Efficient retrieval (indexing, caching)
• Fault tolerance (recovery, replication)
• Maintenance

• Definition
• Querying and exploiting
• Manipulation

RAID

+ Data management with resources
constraints

8

STORAGE
SUPPORT

Systems

ARCHITECTURE &
RESOURCES AWARE

RAM

Algorithms

Efficiently manage and exploit data sets according to given specific storage,
memory and computation resources

+ Cloud data management: services
views

9

Data	Volume

Peta
1015

Exa
1018Zetta

1021Yota
1024

Hardware

Cloud

tape
magnetic

• Storage (persistency)
• Efficient retrieval (indexing, caching)
• Fault tolerance (recovery, replication)
• Maintenance

• Definition
• Querying and exploiting
• Manipulation

RAID

+ Data management without
resources constraints

10

Reduce the cost to manage and exploit data sets according to unlimited
storage, memory and computation resources

Systems

Algorithms
COSTAWARE

ELASTIC

+ Cloud data management wish list

n Scalability and elasticity are the keys in cloud data management
n Quality: efficiency, economic cost, provenance, user preferences and constraints
n Multi-tenancy: managing large number of small tenants
n Consistency and replication

n Fault Tolerance
n If a query must restart each time a node fails, then long, complex queries are difficult to

complete

n Run in heterogeneous environments
n Should prevent the slowest node from making a disproportionate affect on total query

performance

n Operate on encrypted data

n Interface with data analytics and exploitation services

11

Cloud data management: aspects
to consider
n Security [Agrawal2]

n Confidentiality
n Privacy

n Data Analytics
n Large scale processing of

complex queries
n Machine learning and data

mining at large scale

n Multi-tenancy
n For OLTP [Agrawal1]
n For OLAP [Wong 2013]

n Consistency, scalability and
elasticity [Agrawal1]
n Replication and consistency

models
n Elasticity

12

+ SQL as a Service 13

Relational
DBMS

Relational Cloud storage service
Relational model and SQL as a
Service e.g. Amazon relational
database service (RDS), MS SQL Azure

Implemented on top of
parallel clusters of common
DBMS servers e.g., MySQL
MS SQL Server

User applications

+ Cloud data management:
functions view

14

Distributed storage system

Structured data system

Distributed processing system

Query language

Performance for data access
fault tolerance, availability, scalability

Performance for complex operations
(SQL like joins & grouping, data

analysis)

Simple & flexible data model (key-value),
basic access operations (lookup API)

High level languages for
accessing data and controlling

processing

Individual users & applications

+ Cloud data management:
functions view

15

Distributed storage system

Structured data system

Distributed processing system

Query language

Individual users & applications

Distributed file systems:
Google file system, Hadoop Distributed File System, CloudStore
Cloud-based file Service: Amazon S3
P2P-like file service: Amazon Dynamo

Google BigTable & other BigTable implementations like Hbase, Cassandra, Amazon SimpleDB

Google/Hadoop MapReduce

HiveQL, JaQL, Pig on top of Hadoop Map-Reduce

+ Database landscape 16

17

Next generation of
data management systems

DBMS evolution

n No more monolithic DBMS
n Extensible, lightweight DBMS
n Unbundled technology*
n Component-based

architectures* (thick-grain vs.
fine-grain)

n OO Frameworks

n Components are providing
Services

n Blur the boundaries between
OS & DBMS

n Self-adaptive Systems
n Multi-tier architectures, Web,

P2P, GRID, CLOUD,…

18

* See Dittrich, Geppert, Eds, “Component Database Systems”, MK 2000

* Chaudhuri & Weikum, Rethinking Database System Architecture: Towards a Self-tuning RISC-style Database System, VLDB 2000

+ Service oriented DBMS1 19

Data
services

Access
services

Storage
services

Additional
extension
services

Other
services

Extension services
Streaming, XML, procedures,

queries, replication

1 Ionut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business,
Technologie und Web (BTW 2007)
Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000.

+ Service oriented DBMS1 20

Data
services

Access
services

Storage
services

Additional
extension
services

Other
services

Extension services
Streaming, XML, procedures,

queries, replication

1 Ionut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business,
Technologie und Web (BTW 2007)
Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000.

n Service level agreement: the contracted delivery time of the service or performance
n Required SLA: agreements between the user and SDBMS expressed as a combination

of weighted measures associated to a query

Service Level Agreement
• In the event of a corruption, or other disaster

• the maximum amount of data loss is the last 15 minutes of transactions
• the maximum amount of downtime the application can tolerate is 20 minutes

+ Service oriented DBMS1 21

Data
services

Access
services

Storage
services

Additional
extension
services

Other
services

Extension services
Streaming, XML, procedures,

queries, replication
Service oriented DBMS1

n Service level agreement: the contracted delivery time of the service or performance
n Required SLA: agreements between the user and SDBMS expressed as a combination

of weighted measures associated to a query

1 Ionut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business,
Technologie und Web (BTW 2007)
Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000.

+ Challenges and objective

n How to combine, deploy, and deliver DBMS functionalities:
n Compliant to application/user requirements
n Optimizing the consumption of computing resources in the presence of

greedy data processing tasks
n Delivered according to Service Level Agreement (SLA) contracts
n Deployed in elastic and distributed platforms

22

* See Dittrich, Geppert, Eds, “Component Database Systems”, MK 2000

* Chaudhuri & Weikum, Rethinking Database System Architecture: Towards a Self-tuning RISC-style Database System, VLDB 2000

Open	Source	Big	Data	Stacks

23

Notes:
• Giant	byte	sequence	

at	the	bottom
• Map,	sort,	 shuffle,	

reduce	 layer	in	middle
• Possible	storage	 layer	

in	middle	as	well
• HLLs	now	at	the	top

From Mike Carey

+

http://asterixdb.ics.uci.edu

“One	Size	Fits	a	Bunch”

Semi-
structured

Data
Management

Parallel
Database
Systems

Data-
Intensive
Computing

•Inside “Big Data Management”: Ogres, Onions, or Parfaits?, Vinayak Borkar, Michael J. Carey, Chen Li, EDBT/ICDT 2012 Joint Conference Berlin
•Data Services, Michael J. Carey, Nicola Onose, Michalis Petropoulos
CACM June 2012, (Vol55, N.6)

ASTERIXDB Project @ UCI

#AsterixDB

The	ASTERIX	Software	Stack

25

Other HLL
Compilers

Algebricks
Algebra Layer

Hyracks Data-parallel Platform

Piglet ...

Hadoop
M/R Job

Hadoop M/R
Compatibility

Hyracks Job

AsterixQL

Asterix
Data

Mgmt.
System Hivesterix

HiveQL

Pregel
Job

Pregelix

IMRU
Job

IMRU

#AsterixDB

+ Google BigQuery 26

27

28

29

Next generation of analytics data stack
• Berkeley data analytics stack (BADS)
• Release as open source

+ Teralab

n Big Data platform for research and experimentation

n FSN Big Data Call for academia and start ups

n Target infrastructure
n Storage: 1,5 Peta octets
n RAM: 16 Tera octets
n Computing power [SPECint_rate2006]: 28000

n Software as a Service: R(evolution), MapReduce, Impala, Hive, Pig, GRAPHLAB,
KNIME, Rapid Miner, Alpine miner, Python tools (Pandas, IPython...)

n Public data collections

30

https://www.teralab-datascience.fr

31

Where is the cloud?

+ Map Reduce on Azure 32

+ Hortonworks 33

http://fr.hortonworks.com

34

Conclusions & Perspectives

+ Conclusions

n Data collections
n New scales: bronto scale due to emerging IoT
n New types: thick, long hot, cold
n New quality measures: QoS, QoE, SLA

n Data processing & analytics
n Complex jobs, stream analytics are still open issues
n Economic cost model & business models (Big Data value & pay-as-U-go)

n Multi-cloud: elasticity, quality, SLA

35

Genoveva Vargas-Solar
http://www.vargas-solar.com
French Council of Scientific Research, LIG & LAFMIA Labs

36

+ Distributed file system

n Abandons the separation of computation and storage as distinct components in
a cluster
n Google File System (GFS) supports Google’s proprietary implementation of MapReduce;
n In the open-source world, HDFS (Hadoop Distributed File System) is an open-source

implementation of GFS that supports Hadoop

n The main idea is to divide user data into blocks and replicate those blocks across
the local disks of nodes in the cluster

n Adopts a master–slave architecture
n Master (namenode HDFS) maintains the file namespace (metadata, directory structure, file

to block mapping, location of blocks, and access permissions)
n Slaves (datanode HDFS) manage the actual data blocks

37

Distributed File System

n Chunk servers
n File is split into contiguous chunks
n Typically each chunk is 16-64MB
n Each chunk replicated (usually 2x

or 3x)
n Try to keep replicas in different

racks

n Master node
n a.k.a. Name Node in Hadoop’s

HDFS
n Stores metadata about where files

are stored
n Might be replicated

n Client library for file access
n Talks to master to find chunk

servers
n Connects directly to chunk

servers to access data

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

38

+ Distributed File System
n Reliable distributed file system

n Data kept in “chunks” spread across machines

n Each chunk replicated on different machines
n Seamless recovery from disk or machine failure

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

39

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2
D0

Chunk servers also serve as compute servers

HFDS general architecture

n An application client wishing to read a
file (or a portion thereof) must first
contact the namenode to determine
where the actual data is stored

n The namenode returns the relevant
block id and the location where the
block is held (i.e., which datanode)

n The client then contacts the datanode to
retrieve the data.

n HDFS lies on top of the standard OS
stack (e.g., Linux): blocks are stored on
standard single-machine file systems

40

Hadoop cluster architecture

n The HDFS namenode runs the namenode daemon

n The job submission node runs the jobtracker, which is the single point of contact for a client
wishing to execute a MapReduce job

n The jobtracker
n Monitors the progress of running MapReduce jobs
n Is responsible for coordinating the execution of the mappers and reducers
n Tries to take advantage of data locality in scheduling map tasks 41

+ Hadoop cluster architecture

n Tasktracker
n It accepts tasks (Map, Reduce, Shuffle, etc.) from JobTracker
n Each TaskTracker has a number of slots for the tasks: these are

execution slots available on the machine or machines on the same
rack

n It spawns a separate JVM for execution of the tasks
n It indicates the number of available slots through the hearbeat

message to the JobTracker

42

+ HDFS properties

n HDFS stores three separate copies of each data block to ensure both reliability, availability, and
performance

n In large clusters, the three replicas are spread across different physical racks,
n HDFS is resilient towards two common failure scenarios individual datanode crashes and failures in networking equipment

that bring an entire rack offline.
n Replicating blocks across physical machines also increases opportunities to co-locate data and processing in the

scheduling of MapReduce jobs, since multiple copies yield more opportunities to exploit locality

n To create a new file and write data to HDFS
n The application client contacts the namenode
n The namenode

n updates the file namespace after checking permissions and making sure the file doesn’t already exist
n allocates a new block on a suitable datanode

n The application is directed to stream data directly to it
n From the initial datanode, data is further propagated to additional replicas

43

44

NoSQL stores characteristics
n Simple operations

n Key lookups reads and writes of one record or a
small number of records
n No complex queries or joins

n Ability to dynamically add new attributes to

data records

n Horizontal scalability
n Distribute data and operations over many servers
n Replicate and distribute data over many servers
n No shared memory or disk

n High performance
n Efficient use of distributed indexes and RAM for
data storage
n Weak consistency model

n Limited transactions

45

Next generation databases mostly addressing some of the points: being non-relational,
distributed, open-source and horizontally scalable [http://nosql-database.org]

46

Data	stores	designed	 	to	scale	simple	
OLTP-style	 application	loads	

• Data model
• Consistency
• Storage
• Durability

• Availability
• Query support

Read/Write operations
by thousands/millions of users

+ Important design goals

n Scale out: designed for scale
n Commodity hardware
n Low latency updates
n Sustain high update/insert throughput

n Elasticity – scale up and down with load

n High availability – downtime implies lost revenue
n Replication (with multi-mastering)
n Geographic replication
n Automated failure recovery

47

+ Lower priorities

n No Complex querying functionality
n No support for SQL
n CRUD operations through database specific API

n No support for joins
n Materialize simple join results in the relevant row
n Give up normalization of data?

n No support for transactions
n Most data stores support single row transactions
n Tunable consistency and availability (e.g., Dynamo)

48

à Achieve high scalability

+ Non functional properties

n CAP theorem1: a system can have two of the three properties

n NoSQL systems sacrifice consistency

49

ConsistencyAvailability

Fault-tolerant
partitioning

1 Eric Brewer, "Towards robust distributed systems." PODC. 2000 http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

+ Visual guide to NoSQL systems 50

C

A

P

C - A A - P

C - P

Data models

- Relational
- Key-Value
- Column oriented Tabular
- Document oriented

- Dynamo
- Voldemort
- Tokyo Cabinet
- KAI

- Cassandra
- SimpleDB
- CouchDB
- Riak

- BigTable
- HyperTable
- Hbase

- MongoDB
- TerraStore
- Scalaris

- BerkeleyDB
- MemcacheDB
- Redis

- RDBM’s
- MySQL
- Postgres
- etc

- Aster Data
- GreenPlum
- Vertica

Availability:
each client can

always read & write

Partition tolerance:
The system works well despite
physical network partitions

Consistency:
all clients always have

the same view of de data

51

+ Why sacrifice consistency?

n It is a simple solution
n nobody understands what sacrificing P means
n sacrificing A is unacceptable in the Web
n possible to push the problem to app developer

n C not needed in many applications
n Banks do not implement ACID (classic example wrong)
n Airline reservation only transacts reads (Huh?)
n MySQL et al. ship by default in lower isolation level

n Data is noisy and inconsistent anyway
n making it, say, 1% worse does not matter

52

+ Consistency model

n ACID semantics (transaction semantics in RDBMS)
n Atomicity: either the operation (e.g., write) is performed on all replicas or is not

performed on any of them
n Consistency: after each operation all replicas reach the same state
n Isolation: no operation (e.g., read) can see the data from another operation (e.g.,

write) in an intermediate state
n Durability: once a write has been successful, that write will persist indefinitely

n BASE semantics (modern Internet systems)
n Basically Available
n Soft-state (or scalable)
n Eventually consistent

53

+ Consistency models

n Strong consistency:
n After the update completes, every subsequent access from A, B, C will

return D1

n Weak consistency:
n Does not guaranty that any subsequent accesses return D1 -> a number

of conditions need to be met before D1 is returned

n Eventual consistency: Special form of weak consistency
n Guaranty that if no new updates are made, eventually all accesses will

return D1

54

D0

A B C

Distributed
Storage system

read(D)update(D)
D0 à D1

+ Variations of eventual consistency

n Causal consistency:
n If A notifies B about the update, B will read D1 (but not C!)

n Read your writes:
n A will always read D1 after its own update

n Sessionconsistency:
n Read your writes insidea session

n Monotonic reads:
n If a process has seen Dk, any subsequent access will never return any Di with i < k

n Monotonic writes:
n Guaranty to seiralize the writes of the same process

55

ACID vs BASE

n Strong consistency for
transactions highest priority

n Availability less important

n Pessimistic

n Rigorous analysis

n Complex mechanisms

n Availability and scaling highest
priorities

n Weak consistency

n Optimistic

n Best effort

n Simple and fast

56

ACID BASE

57

58

Map reduce
The new software stack

+ Map Reduce

n Much of the course will be devoted to large scale computing
for data mining

n Challenges:
n How to distribute computation?
n Distributed/parallel programming is hard

n Map-reduce addresses all of the above
n Google’s computational/data manipulation model
n Elegant way to work with big data

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

59

+

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Single Node Architecture 60

Memory

Disk

CPU

Machine Learning, Statistics

“Classical” Data Mining

+ Motivation: Google Example

n 20+ billion web pages x 20KB = 400+ TB

n 1 computer reads 30-35 MB/sec from disk
n ~4 months to read the web

n ~1,000 hard drives to store the web

n Takes even more to do something useful
with the data!

n Today, a standard architecture for such problems is emerging:
n Cluster of commodity Linux nodes
n Commodity network (ethernet) to connect them

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

61

+

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Cluster Architecture 62

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between
any pair of nodes
in a rack

2-10 Gbps backbone between racks

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

63

+ Large-scale Computing

n Large-scale computing for data mining problems on commodity
hardware

n Challenges:
n How do you distribute computation?
n How can we make it easy to write distributed programs?
n Machines fail:

n One server may stay up 3 years (1,000 days)
n If you have 1,000 servers, expect to loose 1/day
n People estimated Google had ~1M machines in 2011

n 1,000 machines fail every day!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

64

+ Idea and Solution

n Issue: Copying data over a network takes time

n Idea:
n Bring computation close to the data
n Store files multiple times for reliability

n Map-reduce addresses these problems
n Google’s computational/data manipulation model
n Elegant way to work with big data
n Storage Infrastructure – File system

n Google: GFS. Hadoop: HDFS
n Programming model

n Map-Reduce

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

65

+ Storage Infrastructure

n Problem:
n If nodes fail, how to store data persistently?

n Answer:
n Distributed File System:

n Provides global file namespace
n Google GFS; Hadoop HDFS;

n Typical usage pattern
n Huge files (100s of GB to TB)
n Data is rarely updated in place
n Reads and appends are common

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

66

+ Programming Model: Map Reduce

Warm-up task:

n We have a huge text document

n Count the number of times each
distinct word appears in the file

n Sample application:
n Analyze web server logs to find popular URLs

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

67

+ Task: Word Count

Case 1:
n File too large for memory, but all <word, count> pairs fit in memory

Case 2:

n Count occurrences of words:
n words(doc.txt) | sort | uniq -c

n where words takes a file and outputs the words in it, one per a line

n Case 2 captures the essence of MapReduce
n Great thing is that it is naturally parallelizable

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

68

+ Map Reduce: Overview

n Sequentially read a lot of data

n Map:
n Extract something you care about

n Group by key: Sort and Shuffle

n Reduce:
n Aggregate, summarize, filter or transform

n Write the result

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

69

Outline stays the same, Map and
Reduce change to fit the problem

+

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

MapReduce: The Map Step 70

vk

k v

k v
map

vk

vk

…

k v
map

Input
key-value pairs

Intermediate
key-value pairs

…

k v

+

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Map Reduce: The Reduce Step 71

k v

…

k v

k v

k v

Intermediate
key-value pairs

Group
by key

reduce

reduce
k v

k v

k v

…

k v

…

k v

k v v

v v

Key-value groups
Output
key-value pairs

+ More Specifically

n Input: a set of key-value pairs

n Programmer specifies two methods:
n Map(k, v) → <k’, v’>*

n Takes a key-value pair and outputs a set of key-value pairs
n E.g., key is the filename, value is a single line in the file

n There is one Map call for every (k,v) pair
n Reduce(k’, <v’>*) → <k’, v’’>*

n All values v’ with same key k’ are reduced together
and processed in v’ order

n There is one Reduce function call per unique key k’

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

72

+

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Map Reduce: Word Counting 73

The crew of the space
shuttle Endeavor recently
returned to Earth as
ambassadors, harbingers
of a new era of space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step
in a long-term space-
based man/mache
partnership. '"The work
we're doing now -- the
robotics we're doing -- is
what we're going to need
……………………..

Big document

(The, 1)
(crew, 1)

(of, 1)
(the, 1)

(space, 1)
(shuttle, 1)

(Endeavor, 1)
(recently, 1)

….

(crew, 1)
(crew, 1)

(space, 1)
(the, 1)
(the, 1)
(the, 1)

(shuttle, 1)
(recently, 1)

…

(crew, 2)
(space, 1)

(the, 3)
(shuttle, 1)
(recently, 1)

…

MAP:
Read input and
produces a set

of key-value
pairs

Group by
key:

Collect all pairs
with same key

Reduce:
Collect all values
belonging to the
key and output

(key, value)

Provided by the
programmer

Provided by the
programmer

(key, value)(key, value)

Se
qu

en
tia

lly
 r

ea
d

th
e

da
ta

O
nl

y

se
qu

en
tia

l
 r

ea
ds

Word Count Using Map Reduce
map(key, value):

// key: document name; value: text of the document

for each word w in value:

emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(key, result)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

74

+ Map-Reduce: Environment

Map-Reduce environment takes care of:

n Partitioning the input data

n Scheduling the program’s execution across a
set of machines

n Performing the group by key step

n Handling machine failures

n Managing required inter-machine communication

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

75

+

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Map-Reduce: A diagram 76

Big document

MAP:
Read input and

produces a set of
key-value pairs

Group by
key:

Collect all pairs
with same key
(Hash merge,
Shuffle, Sort,

Partition)

Reduce:
Collect all values
belonging to the
key and output

+

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Map-Reduce: In Parallel 77

All phases are distributed with many tasks doing the work

Map-Reduce
n Programmer specifies:

n Map and Reduce and input files

n Workflow:
n Read inputs as a set of key-value-pairs
n Map transforms input kv-pairs into a new set of

k'v'-pairs
n Sorts & Shuffles the k'v'-pairs to output nodes
n All k’v’-pairs with a given k’ are sent to the same

reduce
n Reduce processes all k'v'-pairs grouped by key

into new k''v''-pairs
n Write the resulting pairs to files

n All phases are distributed with many tasks doing
the work

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

78

Input 0

Map 0

Input 1

Map 1

Input 2

Map 2

Reduce 0 Reduce 1

Out 0 Out 1

Shuffle

+ Data Flow

n Input and final output are stored on a distributed file system
(FS):
n Scheduler tries to schedule map tasks “close” to physical storage

location of input data

n Intermediate results are stored on local FS
of Map and Reduce workers

n Output is often input to another
MapReduce task

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

79

+ Coordination: Master

n Master node takes care of coordination:
n Task status: (idle, in-progress, completed)
n Idle tasks get scheduled as workers become available
n When a map task completes, it sends the master the location and

sizes of its R intermediate files, one for each reducer
n Master pushes this info to reducers

n Master pings workers periodically to detect failures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

80

+ Dealing with Failures

n Map worker failure
n Map tasks completed or in-progress at worker are reset to idle
n Reduce workers are notified when task is rescheduled on another worker

n Reduce worker failure
n Only in-progress tasks are reset to idle
n Reduce task is restarted

n Master failure
n Map Reduce task is aborted and client is notified

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

81

+ How many Map and Reduce jobs?

n M map tasks, R reduce tasks

n Rule of a thumb:
n Make M much larger than the number of nodes in the cluster
n One DFS chunk per map is common
n Improves dynamic load balancing and speeds up recovery from

worker failures

n Usually R is smaller than M
n Because output is spread across R files

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

82

+ Task Granularity & Pipelining
n Fine granularity tasks: map tasks >> machines

n Minimizes time for fault recovery
n Can do pipeline shuffling with map execution
n Better dynamic load balancing

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

83

+ Refinements: Backup Tasks

n Problem
n Slow workers significantly lengthen the job completion time:

n Other jobs on the machine
n Bad disks
n Weird things

n Solution
n Near end of phase, spawn backup copies of tasks

n Whichever one finishes first “wins”

n Effect
n Dramatically shortens job completion time

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

84

+ Refinement: Combiners

n Often a Map task will produce many pairs of the form (k,v1), (k,v2), …
for the same key k
n E.g., popular words in the word count example

n Can save network time by
pre-aggregating values in
the mapper:
n combine(k, list(v1)) à v2
n Combiner is usually same

as the reduce function

n Works only if reduce
function is commutative and associative

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

85

+ Refinement: Combiners

n Back to our word counting example:
n Combiner combines the values of all keys of a single mapper (single

machine):

n Much less data needs to be copied and shuffled!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

86

+ Refinement: Partition Function

n Want to control how keys get partitioned
n Inputs to map tasks are created by contiguous splits of input file
n Reduce needs to ensure that records with the same intermediate key end

up at the same worker

n System uses a default partition function:
n hash(key) mod R

n Sometimes useful to override the hash function:
n E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in

the same output file

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

87

88

89

Map reduce
Suited problems

+ Example: Host size

n Suppose we have a large web corpus

n Look at the metadata file
n Lines of the form: (URL, size, date, …)

n For each host, find the total number of bytes
n That is, the sum of the page sizes for all URLs from that particular host

n Other examples:
n Link analysis and graph processing
n Machine Learning algorithms

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

90

+ Example: Language Model

n Statistical machine translation:
n Need to count number of times every 5-word sequence occurs in a

large corpus of documents

n Very easy with MapReduce:
n Map:

n Extract (5-word sequence, count) from document
n Reduce:

n Combine the counts

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

91

+ Example: Join By Map-Reduce

n Compute the natural join R(A,B) ⋈ S(B,C)

n R and S are each stored in files

n Tuples are pairs (a,b) or (b,c)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

92

A B
a1 b1

a2 b1

a3 b2

a4 b3

B C
b2 c1

b2 c2

b3 c3

⋈

A C
a3 c1

a3 c2

a4 c3

=

R
S

+ Map Reduce complex jobs 93

Mapper1 Mapper2 Mapper3 Mappern

Reducer1 Reducer2 Reducern

Shuffling & Sorting

…

…

⋈ ⋈ ⋈

HDFS stores
data blocks

Each mapper
processes one block

Each mapper produces
the join key & the record

pairs

Reducers perform
the actual join

+ Map-Reduce Join

n Use a hash function h from B-values to 1...k

n A Map process turns:
n Each input tuple R(a,b) into key-value pair (b,(a,R))
n Each input tuple S(b,c) into (b,(c,S))

n Map processes send each key-value pair with key b to Reduce
process h(b)
n Hadoop does this automatically; just tell it what k is.

n Each Reduce process matches all the pairs (b,(a,R)) with all (b,(c,S))
and outputs (a,b,c).

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

94

95

+ Cost Measures for Algorithms

n In MapReduce we quantify the cost of an algorithm using

1. Communication cost = total I/O of all processes

2. Elapsed communication cost = max of I/O along any path

3. (Elapsed) computation cost analogous, but count only running time of processes

Note that here the big-O notation is not the most useful
(adding more machines is always an option)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

96

+ Example: Cost Measures

n For a map-reduce algorithm:
n Communication cost = input file size + 2 × (sum of the sizes of all

files passed from Map processes to Reduce processes) + the sum of
the output sizes of the Reduce processes.

n Elapsed communication cost is the sum of the largest input +
output for any map process, plus the same for any reduce process

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

97

+ What Cost Measures Mean

n Either the I/O (communication) or processing (computation) cost
dominates
n Ignore one or the other

n Total cost tells what you pay in rent from
your friendly neighborhood cloud

n Elapsed cost is wall-clock time using parallelism

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

98

+ Cost of Map-Reduce Join

n Total communication cost
= O(|R|+|S|+|R ⋈ S|)

n Elapsed communication cost = O(s)
n We’re going to pick k and the number of Map processes so that the I/O limit s is

respected
n We put a limit s on the amount of input or output that any one process can have. s

could be:
n What fits in main memory
n What fits on local disk

n With proper indexes, computation cost is linear in the input + output size
n So computation cost is like comm. cost

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

99

Map reduce summary

n Highly fault tolerant

n Relatively easy to write
“arbitrary” distributed
computations over very large
amounts of data

n MR framework removes burden
of dealing with failures from
programmer

n Schema embedded in
application code

n A lack of shared schema

n Makes sharing data between
applications difficult

n Makes lots of DBMS “goodies”
such as indices, integrity
constraints, views, ... impossible

n No declarative query language

10
0

101

Pointers and further reading

+ Implementations

n Google
n Not available outside Google

n Hadoop
n An open-source implementation in Java
n Uses HDFS for stable storage
n Download: http://lucene.apache.org/hadoop/

n Aster Data
n Cluster-optimized SQL Database that also implements MapReduce

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

10
2

+ Reading

n Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified
Data Processing on Large Clusters
n http://labs.google.com/papers/mapreduce.html

n Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung: The
Google File System
n http://labs.google.com/papers/gfs.html

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

10
3

+ Resources

n Hadoop Wiki
n Introduction

n http://wiki.apache.org/lucene-hadoop/
n Getting Started

n http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
n Map/Reduce Overview

n http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
n http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses

n Eclipse Environment
n http://wiki.apache.org/lucene-hadoop/EclipseEnvironment

n Javadoc
n http://lucene.apache.org/hadoop/docs/api/

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

10
4

+ Resources

n Releases from Apache download mirrors
n http://www.apache.org/dyn/closer.cgi/lucene/hadoop/

n Nightly builds of source
n http://people.apache.org/dist/lucene/hadoop/nightly/

n Source code from subversion
n http://lucene.apache.org/hadoop/version_control.html

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

10
5

Further Reading

n Programming model inspired
by functional language
primitives

n Partitioning/shuffling similar to
many large-scale sorting
systems
n NOW-Sort ['97]

n Re-execution for fault tolerance
n BAD-FS ['04] and TACC ['97]

n Locality optimization has parallels
with Active Disks/Diamond work
n Active Disks ['01], Diamond ['04]

n Backup tasks similar to Eager
Scheduling in Charlotte system
n Charlotte ['96]

n Dynamic load balancing solves similar
problem as River's distributed queues
n River ['99]

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

10
6

107

+ Pig

“Pig Latin: A Not-So-Foreign Language for Data Processing”
n Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar,

Andrew Tomkins (Yahoo! Research)
n http://www.sigmod08.org/program_glance.shtml#sigmod_industrial_p

rogram
n http://infolab.stanford.edu/~usriv/papers/pig-latin.pdf

10
8

Pig

n High level data flow language for
exploring very large datasets

n Compiler that produces sequences of
MapReduce programs

n Structure is amenable to substantial
parallelization

n Operates on files in HDFS
n Metadata not required, but used

when available
n Provides an engine for executing data

flows in parallel on Hadoop

n Ease of programming
n Trivial to achieve parallel execution of

simple and parallel data analysis
tasks

n Optimization opportunities
n Allows the user to focus on semantics

rather than efficiency

n Extensibility
n Users can create their own functions

to do special-purpose processing

109

General description Key properties

+
Top 5 pages accessed by users between 18 and 25 year

Example 11
0

Filter by Age

Load Users Load Pages

Join on Name

Group on url

Count Clicks

Order by
Clicks

Take Top 5

Save results

+ Equivalent Java map reduce code 11
2

113

114

+ Querying with resources
constraints

11
5

Q1: Which are the most popular products
at Starbucks ?

Q2: Which are the consumption rules of
Starbucks clients ?

Distribution and organization of
data on disk

Query and data processing
on server

Swap memory– disk
Data transfer

• Efficiency => time cost
• Optimizing memory and computing

cost

Efficiently manage and exploit data sets according to given specific storage,
memory and computation resources

+ Querying without resources
constraints

n Query evaluationà How and under which limits ?
n Is not longer completely constraint by resources availability: computing, RAM, storage, network services
n Decision making process determined by resources consumption and consumer requirements

n Data involved in the query, particularly in the result can have different costs: top 5 gratis and
the rest available in return to a credit card number

n Results storage and exploitation demands more resources

11
6

Costly => minimizing cost, energy
consumption

