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The cloud



+ The cloud

n Promotes a style of computing in which dynamically scalable and often
virtualized resources are provided as a service over the Internet

n PaaS: allows customers to rent computers (virtual machines) on which to 
run their own computer applications. 
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Infrastructure as a service
IaaS

Platform as a service
PaaS

Software as a service
PaaS

• Illusion of infinite resources
• No up-front cost
• Fine-grained billing (e.g. 

hourly)



+ The cloud 4

Infrastructure as a service (IaaS)
e.g., Amazon EC2, GoGrid, Rackspace

Platform as a service (PaaS)
e.g., Microsoft Azure, Google App Engine

Software as a service (SaaS)
e.g., Salesforce, Google Apps

Enabling tecnologies (hardware & software)
[FurhtEscalante 2010]

Individual users & applications



+ The cloud 5

Infrastructure as a service
IaaS

Platform as a service
PaaS

Software as a service
PaaS

n Computing power is elastic, 
but noly if workload is 
parallelizable
n Shared-nothing architecture

n Data is stored at un-trusted 
hosts
n Solution: encrypting data

n Data is replicated, across 
large geographic distances
n Availability and durability
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The cloud as 
data management environment



+ Cloud data management: services 
views
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• Storage (persistency)
• Efficient retrieval (indexing, caching)
• Fault tolerance (recovery, replication)
• Maintenance

• Definition
• Querying and exploiting
• Manipulation

RAID



+ Data management with resources 
constraints
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STORAGE
SUPPORT

Systems

ARCHITECTURE &
RESOURCES AWARE

RAM

Algorithms

Efficiently manage and exploit data sets according to given specific storage, 
memory and computation resources



+ Cloud data management: services 
views
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+ Data management without 
resources constraints
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Reduce the cost to manage and exploit data sets according to unlimited 
storage, memory and computation resources

Systems

Algorithms
COSTAWARE

ELASTIC



+ Cloud data management wish list

n Scalability and elasticity are the keys in cloud data management
n Quality: efficiency, economic cost, provenance, user preferences and constraints
n Multi-tenancy: managing large number of small tenants
n Consistency and replication

n Fault Tolerance
n If a query must restart each time a node fails, then long, complex queries are difficult to 

complete

n Run in heterogeneous environments
n Should prevent the slowest node from making a disproportionate affect on total query 

performance

n Operate on encrypted data

n Interface with data analytics and exploitation services
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Cloud data management: aspects 
to consider
n Security [Agrawal2] 

n Confidentiality
n Privacy

n Data Analytics
n Large scale processing of 

complex queries
n Machine learning and data 

mining at large scale

n Multi-tenancy
n For OLTP [Agrawal1]
n For OLAP [Wong 2013]

n Consistency, scalability and 
elasticity [Agrawal1]
n Replication and consistency 

models 
n Elasticity
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+ SQL as a Service 13

Relational 
DBMS

Relational Cloud storage service
Relational model and SQL as a
Service e.g. Amazon relational
database service (RDS), MS SQL Azure

Implemented on top of
parallel clusters of common
DBMS servers e.g., MySQL
MS SQL Server

User applications



+ Cloud data management: 
functions view
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Distributed storage system

Structured data system

Distributed processing system

Query language

Performance for data access
fault tolerance, availability, scalability

Performance for complex operations 
(SQL like joins & grouping, data 

analysis)

Simple & flexible data model (key-value), 
basic access operations (lookup API)

High level languages for 
accessing data and controlling 

processing

Individual users & applications



+ Cloud data management: 
functions view
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Distributed storage system

Structured data system

Distributed processing system

Query language

Individual users & applications

Distributed file systems:
Google file system, Hadoop Distributed File System, CloudStore
Cloud-based file Service: Amazon S3
P2P-like file service: Amazon Dynamo

Google BigTable & other BigTable implementations like Hbase, Cassandra, Amazon SimpleDB

Google/Hadoop MapReduce

HiveQL, JaQL, Pig on top of Hadoop Map-Reduce



+ Database landscape 16
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Next generation of 
data management systems



DBMS evolution

n No more monolithic DBMS
n Extensible, lightweight DBMS
n Unbundled technology*
n Component-based 

architectures* (thick-grain vs. 
fine-grain)

n OO Frameworks 

n Components are providing 
Services 

n Blur the boundaries between 
OS & DBMS

n Self-adaptive Systems 
n Multi-tier architectures, Web, 

P2P, GRID, CLOUD,…
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* See Dittrich, Geppert, Eds, “Component Database Systems”, MK 2000

* Chaudhuri & Weikum, Rethinking Database System Architecture: Towards a Self-tuning RISC-style Database System, VLDB 2000



+ Service oriented DBMS1 19

Data 
services

Access
services

Storage
services

Additional
extension
services

Other
services

Extension services
Streaming, XML, procedures, 

queries, replication

1 Ionut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business, 
Technologie und Web (BTW 2007)
Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000.



+ Service oriented DBMS1 20

Data 
services

Access
services

Storage
services

Additional
extension
services

Other
services

Extension services
Streaming, XML, procedures, 

queries, replication

1 Ionut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business, 
Technologie und Web (BTW 2007)
Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000.

n Service level agreement: the contracted delivery time of the service or performance
n Required SLA: agreements between the user and SDBMS expressed as a combination 

of weighted measures associated to a query 

Service Level Agreement
• In the event of a corruption, or other disaster

• the maximum amount of data loss is the last 15 minutes of transactions
• the maximum amount of downtime the application can tolerate is 20 minutes



+ Service oriented DBMS1 21

Data 
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Storage
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Additional
extension
services

Other
services

Extension services
Streaming, XML, procedures, 

queries, replication
Service oriented DBMS1

n Service level agreement: the contracted delivery time of the service or performance
n Required SLA: agreements between the user and SDBMS expressed as a combination 

of weighted measures associated to a query 

1 Ionut Subasu, Patrick Ziegler, and Klaus R Dittrich. Towards service-based data management systems. In Workshop Proceedings of Datenbanksysteme in Business, 
Technologie und Web (BTW 2007)
Klaus R Dittrich and Andreas Geppert. Component database systems. Morgan Kaufmann, 2000.



+ Challenges and objective

n How to combine, deploy, and deliver DBMS functionalities:
n Compliant to application/user requirements
n Optimizing the consumption of computing resources in the presence of 

greedy data processing tasks
n Delivered according to Service Level Agreement (SLA) contracts
n Deployed in elastic and distributed platforms
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* See Dittrich, Geppert, Eds, “Component Database Systems”, MK 2000

* Chaudhuri & Weikum, Rethinking Database System Architecture: Towards a Self-tuning RISC-style Database System, VLDB 2000



Open	Source	Big	Data	Stacks
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Notes:
• Giant	byte	sequence	

at	the	bottom
• Map,	sort,	 shuffle,	

reduce	 layer	in	middle
• Possible	storage	 layer	

in	middle	as	well
• HLLs	now	at	the	top

From Mike Carey



+

http://asterixdb.ics.uci.edu

“One	Size	Fits	a	Bunch”

Semi-
structured

Data 
Management

Parallel
Database 
Systems

Data-
Intensive
Computing

•Inside “Big Data Management”: Ogres, Onions, or Parfaits?, Vinayak Borkar, Michael J. Carey, Chen Li, EDBT/ICDT 2012 Joint Conference Berlin
•Data Services, Michael J. Carey, Nicola Onose, Michalis Petropoulos
CACM June 2012, (Vol55, N.6)

ASTERIXDB Project @ UCI



#AsterixDB

The	ASTERIX	Software	Stack
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+ Google BigQuery 26
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Next generation of analytics data stack
• Berkeley data analytics stack (BADS)
• Release as open source



+ Teralab

n Big Data platform for research and experimentation

n FSN Big Data Call for academia and start ups

n Target infrastructure
n Storage: 1,5 Peta octets
n RAM: 16 Tera octets
n Computing power [SPECint_rate2006]: 28000

n Software as a Service: R(evolution), MapReduce, Impala, Hive, Pig, GRAPHLAB, 
KNIME, Rapid Miner, Alpine miner, Python tools (Pandas, IPython...) 

n Public data collections
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https://www.teralab-datascience.fr
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Where is the cloud?



+ Map Reduce on Azure 32



+ Hortonworks 33

http://fr.hortonworks.com
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Conclusions & Perspectives



+ Conclusions

n Data collections
n New scales: bronto scale due to emerging IoT
n New types: thick, long hot, cold
n New quality measures: QoS, QoE, SLA

n Data processing & analytics
n Complex jobs, stream analytics are still open issues
n Economic cost model & business models (Big Data value & pay-as-U-go)

n Multi-cloud: elasticity, quality, SLA
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+ Distributed file system

n Abandons the separation of computation and storage as distinct components in 
a cluster
n Google File System (GFS) supports Google’s proprietary implementation of MapReduce; 
n In the open-source world, HDFS (Hadoop Distributed File System) is an open-source 

implementation of GFS that supports Hadoop

n The main idea is to divide user data into blocks and replicate those blocks across 
the local disks of nodes in the cluster

n Adopts a master–slave architecture 
n Master (namenode HDFS) maintains the file namespace (metadata, directory structure, file 

to block mapping, location of blocks, and access permissions) 
n Slaves (datanode HDFS) manage the actual data blocks

37



Distributed File System

n Chunk servers
n File is split into contiguous chunks
n Typically each chunk is 16-64MB
n Each chunk replicated (usually 2x 

or 3x)
n Try to keep replicas in different 

racks

n Master node
n a.k.a. Name Node in Hadoop’s

HDFS
n Stores metadata about where files 

are stored
n Might be replicated

n Client library for file access
n Talks to master to find chunk 

servers 
n Connects directly to chunk 

servers to access data

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Distributed File System
n Reliable distributed file system

n Data kept in “chunks” spread across machines

n Each chunk replicated on different machines 
n Seamless recovery from disk or machine failure

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Bring computation directly to the data!

C0 C5

Chunk server N
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Chunk servers also serve as compute servers



HFDS general architecture

n An application client wishing to read a 
file (or a portion thereof) must  first 
contact the namenode to determine 
where the actual data is stored

n The namenode returns the relevant 
block id and the location where the 
block is held (i.e., which datanode)

n The client then contacts the datanode to 
retrieve the data. 

n HDFS lies on top of the standard OS 
stack (e.g., Linux): blocks are stored on 
standard single-machine file systems 

40



Hadoop cluster architecture

n The HDFS namenode runs the namenode daemon

n The job submission node runs the jobtracker, which is the single point of contact for a client 
wishing to execute a MapReduce job

n The jobtracker
n Monitors the progress of running MapReduce jobs 
n Is responsible for coordinating the execution of the mappers and reducers
n Tries to take advantage of data locality in scheduling map tasks 41



+ Hadoop cluster architecture

n Tasktracker
n It accepts tasks (Map, Reduce, Shuffle, etc.) from JobTracker
n Each TaskTracker has a number of slots for the tasks: these are 

execution slots available on the machine or machines on the same 
rack

n It spawns a separate JVM for execution of the tasks
n It indicates the number of available slots through the hearbeat

message to the JobTracker

42



+ HDFS properties

n HDFS stores three separate copies of each data block to ensure both reliability, availability, and 
performance

n In large clusters, the three replicas are spread across different physical racks, 
n HDFS is resilient towards two common failure scenarios individual datanode crashes and failures in networking equipment 

that bring an entire rack offline. 
n Replicating blocks across physical machines also increases opportunities to co-locate data and processing in the 

scheduling of MapReduce jobs, since multiple copies yield more opportunities to exploit locality

n To create a new file and write data to HDFS
n The application client contacts the namenode
n The namenode

n updates the file namespace after checking permissions and making sure the file doesn’t already exist
n allocates a new block on a suitable datanode

n The application is directed to stream data directly to it
n From the initial datanode, data is further propagated to additional replicas

43
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NoSQL stores characteristics
n Simple operations

n Key lookups reads and writes of one record or a 
small number of records
n No complex queries or joins

n Ability to dynamically add new attributes to 

data records

n Horizontal scalability
n Distribute data and operations over many servers
n Replicate and distribute data over many servers
n No shared memory or disk

n High performance
n Efficient use of distributed indexes and RAM for 
data storage
n Weak consistency model

n Limited transactions

45

Next generation databases mostly addressing some of the points: being non-relational, 
distributed, open-source and horizontally scalable [http://nosql-database.org]
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Data	stores	designed	 	to	scale	simple	
OLTP-style	 application	loads	

• Data model 
• Consistency 
• Storage 
• Durability 

• Availability
• Query support

Read/Write operations 
by thousands/millions of users



+ Important design goals

n Scale out: designed for scale 
n Commodity hardware
n Low latency updates
n Sustain high update/insert throughput

n Elasticity – scale up and down with load

n High availability – downtime implies lost revenue
n Replication (with multi-mastering) 
n Geographic replication
n Automated failure recovery

47



+ Lower priorities

n No Complex querying functionality
n No support for SQL
n CRUD operations through database specific API

n No support for joins
n Materialize simple join results in the relevant row 
n Give up normalization of data?

n No support for transactions
n Most data stores support single row transactions
n Tunable consistency and availability (e.g., Dynamo) 

48

à Achieve high scalability



+ Non functional properties

n CAP theorem1: a system can have two of the three properties   

n NoSQL systems sacrifice consistency

49

ConsistencyAvailability

Fault-tolerant 
partitioning

1 Eric Brewer, "Towards robust distributed systems." PODC. 2000 http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf



+ Visual guide to NoSQL systems 50

C

A

P

C - A A - P

C - P

Data models

- Relational
- Key-Value
- Column oriented Tabular
- Document oriented

- Dynamo
- Voldemort
- Tokyo Cabinet
- KAI

- Cassandra
- SimpleDB
- CouchDB
- Riak

- BigTable
- HyperTable
- Hbase

- MongoDB
- TerraStore
- Scalaris

- BerkeleyDB
- MemcacheDB
- Redis

- RDBM’s
- MySQL
- Postgres
- etc

- Aster Data
- GreenPlum
- Vertica

Availability: 
each client can 

always read & write

Partition tolerance: 
The system works well despite 
physical network partitions

Consistency: 
all clients always have 

the same view of de data
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+ Why sacrifice consistency?

n It is a simple solution 
n nobody understands what sacrificing P means
n sacrificing A is unacceptable in the Web 
n possible to push the problem to app developer

n C not needed in many applications 
n Banks do not implement ACID (classic example wrong) 
n Airline reservation only transacts reads (Huh?) 
n MySQL et al. ship by default in lower isolation level

n Data is noisy and inconsistent anyway
n making it, say, 1% worse does not matter
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+ Consistency model

n ACID semantics (transaction semantics in RDBMS)
n Atomicity: either the operation (e.g., write) is performed on all replicas or is not 

performed on any of them
n Consistency: after each operation all replicas reach the same state
n Isolation: no operation (e.g., read) can see the data from another operation (e.g., 

write) in an intermediate state
n Durability: once a write has been successful, that write will persist indefinitely

n BASE semantics (modern Internet systems)
n Basically Available
n Soft-state (or scalable)
n Eventually consistent

53



+ Consistency models

n Strong consistency:
n After the update completes, every subsequent access from A, B, C will 

return D1

n Weak consistency:
n Does not guaranty that any subsequent accesses return D1 -> a number 

of conditions need to be met before D1 is returned

n Eventual consistency: Special form of weak consistency
n Guaranty that if no new updates are made, eventually all accesses will 

return D1

54

D0

A B C

Distributed
Storage system

read(D)update(D)
D0 à D1



+ Variations of eventual consistency

n Causal consistency:
n If A notifies B about the update, B will read D1 (but not C!) 

n Read your writes:
n A will always read D1 after its own update 

n Sessionconsistency:
n Read your writes insidea session 

n Monotonic reads:
n If a process has seen Dk, any subsequent access will never return any Di with i < k 

n Monotonic writes:
n Guaranty to seiralize the writes of the same process

55



ACID vs BASE

n Strong consistency for 
transactions highest priority

n Availability less important 

n Pessimistic 

n Rigorous analysis 

n Complex mechanisms 

n Availability and scaling highest
priorities

n Weak consistency

n Optimistic

n Best effort

n Simple and fast

56

ACID BASE
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Map reduce
The new software stack



+ Map Reduce

n Much of the course will be devoted to large scale computing
for data mining

n Challenges:
n How to distribute computation?
n Distributed/parallel programming is hard

n Map-reduce addresses all of the above
n Google’s computational/data manipulation model
n Elegant way to work with big data

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Single Node Architecture 60

Memory

Disk

CPU

Machine Learning, Statistics

“Classical” Data Mining



+ Motivation: Google Example

n 20+ billion web pages x 20KB = 400+ TB

n 1 computer reads 30-35 MB/sec from disk
n ~4 months to read the web

n ~1,000 hard drives to store the web

n Takes even more to do something useful 
with the data!

n Today, a standard architecture for such problems is emerging:
n Cluster of commodity Linux nodes
n Commodity network (ethernet) to connect them

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Cluster Architecture 62

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between 
any pair of nodes
in a rack

2-10 Gbps backbone between racks

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO



J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Large-scale Computing

n Large-scale computing for data mining problems on commodity 
hardware

n Challenges:
n How do you distribute computation?
n How can we make it easy to write distributed programs?
n Machines fail:

n One server may stay up 3 years (1,000 days)
n If you have 1,000 servers, expect to loose 1/day
n People estimated Google had ~1M machines in 2011

n 1,000 machines fail every day!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Idea and Solution

n Issue: Copying data over a network takes time

n Idea:
n Bring computation close to the data
n Store files multiple times for reliability

n Map-reduce addresses these problems
n Google’s computational/data manipulation model
n Elegant way to work with big data
n Storage Infrastructure – File system

n Google: GFS. Hadoop: HDFS
n Programming model

n Map-Reduce

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Storage Infrastructure

n Problem:
n If nodes fail, how to store data persistently? 

n Answer:
n Distributed File System:

n Provides global file namespace
n Google GFS; Hadoop HDFS;

n Typical usage pattern
n Huge files (100s of GB to TB)
n Data is rarely updated in place
n Reads and appends are common

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Programming Model: Map Reduce

Warm-up task:

n We have a huge text document

n Count the number of times each 
distinct word appears in the file

n Sample application: 
n Analyze web server logs to find popular URLs

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Task: Word Count

Case 1:
n File too large for memory, but all <word, count> pairs fit in memory

Case 2:

n Count occurrences of words:
n words(doc.txt) | sort | uniq -c

n where words takes a file and outputs the words in it, one per a line

n Case 2 captures the essence of MapReduce
n Great thing is that it is naturally parallelizable

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Map Reduce: Overview

n Sequentially read a lot of data

n Map:
n Extract something you care about

n Group by key: Sort and Shuffle

n Reduce:
n Aggregate, summarize, filter or transform

n Write the result

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline stays the same, Map and 
Reduce change to fit the problem
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J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

MapReduce: The Map Step 70
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J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Map Reduce: The Reduce Step 71
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+ More Specifically

n Input: a set of key-value pairs

n Programmer specifies two methods:
n Map(k, v) → <k’, v’>*

n Takes a key-value pair and outputs a set of key-value pairs
n E.g., key is the filename, value is a single line in the file

n There is one Map call for every (k,v) pair
n Reduce(k’, <v’>*) → <k’, v’’>*

n All values v’ with same key k’ are reduced together 
and processed in v’ order

n There is one Reduce function call per unique key k’

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Map Reduce: Word Counting 73

The crew of the space
shuttle Endeavor recently
returned to Earth as
ambassadors, harbingers
of a new era of space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step
in a long-term space-
based man/mache
partnership. '"The work
we're doing now -- the
robotics we're doing -- is
what we're going to need
……………………..
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Word Count Using Map Reduce
map(key, value):

// key: document name; value: text of the document

for each word w in value:

emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(key, result)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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+ Map-Reduce: Environment

Map-Reduce environment takes care of:

n Partitioning the input data

n Scheduling the program’s execution across a 
set of machines

n Performing the group by key step

n Handling machine failures

n Managing required inter-machine communication

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Map-Reduce: A diagram 76
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All phases are distributed with many tasks doing the work



Map-Reduce
n Programmer specifies:

n Map and Reduce and input files

n Workflow:
n Read inputs as a set of key-value-pairs
n Map transforms input kv-pairs into a new set of 

k'v'-pairs
n Sorts & Shuffles the k'v'-pairs to output nodes
n All k’v’-pairs with a given k’ are sent to the same 

reduce
n Reduce processes all k'v'-pairs grouped by key 

into new k''v''-pairs
n Write the resulting pairs to files

n All phases are distributed with many tasks doing 
the work
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Input 0

Map 0

Input 1

Map 1

Input 2

Map 2

Reduce 0 Reduce 1

Out 0 Out 1

Shuffle



+ Data Flow

n Input and final output are stored on a distributed file system 
(FS):
n Scheduler tries to schedule map tasks “close” to physical storage 

location of input data

n Intermediate results are stored on local FS
of Map and Reduce workers

n Output is often input to another 
MapReduce task
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+ Coordination: Master

n Master node takes care of coordination:
n Task status: (idle, in-progress, completed)
n Idle tasks get scheduled as workers become available
n When a map task completes, it sends the master the location and 

sizes of its R intermediate files, one for each reducer
n Master pushes this info to reducers

n Master pings workers periodically to detect failures
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+ Dealing with Failures

n Map worker failure
n Map tasks completed or in-progress at worker are reset to idle
n Reduce workers are notified when task is rescheduled on another worker

n Reduce worker failure
n Only in-progress tasks are reset to idle 
n Reduce task is restarted

n Master failure
n Map Reduce task is aborted and client is notified
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+ How many Map and Reduce jobs?

n M map tasks, R reduce tasks

n Rule of a thumb:
n Make M much larger than the number of nodes in the cluster
n One DFS chunk per map is common
n Improves dynamic load balancing and speeds up recovery from 

worker failures

n Usually R is smaller than M
n Because output is spread across R files
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+ Task Granularity & Pipelining
n Fine granularity tasks: map tasks >> machines

n Minimizes time for fault recovery
n Can do pipeline shuffling with map execution
n Better dynamic load balancing 
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+ Refinements: Backup Tasks

n Problem
n Slow workers significantly lengthen the job completion time:

n Other jobs on the machine
n Bad disks
n Weird things

n Solution
n Near end of phase, spawn backup copies of tasks

n Whichever one finishes first “wins”

n Effect
n Dramatically shortens job completion time
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+ Refinement: Combiners

n Often a Map task will produce many pairs of the form (k,v1), (k,v2), …
for the same key k
n E.g., popular words in the word count example

n Can save network time by 
pre-aggregating values in 
the mapper:
n combine(k, list(v1)) à v2
n Combiner is usually same 

as the reduce function

n Works only if reduce 
function is commutative and associative
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+ Refinement: Combiners

n Back to our word counting example:
n Combiner combines the values of all keys of a single mapper (single 

machine):

n Much less data needs to be copied and shuffled!
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+ Refinement: Partition Function

n Want to control how keys get partitioned
n Inputs to map tasks are created by contiguous splits of input file
n Reduce needs to ensure that records with the same intermediate key end 

up at the same worker

n System uses a default partition function:
n hash(key) mod R

n Sometimes useful to override the hash function:
n E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in 

the same output file
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Map reduce
Suited problems



+ Example: Host size

n Suppose we have a large web corpus

n Look at the metadata file
n Lines of the form: (URL, size, date, …)

n For each host, find the total number of bytes
n That is, the sum of the page sizes for all URLs from that particular host

n Other examples: 
n Link analysis and graph processing
n Machine Learning algorithms
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+ Example: Language Model

n Statistical machine translation:
n Need to count number of times every 5-word sequence occurs in a 

large corpus of documents

n Very easy with MapReduce:
n Map:

n Extract (5-word sequence, count) from document
n Reduce: 

n Combine the counts
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+ Example: Join By Map-Reduce

n Compute the natural join R(A,B) ⋈ S(B,C)

n R and S are each stored in files

n Tuples are pairs (a,b) or (b,c)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

92

A B
a1 b1

a2 b1

a3 b2

a4 b3

B C
b2 c1

b2 c2

b3 c3

⋈

A C
a3 c1

a3 c2

a4 c3

=

R
S



+ Map Reduce complex jobs 93

Mapper1 Mapper2 Mapper3 Mappern

Reducer1 Reducer2 Reducern

Shuffling & Sorting

…

…

⋈ ⋈ ⋈

HDFS stores
data blocks

Each mapper 
processes one block

Each mapper  produces
the join key & the record

pairs

Reducers perform
the actual join



+ Map-Reduce Join

n Use a hash function h from B-values to 1...k

n A Map process turns:
n Each input tuple R(a,b) into key-value pair (b,(a,R))
n Each input tuple S(b,c) into (b,(c,S))

n Map processes send each key-value pair with key b to Reduce 
process h(b)
n Hadoop does this automatically; just tell it what k is.

n Each Reduce process matches all the pairs (b,(a,R)) with all (b,(c,S)) 
and outputs (a,b,c).
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+ Cost Measures for Algorithms

n In MapReduce we quantify the cost of an algorithm using 

1. Communication cost = total I/O of all processes

2. Elapsed communication cost = max of I/O along any path

3. (Elapsed) computation cost analogous, but count only running time of processes

Note that here the big-O notation is not the most useful 
(adding more machines is always an option)
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+ Example: Cost Measures

n For a map-reduce algorithm:
n Communication cost = input file size + 2 × (sum of the sizes of all 

files passed from Map processes to Reduce processes) + the sum of 
the output sizes of the Reduce processes.

n Elapsed communication cost is the sum of the largest input + 
output for any map process, plus the same for any reduce process
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+ What Cost Measures Mean

n Either the I/O (communication) or processing (computation) cost 
dominates
n Ignore one or the other

n Total cost tells what you pay in rent from 
your friendly neighborhood cloud

n Elapsed cost is wall-clock time using parallelism
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+ Cost of Map-Reduce Join

n Total communication cost
= O(|R|+|S|+|R ⋈ S|)

n Elapsed communication cost = O(s)
n We’re going to pick k and the number of Map processes so that the I/O limit s is 

respected
n We put a limit s on the amount of input or output that any one process can have. s

could be:
n What fits in main memory
n What fits on local disk

n With proper indexes, computation cost is linear in the input + output size
n So computation cost is like comm. cost
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Map reduce summary

n Highly fault tolerant

n Relatively easy to write
“arbitrary” distributed
computations over very large 
amounts of data 

n MR framework removes burden
of dealing with failures from
programmer 

n Schema embedded in 
application code 

n A lack of shared schema

n Makes sharing data between
applications difficult

n Makes lots of DBMS “goodies” 
such as indices, integrity
constraints, views, ... impossible 

n No declarative query language

10
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Pointers and further reading



+ Implementations

n Google
n Not available outside Google

n Hadoop
n An open-source implementation in Java
n Uses HDFS for stable storage
n Download: http://lucene.apache.org/hadoop/

n Aster Data
n Cluster-optimized SQL Database that also implements MapReduce
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+ Reading

n Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified 
Data Processing   on Large Clusters
n http://labs.google.com/papers/mapreduce.html

n Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung: The 
Google File System
n http://labs.google.com/papers/gfs.html
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+ Resources

n Hadoop Wiki
n Introduction

n http://wiki.apache.org/lucene-hadoop/
n Getting Started

n http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
n Map/Reduce Overview 

n http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
n http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses

n Eclipse Environment
n http://wiki.apache.org/lucene-hadoop/EclipseEnvironment

n Javadoc
n http://lucene.apache.org/hadoop/docs/api/
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+ Resources

n Releases from Apache download mirrors
n http://www.apache.org/dyn/closer.cgi/lucene/hadoop/

n Nightly builds of source
n http://people.apache.org/dist/lucene/hadoop/nightly/

n Source code from subversion
n http://lucene.apache.org/hadoop/version_control.html
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Further Reading

n Programming model inspired 
by functional language 
primitives

n Partitioning/shuffling similar to 
many large-scale sorting 
systems 
n NOW-Sort ['97] 

n Re-execution for fault tolerance 
n BAD-FS ['04] and TACC ['97] 

n Locality optimization has parallels 
with Active Disks/Diamond work 
n Active Disks ['01], Diamond ['04] 

n Backup tasks similar to Eager 
Scheduling in Charlotte system 
n Charlotte ['96] 

n Dynamic load balancing solves similar 
problem as River's distributed queues 
n River ['99]
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+ Pig

“Pig Latin: A Not-So-Foreign Language for Data Processing” 
n Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, 

Andrew Tomkins (Yahoo! Research)
n http://www.sigmod08.org/program_glance.shtml#sigmod_industrial_p

rogram
n http://infolab.stanford.edu/~usriv/papers/pig-latin.pdf
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Pig

n High level data flow language for 
exploring very large datasets

n Compiler that produces sequences of 
MapReduce programs

n Structure is amenable to substantial 
parallelization

n Operates on files in HDFS
n Metadata not required, but used 

when available
n Provides an engine for executing data 

flows in parallel on Hadoop

n Ease of programming
n Trivial to achieve parallel execution of 

simple and parallel data analysis 
tasks

n Optimization opportunities
n Allows the user to focus on semantics 

rather than efficiency

n Extensibility 
n Users can create their own functions 

to do special-purpose processing
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+
Top 5 pages accessed by users between 18 and 25 year

Example 11
0



Filter by Age

Load Users Load Pages

Join on Name

Group on url

Count Clicks

Order by 
Clicks

Take Top 5

Save results



+ Equivalent Java map reduce code 11
2
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+ Querying with resources 
constraints

11
5

Q1: Which are the most popular products 
at Starbucks ?

Q2: Which are the consumption rules of
Starbucks clients ? 

Distribution and organization of
data on disk

Query and data processing
on server

Swap memory– disk
Data transfer

• Efficiency => time cost
• Optimizing memory and computing 

cost

Efficiently manage and exploit data sets according to given specific storage, 
memory and computation resources



+ Querying without resources 
constraints

n Query evaluationà How and under which limits ?
n Is not longer completely constraint by resources availability: computing, RAM, storage, network services
n Decision making process determined by resources consumption and consumer requirements

n Data involved in the query, particularly in the result can have different costs: top 5 gratis and 
the rest available in return to a credit card number

n Results storage and exploitation demands more resources

11
6

Costly => minimizing cost, energy 
consumption


