Big Data Analytics

Genoveva Vargas-Solar

http://www.vargas-solar.com/big-data-analytics

French Council of Scientific Research, LIG & LAFMIA Labs

Montevideo, 22nd November – 4th December, 2015

How big is your data - really ? H/T to David Wellman @ Myriad Genetics Byte of data: Kilobyte: Megabyte: Gigabyte: Terabyte: Petabyte: Exabyte: Zettabyte:

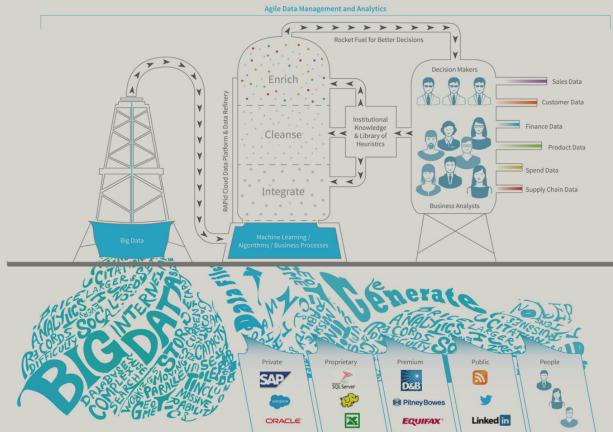
one grain of rice cup of rice 8 bags of rice 3 container lorries 2 container ships covers Manhattan covers the UK (3 times) fills the Pacific ocean

Collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications

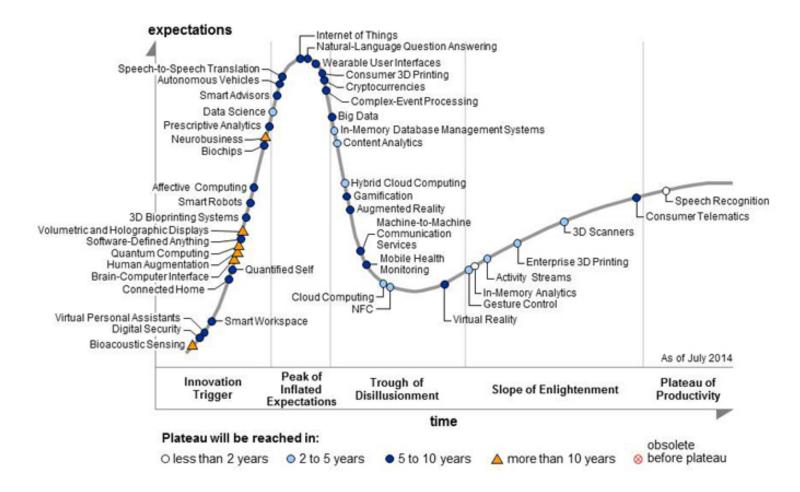
The V's & the needs of Big Data

- increasing volume (amount of data)
- Velocity (speed of data in and out)
- Variety (range of data types and sources)
- Veracity (data consistency)
- Value (which is the real value of data?)

Big Data processing at glance

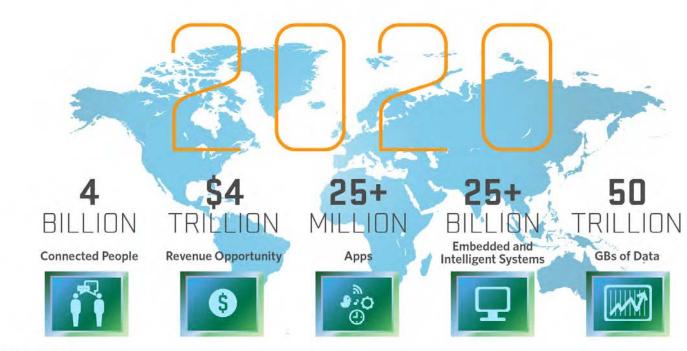


5



http://www.gartner.com/newsroom/id/2819918

Internet of Things



Source: Mario Morales, IDC

Big Data at a bronto scale

1 bit	Binary digit
8 bits	1 byte

We will no longer have the luxury of dealing with just "big" data

http://spectrum.ieee.org/computing/software/beyond-just-big-data

1000 Terabytes	1 Petabyte
1000 Petabytes	1Exabyte
1000 Exabyte	1 Zettabyte
1000 Zettabytes	1 Yottabyte

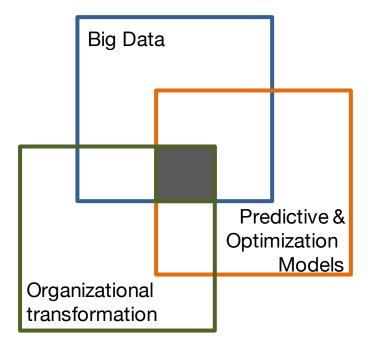
New types of huge data collections

- **Thick data:** combines both quantitative and qualitative analysis,
- **Long data:** extends back in time hundreds or thousands of years
- Hot data: used constantly, meaning it must be easily and quickly accessible
- Cold data: used relatively infrequently, so it can be less readily available

http://spectrum.ieee.org/computing/software/beyond-just-big-data

What about analytics ?

Capturing value from advanced analytics

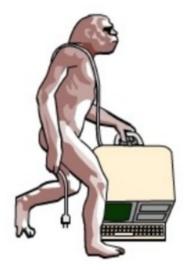


Based on three guiding principles

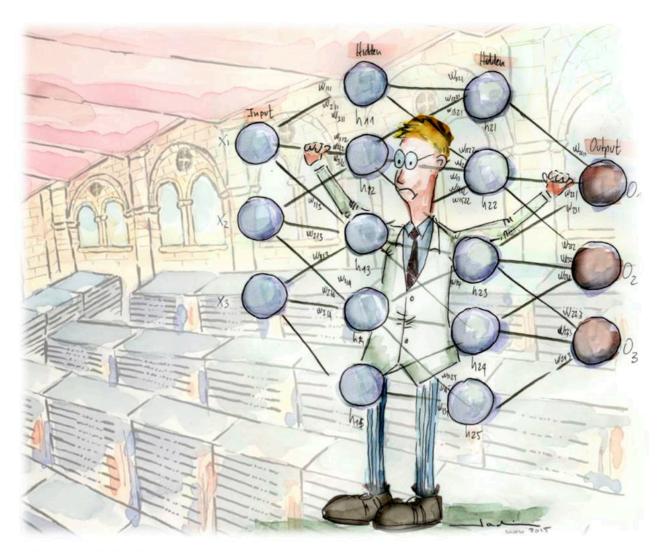
- Decision backwards
- Step by step
- Test and learn

Data was not stored

Beginning of the use of BDs & basic reports



Great variety of visual resources to analyse data

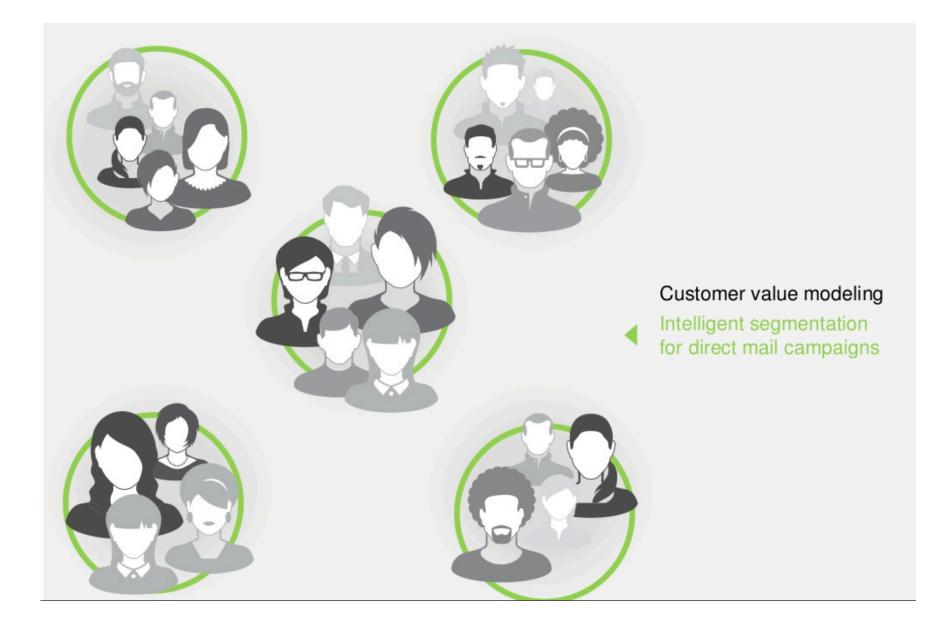


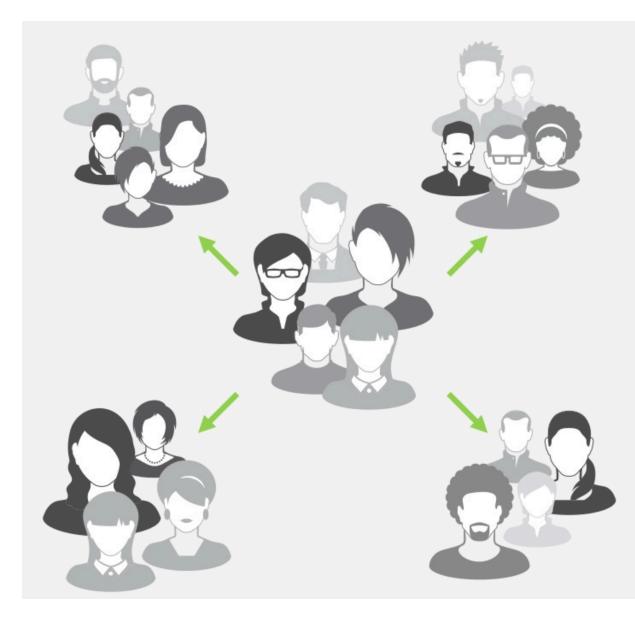
Example of High-Performance Big-Data Analytics research at BSC: One of our senior researchers is trying to deploy a neural network model into our supercomputer Marenostrum In Barcelona.

Direct mailing campaign

The traditional approach

Direct mailing based on generic segmentation

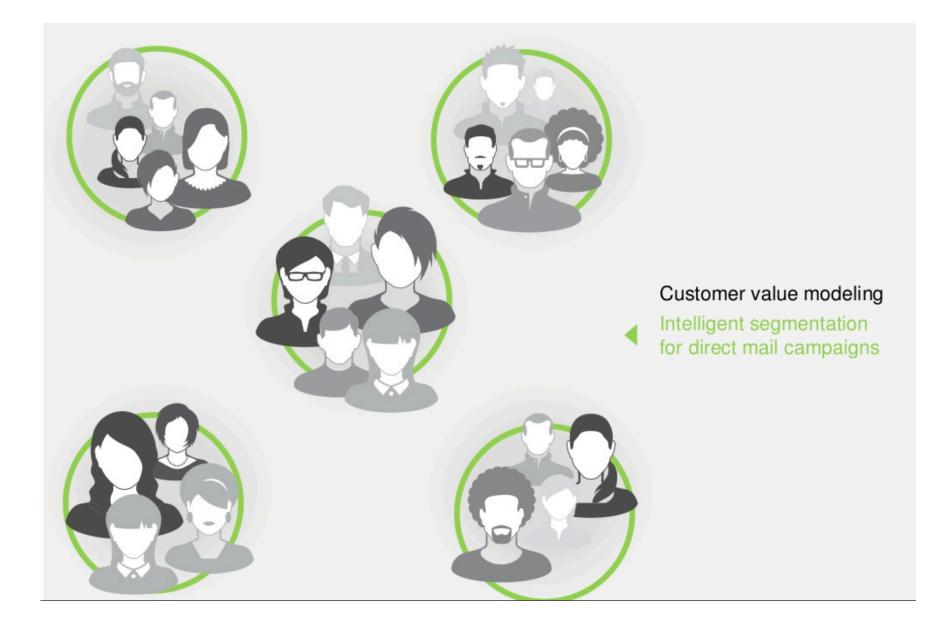


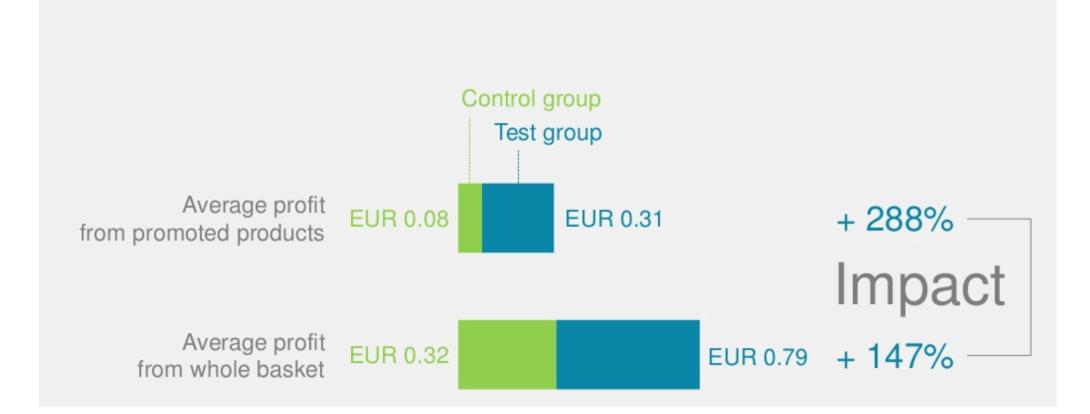


Regression + clustering based on transaction history

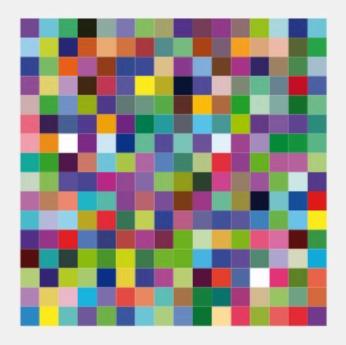
Predictive modeling based on customer preferences

- > 100 campaigns per year
- > 2 million customers
- > 10 million transactions





Next product to buy



80 million consumers 100 million transactions

Are being offered the most probable recommendation

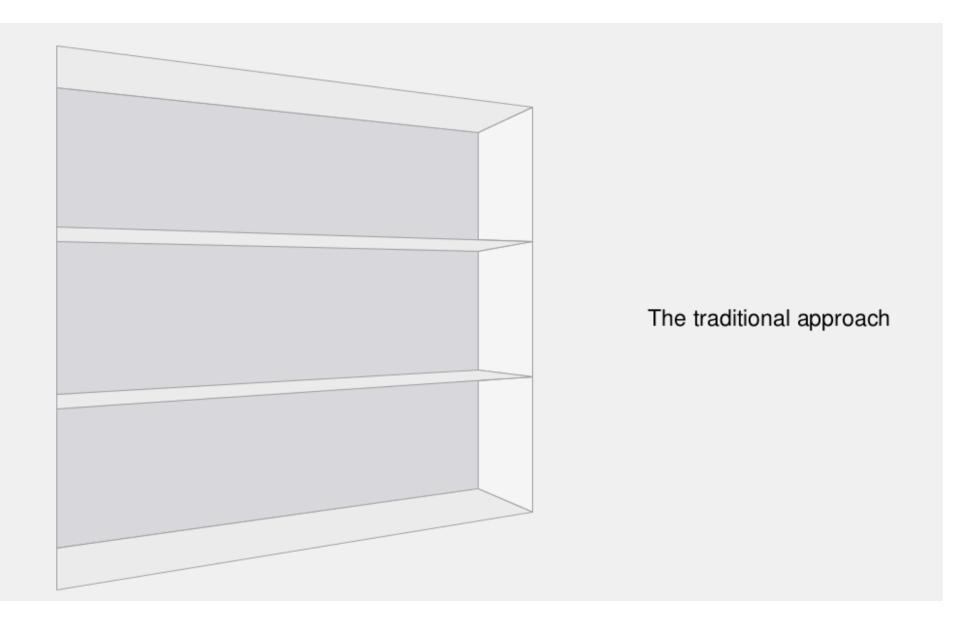
Get recommendations to generate maximum margin

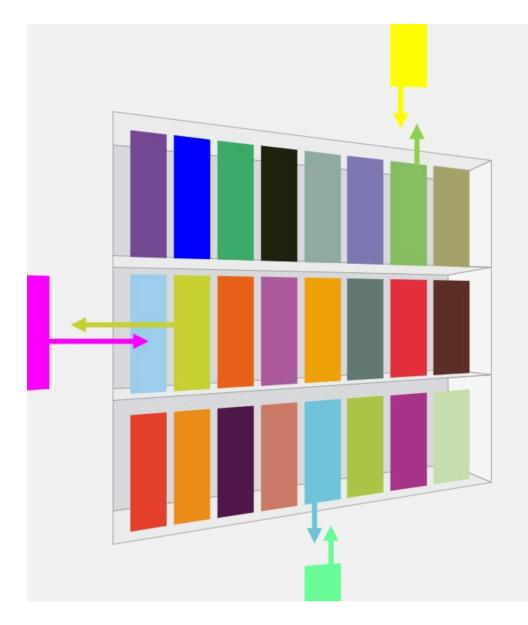
Receive recommendations from other categories to broaden their purchase behavior

USD 1 billion identified Impact

USD 300 million already realized within 6 months

Assortment optimization





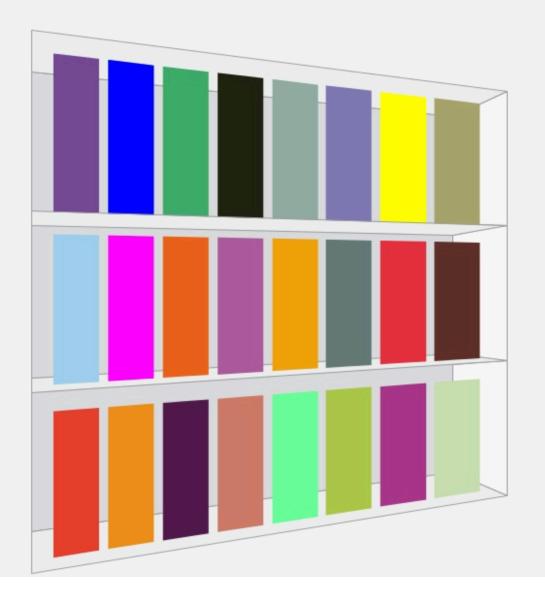
The traditional approach

Generic allocation of limited shelf space

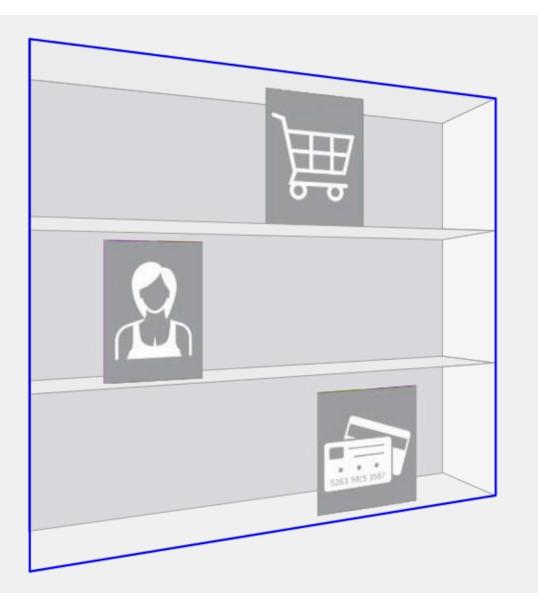
SKUs ranked by sales

No substitution of SKUs considered

Limited granularity

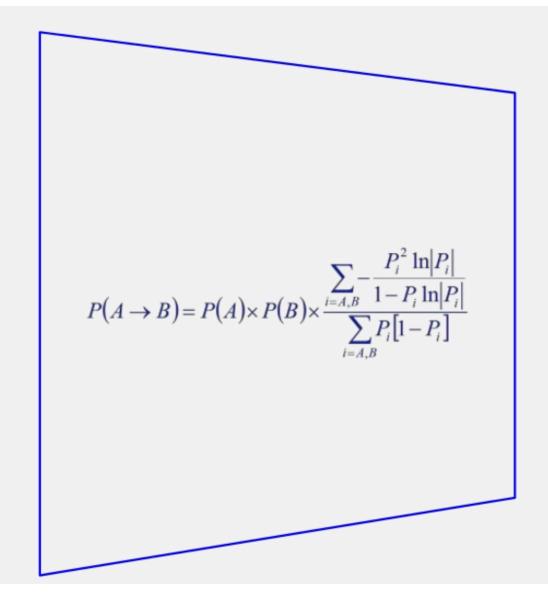


The Big Data approach



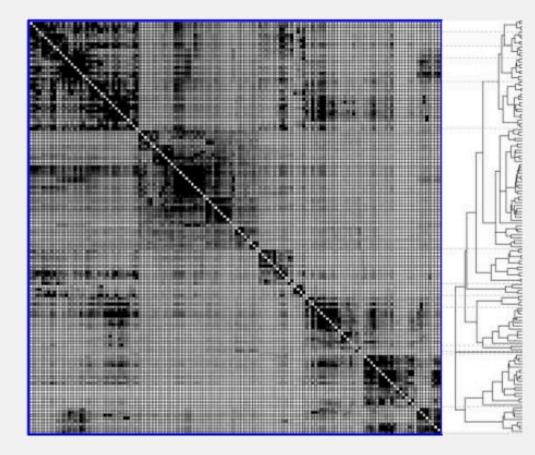
Terabytes of data

Multi-year transaction data Consumer panel data Loyalty card data



Advanced statistical methods

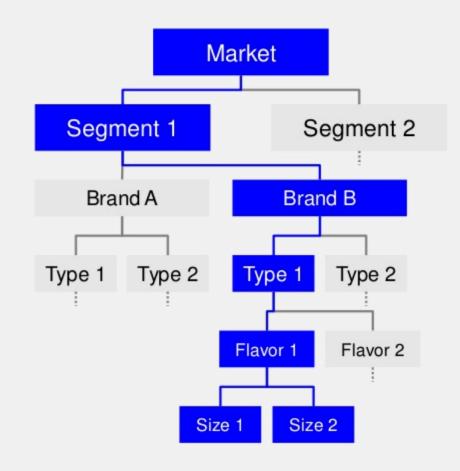
Stochastic switching model (entropy calculations)



Advanced statistical methods

Stochastic switching model (entropy calculations)

Hierarchical clustering (dendograms)



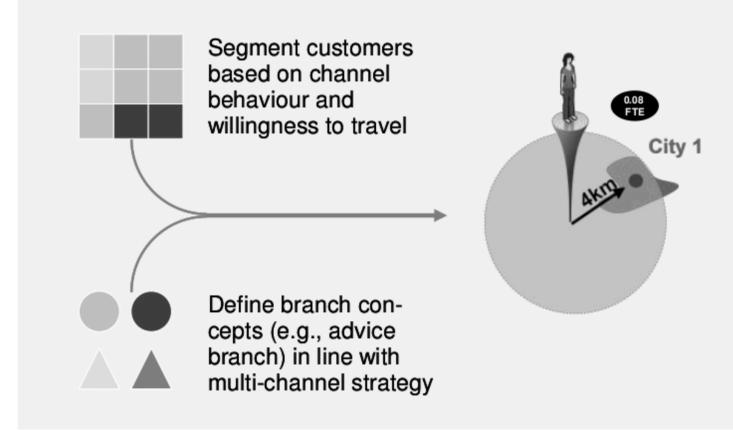
Advanced statistical methods

Multidimensional scaling (consumer decision tree)

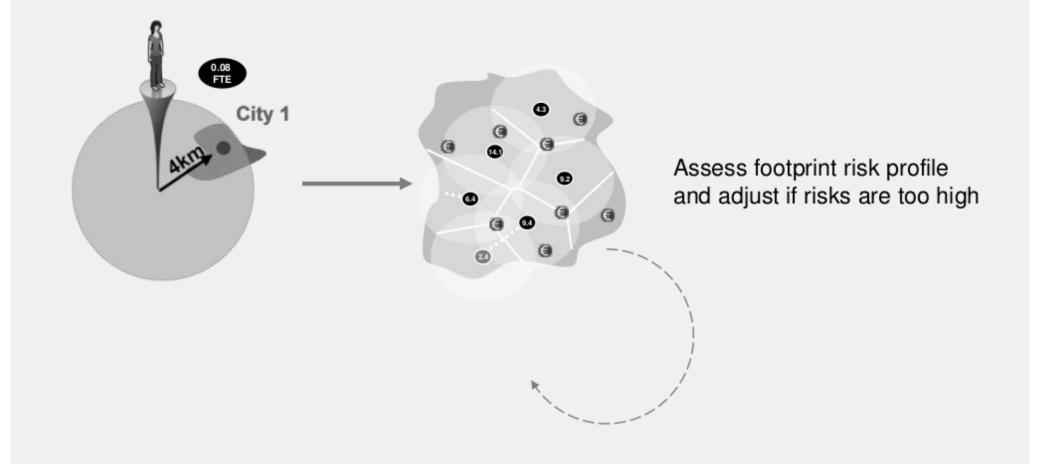
- Actual behavior (switching, walk rates)
- Statistically relevant
- Optimal SKU selection per store
- Predictive sales forecast

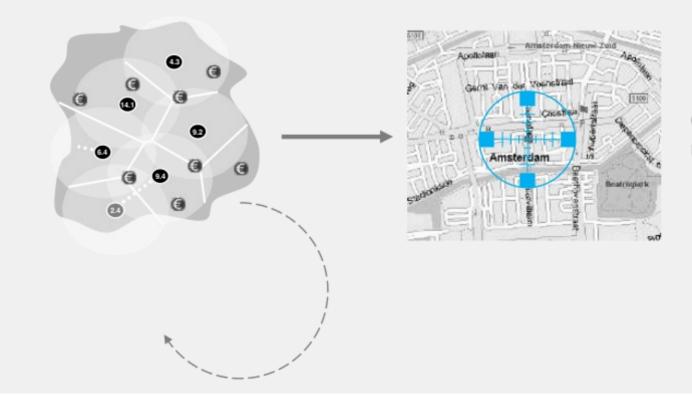
Revenue growth more than Impact double the category growth in the market

Optimizing branch networks

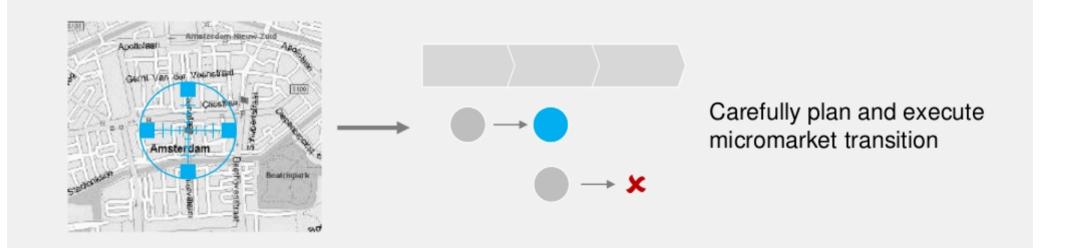


Determine required capacity by customer and plot capacity within micromarket using geomarketing methods





Optimize locations to set up branch for success

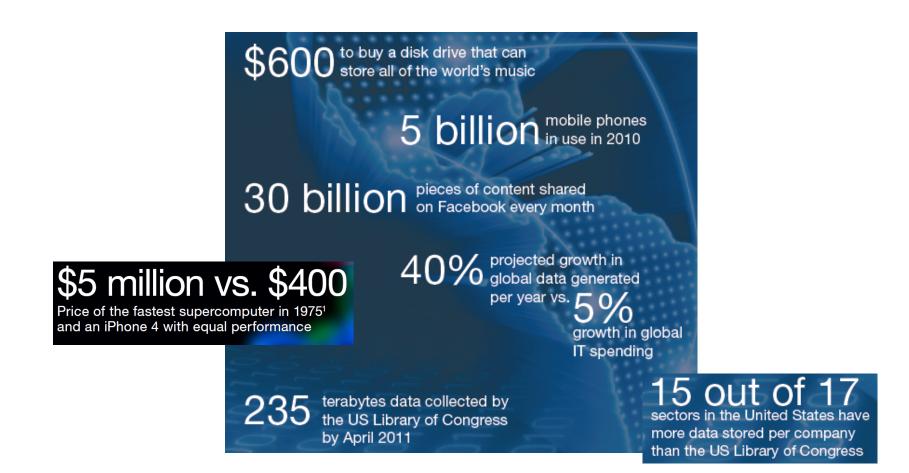


Multiple scenarios based on 90 processes 7 million customers 1,000 branches

40% cost reduction Impact < 1% revenue at risk

What is Data Mining? Knowledge discovery from data

From the Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University <u>http://www.mmds.org</u>



Data contains value & knowledge

Knowledge extraction

Data needs to be

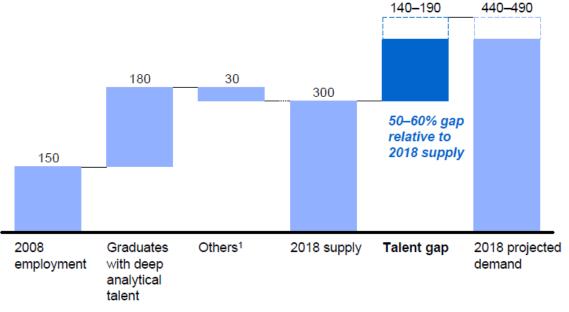
- Stored
- Managed

Data Mining ≈ Big Data ≈ Predictive Analytics ≈ Data Science

Demand for Data Mining

Demand for deep analytical talent in the United States could be 50 to 60 percent greater than its projected supply by 2018

Supply and demand of deep analytical talent by 2018 Thousand people



1 Other supply drivers include attrition (-), immigration (+), and reemploying previously unemployed deep analytical talent (+). SOURCE: US Bureau of Labor Statistics; US Census; Dun & Bradstreet; company interviews; McKinsey Global Institute analysis

Principle

Given lots of data

Discover patterns and models that are:

- Valid: hold on new data with some certainty
- Useful: should be possible to act on the item
- Unexpected: non-obvious to the system
- Understandable: humans should be able to interpret the pattern

Data Mining Tasks

Descriptive methods

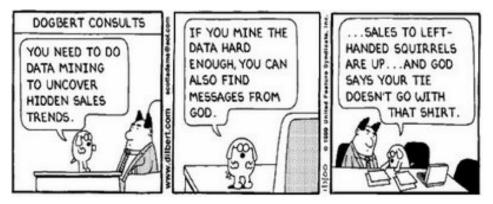
- Find human-interpretable patterns that describe the data
 - **Example:** Clustering

Predictive methods

- Use some variables to predict unknown or future values of other variables
 - **Example:** Recommender systems

Meaningfulness of Analytic Answers

- A risk with "Data mining" is that an analyst can "discover" patterns that are meaningless
- Statisticians call it **Bonferroni's principle**:
 - Roughly, if you look in more places for interesting patterns than your amount of data will support, you are bound to find crap

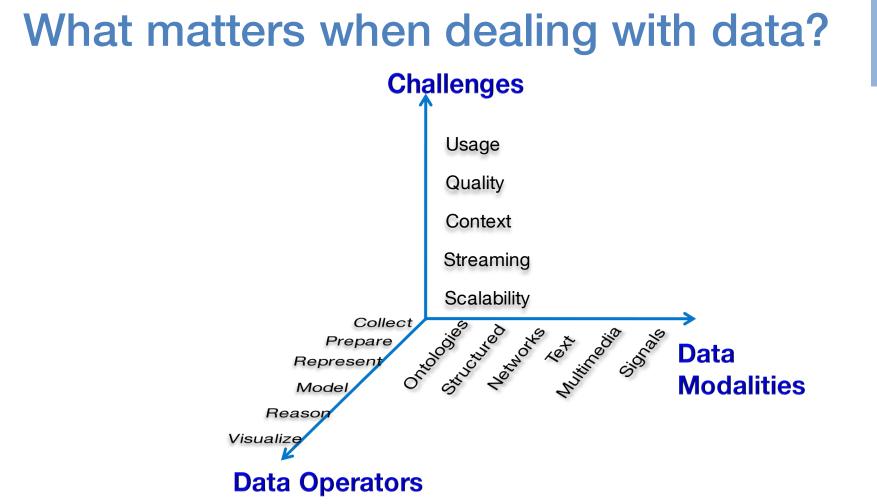


Meaningfulness of Analytic Answers

- We want to find (unrelated) people who at least twice have stayed at the same hotel on the same day
 - 10⁹ people being tracked
 - 1,000 days
 - Each person stays in a hotel 1% of time (1 day out of 100)
 - Hotels hold 100 people (so 10⁵ hotels)
 - If everyone behaves randomly (i.e., no terrorists) will the data mining detect anything suspicious?

Expected number of "suspicious" pairs of people:

- 250,000
- ... too many combinations to check we need to have some additional evidence to find "suspicious" pairs of people in some more efficient way



J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

50

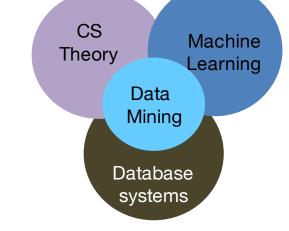
Data Mining: Cultures

Data mining overlaps with:

- Databases: Large-scale data, simple queries
- Machine learning: Small data, Complex models
- CS Theory: (Randomized) Algorithms

Different cultures:

- To a DB person, data mining is an extreme form of analytic processing queries that examine large amounts of data
 - Result is the query answer
- To a ML person, data-mining is the inference of models
 - Result is the parameters of the model
- In this class we will do both!



What will we learn?

• We will learn to mine different types of data:

- Data is high dimensional
- Data is a graph
- Data is infinite/never-ending
- Data is labeled

We will learn to use different models of computation:

- MapReduce
- Streams and online algorithms
- Single machine in-memory

How It All Fits Together

