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Hands-on 3:  
Stream processing  
1. Objective	
The	objective	of	this	hands	on	is	to	let	you	“touch”	the	challenges	implied	in	processing	streams.		
	
• In	class	we	will	use	Spark	for	 implementing	a	streaming	version	of	word	count	and	an	example	

using	Twitter	streaming.	
• At	HOME	you	will		

o test	other	Spark	functions	including	machine	learning	and	graph	algorithms	with	streams.		
o Implement	Bloom	filter	in	Hadoop.	

2. Getting	started	with	Spark	streaming	
Spark	 streaming	 is	 an	 extension	 of	 the	 core	 Spark	API	 that	 enables	 stream	processing	 of	 live	 data	
streams.	Data	can	be	harvested	from	many	sources	like	Kafka,	Flume,	Twitter,	ZeroMQ,	Kinesis,	or	TCP	
sockets,	and	can	be	processed	using	complex	algorithms	expressed	with	high-level	functions	like	map,	
reduce,	join	and	window.	Finally,	processed	data	can	be	pushed	out	to	file	systems,	databases,	and	live	
dashboards1.	
	
Internally	Spark	streaming	receives	live	input	data	streams	and	divides	the	data	into	batches,	which	
are	then	processed	by	the	Spark	engine	to	generate	the	final	stream	of	results	in	batches.	

	
Spark	 Streaming	 is	 based	 on	 the	 notion	 of	 discretized	 stream	 or	 DStream,	 which	 represents	 a	
continuous	stream	of	data.	DStreams	can	be	created	either	from	input	data	streams	from	sources	such	
as	Kafka,	 Flume,	 and	Kinesis,	 or	 by	 applying	high-level	 operations	on	other	DStreams.	 Internally,	 a	
DStream	is	represented	as	a	sequence	of	RDDs.	
	
2.1 Basic	concepts	
2.1.1	Discretized	streams	(DStreams)	
Discretized	Stream	 is	the	basic	abstraction	provided	by	Spark	Streaming.	It	represents	a	continuous	
stream	of	 data,	 either	 the	 input	 data	 stream	 received	 from	 source,	 or	 the	 processed	 data	 stream	
generated	by	 transforming	 the	 input	 stream.	 Internally,	 a	DStream	 is	 represented	by	a	 continuous	
series	 of	 RDDs,	 which	 is	 Spark’s	 abstraction	 of	 an	 immutable,	 distributed	 dataset.	 Each	 RDD	 in	 a	
DStream	contains	data	from	a	certain	interval,	as	shown	in	the	following	figure.	

																																																								
1 http://spark.apache.org/docs/latest/streaming-programming-guide.html#overview 
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Any	operation	applied	on	a	DStream	translates	to	operations	on	the	underlying	RDDs.	These	underlying	
RDD	transformations	are	computed	by	the	Spark	engine.	The	DStream	operations	hide	most	of	these	
details	and	provide	the	developer	with	a	higher-level	API	for	convenience.	
	
2.1.2 Input	DStreams	and	Receivers	
Input	DStreams	are	DStreams	representing	the	stream	of	input	data	received	from	streaming	sources.	
Every	input	DStream	(except	file	stream)	is	associated	with	a	Receiver	object	which	receives	the	data	
from	a	source	and	stores	it	in	Spark’s	memory	for	processing.	Spark	Streaming	provides	two	categories	
of	built-in	streaming	sources.	

• Basic	sources:	directly	available	 in	the	StreamingContext	API.	Examples:	file	systems,	socket	
connections,	etc.	

• Advanced	sources:	Sources	like	Kafka,	Flume,	Kinesis,	Twitter,	etc.	are	available	through	extra	
utility	classes.	These	require	linking	against	extra	dependencies	(see	the	Twitter	exercise	next).	

	
Note	that,	if	you	want	to	receive	multiple	streams	of	data	in	parallel	in	your	streaming	application,	you	
can	 create	 multiple	 input	 DStreams.	 This	 will	 create	 multiple	 receivers	 which	 will	 simultaneously	
receive	multiple	data	streams.	Yet,	note	that	a	Spark	worker/executor	is	a	long-running	task,	hence	it	
occupies	one	of	the	cores	allocated	to	the	Spark	Streaming	application.	Therefore,	it	is	important	to	
remember	 that	 a	 Spark	 Streaming	 application	 needs	 to	 be	 allocated	 enough	 cores	 (or	 threads,	 if	
running	locally)	to	process	the	received	data,	as	well	as	to	run	the	receiver(s).	
	
2.2 Counting	words	from	streams	
We	want	to	count	the	number	of	words	in	text	data	received	from	a	data	server	listening	on	a	TCP	
socket.	
	
Note	that	for	converting	a	stream	of	lines	to	words,	the	flatMap	operation	is	applied	on	each	RDD	in	
the	lines	DStream	to	generate	the	RDDs	of	the	words	DStream	as	shown	in	the	following	figure.	
	

	
	
2.2.1	Importing	Spark	Streaming	classes	and	conversions	from	StreamingContext	
 
StreamingContext	is	the	main	entry	point	for	all	streaming	functionality.	We	create	a	
local	StreamingContext	with	two	execution	threads,	and	a	batch	interval	of	1	second.	
 
 
import org.apache.spark._ 
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import org.apache.spark.streaming._ 
import org.apache.spark.streaming.StreamingContext._ // not necessary 
since Spark 1.3 
 
// Create a local StreamingContext with two working thread and batch 
interval of 1 second. 
// The master requires 2 cores to prevent from a starvation scenario. 
 
val conf = new 
SparkConf().setMaster("local[2]").setAppName("NetworkWordCount") 
val ssc = new StreamingContext(conf, Seconds(1)) 
	
2.2.2	Creating	a	DStream	
Using	 this	 context,	we	 can	 create	 a	DStream	 that	 represents	 streaming	 data	 from	 a	 TCP	 source,	
specified	as	hostname	(e.g.	localhost)	and	port	(e.g.	9999).	
	
// Create a DStream that will connect to hostname:port, like 
localhost:9999 
 
val lines = ssc.socketTextStream("localhost", 9999) 
 
	
This	lines	DStream	represents	the	stream	of	data	that	will	be	received	from	the	data	server.	Each	
record	in	this	DStream	is	a	line	of	text.	Next,	we	want	to	split	the	lines	by	space	characters	into	words.	
 
// Split each line into words 
val words = lines.flatMap(_.split(" ")) 
 
flatMap is	a	one-to-many	DStream	operation	that	creates	a	new	DStream	by	generating	
multiple	new	records	from	each	record	in	the	source	DStream.	In	this	case,	each	line	will	be	
split	into	multiple	words	and	the	stream	of	words	is	represented	as	the	words	DStream.		
	
2.2.3	Counting	words	
Next,	we	want	to	count	these	words.	
 
import org.apache.spark.streaming.StreamingContext._ // not necessary 
since Spark 1.3 
// Count each word in each batch 
val pairs = words.map(word => (word, 1)) 
val wordCounts = pairs.reduceByKey(_ + _) 
 
// Print the first ten elements of each RDD generated in this DStream 
to the console 
wordCounts.print() 

 
The	words	DStream	is	further	mapped	(one-to-one	transformation)	to	a	DStream	of	(word, 1)	
pairs,	 which	 is	 then	 reduced	 to	 get	 the	 frequency	 of	 words	 in	 each	 batch	 of	 data.	 Finally,	
wordCounts.print()	will	print	a	few	of	the	counts	generated	every	second.	
 
Note	that	when	these	lines	are	executed,	Spark	Streaming	only	sets	up	the	computation	it	will	perform	
when	 it	 is	 started,	 and	 no	 real	 processing	 has	 started	 yet.	 To	 start	 the	 processing	 after	 all	 the	
transformations	have	been	setup,	we	finally	call	
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ssc.start()             // Start the computation 
ssc.awaitTermination()  // Wait for the computation to terminate 

 
The	complete	code	can	be	found	in	the	Spark	Streaming	example	NetworkWordCount.		
 
2.2.4	Running	the	program	
You	can	run	this	example	as	follows.	You	will	first	need	to	run	Netcat	(a	small	utility	found	in	most	
Unix-like	systems)	as	a	data	server	by	using	
 
$ nc -lk 9999 

 
Then,	in	a	different	terminal,	you	can	start	the	example	by	using	
 
$ ./bin/run-example streaming.NetworkWordCount localhost 9999 
 
Then,	any	lines	typed	in	the	terminal	running	the	netcat	server	will	be	counted	and	printed	on	
screen	every	second.	It	will	look	something	like	the	following:	
	

	 	
	
2.3 Technical	considerations	
2.3.1	Linking	
Similar	 to	 Spark,	 Spark	 Streaming	 is	 available	 through	 Maven	 Central.	 To	 write	 your	 own	 Spark	
Streaming	program,	you	will	have	to	add	the	following	dependency	your	Maven	project.	
	
<dependency> 
    <groupId>org.apache.spark</groupId> 
    <artifactId>spark-streaming_2.10</artifactId> 
    <version>1.5.2</version> 
</dependency> 
	
For	 harvesting	 data	 from	 sources	 like	 Kafka,	 Flume,	 and	 Kinesis	 that	 are	 not	 present	 in	 the	 Spark	
Streaming	 core	 API,	 you	 will	 have	 to	 add	 the	 corresponding	 artifact	 spark-streaming-
xyz_2.10	to	the	dependencies.	For	an	up-to-date	list,	please	refer	to	the	Maven	repository	for	the	
full	list	of	supported	sources	and	artifacts.	
	
2.3.2	Initializing	StreamingContext	
To	initialize	a	Spark	Streaming	program,	a	StreamingContext	object	has	to	be	created	which	is	
the	main	entry	point	of	all	Spark	Streaming	functionality.	A	StreamingContext	object	can	be	
created	from	a	SparkConf	object.	
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import org.apache.spark._ 
import org.apache.spark.streaming._ 
 
val conf = new SparkConf().setAppName(appName).setMaster(master) 
val ssc = new StreamingContext(conf, Seconds(1)) 

 
The	appName	parameter	is	a	name	for	your	application	to	show	on	the	cluster	UI.	master	is	a	Spark,	
Mesos	or	YARN	cluster	URL,	or	a	special	“local[*]”	string	to	run	in	local	mode.		
	
In	practice,	when	running	on	a	cluster,	you	will	not	want	to	hardcode	master	 in	the	program,	but	
rather	launch	the	application	with	spark-submit	and	receive	it	there.	However,	for	local	testing	
and	unit	tests,	you	can	pass	“local[*]”	to	run	Spark	Streaming	in-process	(detects	the	number	of	
cores	in	the	local	system).	Note	that	this	internally	creates	a SparkContext	(starting	point	of	all	
Spark	functionality)	which	can	be	accessed	as	ssc.sparkContext.	
	
The	batch	interval	must	be	set	based	on	the	latency	requirements	of	your	application	and	available	
cluster	resources.		
 
A	StreamingContext	object	can	also	be	created	from	an	existing	SparkContext	object.	
 
import org.apache.spark.streaming._ 
 
val sc = ...                // existing SparkContext 
val ssc = new StreamingContext(sc, Seconds(1)) 

 
After	a	context	is	defined,	you	have	to	do	the	following.	
1. Define	the	input	sources	by	creating	input	DStreams.	
2. Define	 the	 streaming	 computations	 by	 applying	 transformation	 and	 output	 operations	 to	

DStreams.	
3. Start	receiving	data	and	processing	it	using	streamingContext.start().	
4. Wait	 for	 the	 processing	 to	 be	 stopped	 (manually	 or	 due	 to	 any	 error)	 using	

streamingContext.awaitTermination().	
5. The	processing	can	be	manually	stopped	using	streamingContext.stop().	
	
Points	to	remember:	
• Once	a	context	has	been	started,	no	new	streaming	computations	can	be	set	up	or	added	to	it.	
• Once	a	context	has	been	stopped,	it	cannot	be	restarted.	
• Only	one	StreamingContext	can	be	active	in	a	JVM	at	the	same	time.	
• stop() on	 StreamingContext	 also	 stops	 the	 SparkContext.	 To	 stop	 only	 the	

StreamingContext,	set	the	optional	parameter	of	stop()	called	stopSparkContext	to	
false.	

• A	SparkContext	 can	be	 re-used	 to	 create	multiple	StreamingContexts,	 as	 long	 as	 the	
previous	StreamingContext	is	stopped	(without	stopping	the	SparkContext)	before	the	
next	StreamingContext	is	created.	
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2.4.	Processing	Twitter	streams	
These	exercises	are	designed	as	standalone	Scala	programs	which	will	receive	and	process	Twitter’s	
real	 sample	 tweet	 streams.	 This	 section	 will	 first	 introduce	 you	 to	 the	 basic	 system	 setup	 of	 the	
standalone	 Spark	 Streaming	 programs,	 and	 then	 guide	 you	 through	 the	 steps	 necessary	 to	 create	
Twitter	authentication	tokens	necessary	for	processing	Twitter’s	real	time	sample	stream.	This	hands-
on	corresponds	to	the	one	proposed	by	Databricks2	with	some	variants.	
	
2.4.1	System	setup	
You	should	find	the	following	items	in	the	directory	[usb	root	directory]/streaming/.	For	Scala	users:	
	
• scala/build.sbt:	SBT	project	file	
• scala/Tutorial.scala:	Main	Scala	program	that	you	are	going	to	edit,	compile	and	run	
• scala/TutorialHelper.scala:	Scala	file	containing	few	helper	functions	for	

Tutorial.scala	
• getCheckpointDirectory()	is	a	helper	function	that	figures	out	the	checkpoint	directory	

that	Spark	Streaming	should	use.	
• configureTwitterCredential() is	another	helper	function	that	configures	Twitter’s	

authentication	detail	using	the	file	/root/streaming/twitter.txt	
	

2.4.2	Twitter	credential	setup	
Our	hand-on	is	based	on	Twitter’s	sample	tweet	stream,	so	we	need	to	configure	authentication	with	
a	 Twitter	 account.	 To	 do	 this,	 you	 need	 to	 setup	 a	 consumer	 key+secret	 pair	 and	 an	 access	
token+secret	pair	using	a	Twitter	account.		
	
Creating	a	temporary	Twitter	access	keys	
Follow	the	instructions	below	to	setup	these	temporary	access	keys	with	your	Twitter	account.	These	
instructions	will	not	require	you	to	provide	your	Twitter	username/password.	You	will	only	be	required	
to	 provide	 the	 consumer	 key	 and	 access	 token	 pairs	 that	 you	will	 generate,	which	 you	 can	 easily	
destroy	once	you	have	finished	the	tutorial.	So,	your	Twitter	account	will	not	be	compromised	in	any	
way.	
	
Open	Twitter’s	Application	Settings	page.	This	page	lists	the	set	of	Twitter-based	applications	that	
you	own	and	have	already	created	consumer	keys	and	access	tokens	for.	This	list	will	be	empty	if	you	
have	never	created	any	applications.	For	this	tutorial,	create	a	new	temporary	application.	To	do	this,	
click	on	the	blue	“Create	a	new	application”	button.	The	new	application	page	should	look	the	page	
shown	below.		
	
Provide	the	required	fields:		
• The	Name	of	the	application	must	be	globally	unique,	so	using	your	Twitter	username	as	a	prefix	

to	the	name	should	ensure	that.	For	example,	set	it	as	[your-twitter-handle]-test.		
• For	the	Description	,	anything	longer	than	10	characters	is	fine.		
• For	the	Website	,	similarly,	any	website	is	fine,	but	ensure	that	it	is	a	fully-formed	URL	with	the	

prefix	http://	.		
	
Then,	click	on	the	“Yes,	I	agree”	checkbox	below	the	Developer Rules of the Road.	Finally,	
fill	in	the	CAPTCHA	and	click	on	the	blue	“Create	your	Twitter	application”	button.	
	

																																																								
2 https://databricks-training.s3.amazonaws.com/realtime-processing-with-spark-streaming.html 
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Confirmation	
Once	you	have	created	the	application,	you	will	be	presented	with	a	confirmation	page	similar	to	the	
one	shown	below.	Click	on	the	API Key	tab.	

	
	
Application	settings	
You	should	be	able	to	see	the	API	key	and	the	API	secret	that	have	been	generated.	To	generate	the	
access	token	and	the	access	token	secret,	click	on	the	“Create	my	access	token”	button	at	the	bottom	
of	the	page	(marked	in	red	in	the	figure	below).	Note	that	there	will	be	a	small	green	confirmation	at	
the	top	of	the	page	saying	that	the	token	has	been	generated.	
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Final	result	of	the	setup	process	
Finally,	the	page	should	look	like	the	following.	Notice	the	API	Key,	API	Secret,	Access	Token	and	Access	
Token	Secret.	We	are	going	to	use	these	4	keys	in	the	next	section.		
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2.4.3	First	Spark	streaming	program	
Let	us	write	a	very	simple	Spark	Streaming	program	that	prints	a	sample	of	the	tweets	it	receives	
from	Twitter	every	second.	
	
Add	your	authentication	keys	
First	add	the	authentication	keys	that	you	generated	in	the	previous	step.	After	entering	the	keys	in	
the	corresponding	strings,	your	file	should	look	something	like	this.	
	
    // Configure Twitter credentials 
    val consumerKey = "//Your credentials go here" 
    val consumerSecret = "//Your credentials go here" 
    val accessToken = "//Your credentials go here" 
    val accessTokenSecret = "//Your credentials go here" 
	
Setup	the	system	properties	for	using	Twitter4j	libraries	
	
// Set the system properties so that Twitter4j library used by twitter 
stream 
// can use them to generat OAuth credentials 
    System.setProperty("twitter4j.oauth.consumerKey", consumerKey) 
    System.setProperty("twitter4j.oauth.consumerSecret", 
consumerSecret) 
    System.setProperty("twitter4j.oauth.accessToken", accessToken) 
    System.setProperty("twitter4j.oauth.accessTokenSecret", 
accessTokenSecret) 

	
Create	a	StreamingContext	
To	express	any	Spark	Streaming	computation,	a	StreamingContext	object	needs	to	be	created.	
This	object	serves	as	the	main	entry	point	for	all	Spark	Streaming	functionality.	For	the	rest	of	this	
exercise,	insert	the	code	samples	after	“//Your Code goes here”	placeholder.	
	
val ssc = new StreamingContext(new SparkConf(), Seconds(1)) 

	
We	created	a	StreamingContext	object	by	providing	a	Spark	configuration,	and	the	batch	
duration	we’d	like	to	use	for	streams.	Next,	we	use	this	context	to	create	a	stream	of	tweets:	
	
val tweets = TwitterUtils.createStream(ssc, None) 

	
The	object	tweets	is	a	DStream	of	tweet	statuses.	More	specifically,	it	is	continuous	stream	of	RDDs	
containing	objects	of	type	twitter4j.Status.	As	a	very	simple	processing	step,	let	us	try	to	
print	the	status	text	of	the	some	of	the	tweets.	
	
val statuses = tweets.map(status => status.getText()) 
// Print first 10 records in theDStream (1 second batches of received 
status) 
statuses.print() 
	
Using	DStreams	
Similar	to	RDD	transformation	in	the	earlier	Spark	exercises,	the	map	operation	on	tweets	maps	each	
Status	object	to	its	text	to	create	a	new	‘transformed’	DStream	named	statuses.	The	print	output	
operation	tells	the	context	to	print	first	10	records	in	each	RDD	in	a	DStream,	which	in	this	case	are	1	
second	batches	of	received	status	texts.	
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Finally,	we	need	to	tell	the	context	to	start	running	the	computation	we	have	setup.	
	
ssc.start() 
ssc.awaitTermination() 
	
Note	that	all	DStream	operations	must	be	done	before	calling	this	statement.	
	
Running	Tweets	consumption	
After	saving	Tutorial.scala,	let	us	compile	the	code.	To	do	this,	follow	these	instructions.	Make	
sure	you	replace	[usb root directory]	in	the	following	instructions	with	your	actual	USB	root	
directory	path.	
	
In	the	console,	make	sure	you	are	in	the	directory:		
	
[usb root directory]/streaming/scala . ../../sbt/sbt	assembly	
	
This	command	will	compile	the	Tutorial class	and	create	a	JAR	file	in	:	
	
[usb root directory]/streaming/scala/target/scala-2.10/.	
	
Finally,	the	program	can	be	executed	as	using	the	spark-submit	script.	At	the	command	line,	run	the	
following.	Again,	make	sure	you	replace	[usb root directory] with	your	actual	USB	root	
directory	path.	
	
../../spark/bin/spark-submit --class Tutorial 
../../streaming/scala/target/scala-2.10/Tutorial-assembly-0.1-
SNAPSHOT.jar 
	
You	will	soon	find	a	sample	of	the	received	tweets	being	printed	on	the	screen	(can	take	10	seconds	
or	so	before	it	start	appearing).	Use	Ctrl + c,	to	stop	the	application.	
	
2.4.4	Further	mini-challenges	
Let	us	try	printing	the	10	most	popular	hashtags	in	the	last	5	minutes.	These	next	steps	explain	the	set	
of	 the	 DStream	 operations	 required	 to	 achieve	 our	 goal.	 As	 mentioned	 before,	 the	 operations	
explained	in	the	next	steps	must	be	added	in	the	program	before	ssc.start().	After	every	step,	
you	can	see	the	contents	of	new	DStream	you	created	by	using	the	print()	operation	and	running	
the	program	in	the	same	way	as	explained	earlier.	

	
Get	the	stream	of	hashtags	from	the	stream	of	tweets	
To	get	the	hashtags	from	the	status	string,	we	need	to	identify	only	those	words	in	the	message	that	
start	with	“#”.	This	can	be	done	as	follows:	
	
val words = statuses.flatMap(status => status.split(" ")) 
val hashtags = words.filter(word => word.startsWith("#")) 

	
The	flatMap	operation	applies	a	one-to-many	operation	 to	each	 record	 in	a	DStream	 and	 then	
flattens	 the	 records	 to	 create	a	new	DStream.	 In	 this	 case,	 each	 status	 string	 is	 split	 by	 space	 to	
produce	a	DStream	where	each	record	is	a	word.	Then	we	apply	the	filter	function	to	retain	only	
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the	hashtags.	The	resulting	hashtags	DStream	is	a	stream	of	RDDs	having	only	the	hashtags.	If	you	
want	to	see	the	result,	add	hashtags.print()	and	try	running	the	program.	
	
Count	the	hashtags	over	a	5	minutes	window	
We	would	like	to	count	these	hashtags	over	a	5	minute	moving	window.	A	simple	way	to	do	this	would	
be	to	gather	together	the	last	5	minutes	of	data	and	process	it	in	the	usual	map-reduce	way:	
• map	each	tag	to	a	(tag, 1)	key-value	pair	and	then		
• reduce	by	adding	the	counts.		
However,	in	this	case,	counting	over	a	sliding	window	can	be	done	more	intelligently.	As	the	window	
moves,	the	counts	of	the	new	data	can	be	added	to	the	previous	window’s	counts,	and	the	counts	of	
the	old	data	that	falls	out	of	the	window	can	be	‘subtracted’	from	the	previous	window’s	counts.	This	
can	be	done	using	DStreams.	
	
val counts = hashtags.map(tag => (tag, 1)) 
                     .reduceByKeyAndWindow(_ + _, _ - _, Seconds(60 * 
5), Seconds(1)) 

	
• The	_ + _	and	_ - _	are	Scala	shorthands	for	specifying	functions	to	add	and	subtract	two	

numbers.		
• Seconds(60 * 5)	specifies	the	window	size		
• Seconds(1) specifies	the	movement	of	the	window.		
	
The	generated	counts	DStream	will	have	records	that	are	(hashtag, count)	tuples.		
	
Find	the	top	10	hashtags	based	on	their	counts	
These	counts	are	used	to	find	popular	hashtags.	A	simple	(but	not	the	most	efficient)	way	to	do	this	is	
to	sort	the	hashtags	based	on	their	counts	and	take	the	top	10	records.	Since	this	requires	sorting	by	
the	counts,	the	count	(i.e.,	the	second	item	in	the	(hashtag, count)	tuple)	needs	to	be	made	the	
key.	Hence,	we	need	to	first	use	a	map	to	flip	the	tuple	and	then	sort	the	hashtags.	Finally,	we	need	to	
get	the	top	10	hashtags	and	print	them.	All	this	can	be	done	as	follows:	
	
val sortedCounts = counts.map { case(tag, count) => (count, tag) } 
                         .transform(rdd => rdd.sortByKey(false)) 
sortedCounts.foreach(rdd => 
  println("\nTop 10 hashtags:\n" + rdd.take(10).mkString("\n"))) 
	
The	transform	operation	allows	any	arbitrary	RDD-to-RDD	operation	to	be	applied	to	each	RDD	
of	a	DStream	to	generate	a	new	DStream.	The	resulting	‘sortedCounts’	DStream	is	a	stream	of	
RDDs	 having	 sorted	 hashtags.	 The	foreach	 operation	 applies	 a	 given	 function	 on	 each	RDD	 in	 a	
DStream,	that	is,	on	each	batch	of	data.	In	this	case,	foreach	is	used	to	get	the	first	10	hashtags	from	
each	RDD	in	sortedCounts	and	print	them,	every	second.	
	
2.5	Further	reading	
• More	about	Spark	streaming	http://spark.apache.org/docs/latest/streaming-programming-

guide.html#overview	
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3. Homework	
• Exploit	Spark	streaming	using	transformation	operations	for	windows	and	joins.	(see	

http://spark.apache.org/docs/latest/streaming-programming-guide.html#overview)		
• Use	Spark	streaming	extensions	for	processing	graphs	or	using	machine	learning	algorithms	on	

data	streams.	
• Implement	Bloom	filter	using	Hadoop	and	HBase	(see	challenge)	
• Propose	a	Bloom	filter	application	for	streams.	For	example,	deal	with	Twitter	restriction	of	the	

number	of	requests	by	bloom	filtering	queries.	
 


