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More and more large data collections are gathered worldwide in various IT systems. Many of them pos-
sess a networked nature and need to be processed and analysed as graph structures. Due to their size they
very often require the usage of a parallel paradigm for efficient computation. Three parallel techniques
have been compared in the paper: MapReduce, its map-side join extension and Bulk Synchronous Parallel
(BSP). They are implemented for two different graph problems: calculation of single source shortest paths
(SSSP) and collective classification of graph nodes by means of relational influence propagation (RIP). The
methods and algorithms are applied to several network datasets differing in size and structural profile,
originating from three domains: telecommunication, multimedia and microblog. The results revealed that
iterative graph processing with the BSP implementation always and significantly, even up to 10 times
outperforms MapReduce, especially for algorithms with many iterations and sparse communication. The
extension of MapReduce based on map-side join is usually characterized by better efficiency compared
to its origin, although not as much as BSP. Nevertheless, MapReduce still remains a good alternative for
enormous networks, whose data structures do not fit in local memories.
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1. Introduction

Many technical and scientific problems are related to data with
the networked nature, which can be relatively simply represented
by means of graph structures. Graphs provide a very flexible ab-
straction for describing relationships between discrete objects.
Many practical problems in scientific computing, data analysis and
other areas can be modelled in their essential form by graphs and
solved with the appropriate graph algorithms.

In many environments graph structures are so big that they re-
quire specialized processing methods, especially parallel ones. This
becomes particularly vital for data collections provided by users
leaving their traces in various online or communication services,
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such as multimedia publishing portals or social networking sites,
e.g. YouTube or Facebook. Additionally, these datasets reflect vari-
ous user behaviour, so their graph representation may be complex
with multiple relationships linking network nodes. This requires
analytical methods dealing not only with simple graphs but also
hypergraphs or multigraphs.

As graph problems grow larger in scale and more ambitious in
their complexity, they easily outgrow the computation and mem-
ory capacities of single processors. Given the success of parallel
computing in many areas of scientific computing, parallel pro-
cessing appears to be necessary to overcome the resource limi-
tations of single processors in graph computations. Parallel graph
computation is, however, challenging [ 1] and before the advent of
cloud computing and Hadoop, programmers had to use ill-suited
distributed systems or design their own systems, which required
additional effort to provide fault-tolerance and to address other
problems related to parallel processing [2]. The rise of the MapRe-
duce concept and Hadoop—its open source implementation—
provided researchers with a powerful tool to process large data
collections. Recently, Hadoop has become a de facto standard in
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academia and a significant solution for parallel processing in in-
dustry. It has been used in various areas, including some graph pro-
cessing problems [3].

The MapReduce model is, however, badly suited for iterative
and graph algorithms. There has been a lot of research in creat-
ing design patterns improving MapReduce performance for graphs
like [4,5], or building systems that would aid iterative processing
on MapReduce [6-10]. Google reacted to that with the develop-
ment of Pregel [2]—an alternative system that implements the Bulk
Synchronous Parallel (BSP) programming model [11] for graph pro-
cessing.

The main difference in the processing of regular data structures
(tables) and relational models (graphs) relies on different problem
decomposition. Processing table structures is composed of han-
dling of individual records (rows in the table). For the networked
data, single processing of a graph vertex usually requires access to
the neighbourhood of this vertex, which for most algorithms re-
mains fixed for the whole processing time. This data may be either
accessed at every algorithm iteration via a distributed file system
(e.g. HDFS), as in the case of MapReduce, or preserved locally for
the entire processing, the case for BSP.

Both different parallel processing methods, i.e. MapReduce and
BSP, along with the map-side join MapReduce modification, have
been implemented in the Hadoop environment—all three were
used in the experiments presented in this paper. Each approach
was independently applied to solve two distinct graph analytical
problems: single source shortest path (SSSP) calculation and col-
lective classification of network vertices with Relational Influence
Propagation (RIP). The graph algorithms had an iterative nature,
which enabled testing their various parallel implementations in
the following steps. The iterative computation was carried out in
cloud environments containing various numbers of machines to
compare scalability of Bulk Synchronous Parallel and MapReduce.
Additionally, all approaches were tested on several large graph
data sets coming from various domains.

The initial version of the paper was presented at the ICDM 2012
conference [12].

The following Section 2 provides a short state-of-the art study
on graph problem solutions by means of cloud computing. The
main architectures for graph processing, including distributed
memory and shared memory, are presented in Section 3. Two par-
allel processing models MapReduce and Bulk Synchronous Parallel
(BSP) are sketched in Section 4. Some discussion on their similari-
ties as well as potential improvements is provided in Section 5. Also
in this section, an important and experimentally verified MapRe-
duce modification based on map-side join design patterns is pro-
posed for graph processing. Two iterative graph algorithms: single
source shortest path computation and collective classification are
described in more depth in Section 6. Experimental setup and cloud
environment, including data set profiles can be found in Section 7.
The results of experiments are presented in Section 8. Discussions
on the results and solutions of some problems, which arose dur-
ing research, are depicted in Section 9. The last section, Section 10
contains general conclusions and further directions for work.

2. Related work

The dynamic development of distributed and cloud computing
has led to stable solutions for massive data processing. Nowadays,
there is an intensified focus on new models useful for specific
kinds of processing. On top of distributed storage systems many
solutions dedicated for particular tasks are located, for example
fast random access data, pipeline processing, graph computations,
etc. [13].

There are several concepts for parallel processing in clusters.
Two of them are widely used in offline batch analysis systems
and merit special attention: MapReduce and the less popular Bulk
Synchronous Parallel (BSP). The former is especially very popular
and applied to many real solutions [13].

The general idea behind the Bulk Synchronous Parallel (BSP)
method was first coined and studied in early 90s [11,14]. Recently,
it was adapted by Google to graph processing in clouds in the Pregel
system [2]. Pregel’s idea of using BSP for graph processing in clouds
inspired others to create similar systems, some of which are open
source e.g. [15,16].

The overview of large-scale graph engines is presented in [17],
which contains graph systems designed to achieve different goals—
from offline analytics system to online low-latency systems.

An empirical comparison of different paradigms for large-scale
graph processing is presented in [18]. However, the presented
paradigms require a proprietary and/or prototypical platforms,
while, in this paper, we focus on approaches which are available
on Hadoop, a highly popular, open source platform, which can be
run on a set of commodity hardware.

Pace et al. [19] provided a theoretical comparison of BSP and
MapReduce models. In terms of graph processing, they noticed that
the Breadth First Search algorithm (for the shortest path computa-
tion) cannot be efficiently implemented by means of the MapRe-
duce model. In this paper, we go forward and focus more on an
empirical comparison for the real world data sets, using avail-
able implementations as well as evaluation for an additional graph
problem—collective classification. The general conclusions remain
the same: BSP usually appears to be a better model for solving
graph problems than MapReduce. The results included in this pa-
per provide quantitative analyses supporting that statement.

3. Parallel architectures for graph processing

Regardless of the nature of a particular computational problem
it can be parallelled and scaled well when the overall solution is
balanced in terms of the problem solution, the algorithm express-
ing the solution, the software that implements the algorithm and
hardware. The algorithms, software, and hardware that worked
properly for standard parallel applications are not necessarily ef-
fective for large-scale graph problems. In general, graph problems
have specific properties that make them difficult to fit in existing
distributed computational solutions. Among others, the following
characteristics of graph processing causes challenges in effective
parallel processing [20]:

e Computation driven by relational data. The majority of graph al-
gorithms are executed according to the structure of a graph,
where computation for each next vertex is strictly dependent
on the results calculated for all antecedents. It means that the
algorithm relies on the graph structures rather than on explic-
itly stated sequential processing. This implies that the structure
of the whole computation is not known at the beginning of ex-
ecution and efficient partition is hardly possible.

e Diverse and unbalanced data structures. Usually graph data is
highly unstructured or irregular, which do not give many op-
tions for parallel processing based on partitioning. Additionally,
a skewed distribution of vertex degrees makes scalability diffi-
cult, limiting it to unbalanced computational loads.

e High overload for data access in comparison to computation. Al-
gorithms often explore graphs rather than performing complex
computations on their structure, e.g. the shortest path problem
requires only single arithmetic operations in path cost calcula-
tion but requires the performance of many data queries. Run-
time can be easy dominated by the wait for memory access, not
by computational activities.

Due to the fact that commercially available computer appli-
ances have varying capabilities there can be distinguished several
processing architectures suitable for distinct hardware. Depending
on the amount of available storage and memory for computation
the data might be processed in a different manner, reducing or in-
creasing the latency. There can be distinguished distributed mem-
ory architectures and shared-memory architectures.
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3.1. Distributed memory architecture

The most widespread class of parallel computing is distributed
memory architecture. This architecture comprises a set of ma-
chines (a set of processors and storage/memory) connected by a
high speed network. It is possible that the environment can be
composed of quite common machines and this makes the archi-
tecture inexpensive. According to reported results the architecture
is effective on many scientific problems but is able to handle only
trivially parallelled algorithms.

The general idea behind the distributed memory architecture is
to implement the message passing technique. In this method the
data is divided into the memories of different machines. The dis-
tribution of the data is controlled centrally and this means it has
to be additionally decided which processor performs which tasks.
Usually data from memory is processed by a local processor. The
distributed memory architecture has a big disadvantage: all tasks
to be performed have to be explicitly formulated at the beginning
of computation. However it means that the user can almost com-
pletely control the computation. Due to the fact that the data is
exchanged between processors by a specially designed message
passing protocol, the user has to specify it. This makes the architec-
ture very flexible but full control of communication and data par-
titioning can influence errors. Such problems can be overwhelmed
by the usage of standards such as the MPI protocol [21]. As long
as the architecture enables full customization of implementation,
smart users can plan such a system realization that achieves high
performance.

One of the best known message passing styles in the distributed
computing is Bulk Synchronous style [11]. Even though it is quite
mature it has been re-discovered again as a powerful implemen-
tation [2]. In general the processors in this technique switch from
working independently on local data to performing collective com-
munication operations. This implies the collective exchange of data
unable to be accomplished on demand, but only at the pauses be-
tween computational steps (synchronization). It can cause prob-
lems with load balancing and actually makes it difficult to exploit
parallelism in an application. The Bulk Synchronous technique is
described in more detail in Section 4.2, where the programming
models are considered.

There exists an improvement for the message passing technique
which is still able to utilize distributed memory—partitioning of
global address space. Introducing an additional layer of abstraction
in the implementation that provides operations on remote mem-
ory locations with simple manipulation mechanisms facilitates
writing programs with complex data access patterns and, there-
fore, asynchronous communication. An example of partitioned
global address space implementation is UPC [22].

3.2. Shared-memory architecture

There are two possible realizations of shared-memory archi-
tecture in computing: hardware based or software based. Both of
these approaches are required to provide support for global mem-
ory accessible for all processors. As mentioned in the previous
paragraph, the UPC implementation is actually an example of soft-
ware providing the illusion of globally addressable memory but
still working on distinct machines. But the support for a global ad-
dress space can also be provided in hardware.

One of the common realizations of shared-memory architecture
are symmetric processors which can utilize global memory uni-
versally. The architecture assumes that, thanks to proper hardware
support, any processor can access addresses in global memory. This
feature allows processors to retrieve the data directly and rela-
tively in a very quick manner. Additionally, solutions of highly un-
structured problems, such as graph processing, may benefit from
that characteristic and achieve a higher performance than environ-
ments based on a distributed memory architecture.

The shared-memory approach is not ideal and thread synchro-
nization and scheduling reveal another performance challenge. For
instance, if several threads are trying to access the same region of
memory, the system must apply some protocol to ensure correct
program execution. Obviously, some threads may be blocked for a
period of time.

Another noticeable problem, that has to be considered while
implementing the architecture is the fact that the best efficiency is
obtained when processors are kept occupied with a large number
of threads. Fortunately, many graph algorithms can be written in a
multi-thread fashion. However this may imply increases of mem-
ory access.

Finally, the architecture requires processors that are not cus-
tom and more expensive than the ones used in distributed mem-
ory architecture. Moreover, the preprocessors have a much slower
clock than mainstream ones. Even though the architecture is quite
interesting, flexible and more effective, it might not be the most
attractive for graph processing.

4. Open source parallel programming models

The main purpose of this paper are comparative studies of dif-
ferent practical approaches to parallel graph processing using open
source platforms. In particular, the most popular MapReduce (MR),
see Section 4.1, and less common Bulk Synchronous Parallel (BSP),
see Section 4.2, are considered. Additionally, an extended version
of MapReduce, namely, map-side join modification of MapReduce
(MR2), see Section 5.3, together with MR and BSP have been ex-
perimentally examined, see Sections 7 and 8. The overall compar-
ison of these three approaches is described in Table 1. In general,
MapReduce-based solutions (MR and MR2) require graph data to
be re-allocated at each algorithm iteration, whereas BSP enables
them to be assigned only once, at the beginning. Additionally, MR
and MR2 utilize the Hadoop Distributed File System (HDFS), which
facilitates processing of huge graphs. BSP, in turn, stores its data in
the local memory.

4.1. MapReduce

MapReduce is a parallel programming model especially dedi-
cated for complex and distributed computations, which has been
derived from the functional paradigm [13]. In general, MapReduce
processing is composed of two consecutive stages, which for most
problems are repeated iteratively: the map and the reduce phase.
The former processes the data on hosts in parallel, whereas the
latter aggregates the results. At each iteration independently, the
whole data is split into chunks, which, in turn, are used as the input
for mappers. Each chunk may be processed by only one mapper.
Once the data is processed by mappers, they can emit (key, value)
pairs to the reduce phase. Before the reduce phase the pairs are
sorted and collected according to the key values, therefore each re-
ducer gets the list of values related to a given key. The consolidated
output of the reduce phase is saved into the distributed file system,
see Fig. 1.

The MapReduce model is already an mature concept and alth-
ough it has not been originally designed to process graphs, a set of
design patterns for graph processing have been developed [4,5,23].
These good practices show how to express iterative algorithms in
MapReduce, but they do not overcome the widely recognizable in-
efficiencies of MapReduce model in networked data processing.

In the case of iterative graph processing algorithms, the graph
structure and other static data, which do not change through com-
putation, must be transferred over the network of computational
nodes from mappers to reducers at each single iteration. It causes
a great network overhead and appears to be the greatest pitfall
of graphs processing by means of MapReduce. The stateless, two-
phased computational nature of MapReduce does not allow ver-
tices to reside on the same host for all iterations. It means that after
every map-reduce iteration, the entire data must be written to the
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Table 1

Profile of various parallel graph processing approaches: MapReduce (MR), its extension based on map-side join design patterns (MR2) and Bulk Synchronous Parallel (BSP).

Feature MapReduce (MR)

Enchanced MapReduce (MR2) BSP

General unit of processing An iteration composed of two
Map-Reduce jobs, Fig. 3

Graph structure
(neighbourhoods) & vertex labels
At every iteration, before map
Flexible, repeated at every
iteration

Change before each map

Data processed

Graph vertex allocation
Work allocation among machines

Set of vertices processed on single
machine

Data about vertex and its neighbours Transferred before each map
Location of graph data (neighbourhoods HDFS

& labels)

Messages with updated data related to a
given vertex (self-update)

Transferred before each map

An iteration composed of one join
and one Map-Reduce phases, Fig. 4
Graph structure (neighbourhoods) &
vertex labels

At every iteration, before join
Flexible, repeated at every iteration

Change before each map

Transferred before each join
HDFS Local memory

Transferred before each join

Superstep, Fig. 5

Graph structure (neighbourhoods) &
vertex labels

Once, at the beginning

Fixed at the beginning

Fixed at the beginning

Transferred once before entire processing

Data stored locally; no message

.

map-side join

chuEk 1 ﬁ chuEk n

mapper | | mapper mapper

\///

reducer reducer

SR

Output data Output data

Fig. 1. Data flow in the MapReduce programming model.

global memory in order to be consumed in the next iteration. Since
the distributed file system serves as the global memory in the cloud
environment, the whole computation is very disk-intensive. Ad-
ditionally, the map and reduce workers reside on different physi-
cal machines and for that reason, the data is constantly transferred
over the network, which is the scarce resource in the cloud envi-
ronment.

4.2. BSP—Bulk Synchronous Parallel

To address the problem of MapReduce inefficiency for iterative
graph processing, Google has created another a distributed, fault-
tolerant system called Pregel [2], which is based on the Bulk Syn-
chronous Parallel (BSP) processing model [11]. Although Pregel is
a proprietary system, it has inspired the creation of several open-
source systems which implement the BSP model, such as Apache
Hama [16] or Apache Giraph [15].

The computation process in BSP comprises of a series of su-
persteps (equivalent to MapReduce iterations), see Figs. 2 and 5.
In every superstep, a user defined function is executed in paral-
lel on every item from the dataset acting as an agent. Pregel and
Pregel-inspired graph analytics systems are vertex-centric: a sin-
gle agent computation has a graph representation in BSP. It consists
of graph vertex identifiers, their current values or states, as well as
lists of vertices’ outgoing edges. Before any computation, all graph
vertices are partitioned and loaded into the local memories of ma-
chines (hosts). They stay there throughout all computations, so that
the whole processing is carried out using the local hosts’ memories.
Graph processing in BSP is organized by means of messages sent

vl

active v2
v3 active

- Receive messages
active %
and acticvate

£
synchronization_ § v3 v2

Perform local
computation

. ‘\_/
» v2
v3 |

Send messages
and deactivate

Fig. 2. Data flow in the Bulk Synchronous Parallel programming model.

between machines hosting individual graph vertices. At every su-
perstep, each host receives from other hosts the messages related
to vertices preserved by this host and executes a user defined com-
putation function. This function performs local processing on local
vertices and sends messages to some or all vertices’ neighbours in
the graph. Once the local computation is finished for a given ver-
tex, processing deactivates itself and the host waits for all other
vertices to finish. The barrier of the synchronization mechanism
allows the next superstep to begin when processing for all vertices
is completed in the current superstep. Afterwards, only the vertices
that have received a message are activated.

Since the graph’s structure (especially edges and values as-
signed) does not need to be sent over the network at every su-
perstep (iteration), BSP may be a very efficient graph computation
model. Only specific messages necessary for the algorithm execu-
tion are exchanged between hosts. There is no network overhead
related to graph structure passing as in the MapReduce model.
Moreover, storing the whole graph structure in the local mem-
ories of workers allows in-memory computation. The need for
disk write-reads as well as object serialization between iterations
is eliminated. However, it is possible only if the graph structure
fits in the memories of all workers. Otherwise, spilling-to-disk
techniques must be implemented. Although such techniques are
claimed to be implemented in Pregel [2], to our best knowledge,
they are not yet supported in its open source followers. This might
be a drawback of choosing the BSP model for graph processing, as
will be presented later on.

5. Similarities between MapReduce and BSP

Both BSP and MapReduce models differ in many ways but si-
multaneously they have many common features, which expose
them to bottlenecks in graph processing as well as raise the pos-
sibilities for similar improvements. Some practical enhancements
that can be applied for both models are presented in Sections 5.1
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and 5.2. Finally, the new map-side join design pattern for MapRe-
duce graph processing is proposed in Section 5.3. It eliminates
passing the graph structure between map and reduce phases,
bringing the two models much closer.

5.1. Partitioning of the graph vertex set

By default, in both MapReduce and BSP models, graph vertices
are partitioned for the purpose of computation and they are as-
signed to hosts based on a given, fixed hash function. This enables
the workers-hosts to serve a similar number of vertices. How-
ever, it would be beneficial for both models, if graph topologically-
close vertices would be processed on the same physical machine. It
would increase local computing and decrease network transfer. For
that reason, the effects of graph partitioning were studied for both
the MapReduce model [24,4,9] and for the BSP model [25,26]. Com-
monly, two types of partitioning may be distinguished: (i) range
and (ii) cluster partitioning. The former splits vertices using the a
priori knowledge about them, e.g. users from the same geographi-
cal region, web sites in the same language, etc. On the other hand,
the cluster partitioning strives to extract groups of vertices closely
interlinked in the graph. Both of these approaches have two ma-
jor drawbacks, for which the partitioning aspect was abandoned
from the research presented in this paper. The range partitioning
requires some a priori knowledge about nodes, which is unavail-
able, if the source data is anonymized—the case of the data sets
used in experiments, see Section 7. The graph vertex clustering, in
turn, is a complex and resource-consuming task itself, especially
for large graph structures.

5.2. Aggregation of messages

Distribution of a workload related to processing of a single ver-
tex is impossible to optimize in both models. Overall, the entire
computation for a given vertex is always executed on a single ma-
chine. Since the real world complex network data sets satisfy the
power-law distribution for in-degree values, a few vertices may re-
quire much more processing than most of the others. It makes prac-
tical load balancing difficult to achieve both for the MapReduce and
SSP model. Additionally, the total computation duration depends
on the processing time of the mostly loaded computational node
and is valid for both models, even with perfect balancing and scal-
ability. This problem can be partially addressed by the introduc-
tion of so called combiners, also to be used both in MapReduce and
BSP. Combiners can put together messages destined to any vertex
originating from the same machine. They are executed after the
map phase in the MapReduce model and after the computation
phase, before messages are sent, in BSP. Combiners can distribute
the workload connected with high-degree vertices and limit the
number of messages transferred over the computer network. Un-
fortunately, there is one significant limitation for this solution—
operations on the data must be cumulative and associative, and
this condition is not met for all of the graph algorithms. The ef-
fect of using combiners for MapReduce is extensively studied in [4],
while no equivalent studies are known for graph processing in BSP.

5.3. Graph processing using map-side join design patterns in
MapReduce

The need for reshuffling the graph structure between map and
Reduce phases is the main disadvantage of graph processing by
means of MapReduce. To solve this problem, the Schimmy design
pattern was proposed by Lin et al. [4]. With Schimmy, mappers
emit only messages that are being exchanged between vertices.
The result of this message processing is merged with the graph
structure in the reduce phase and written to the disk in order to be

Table 2
Profile of MapReduce-based solutions to data processing.
Feature MapReduce Schimmy iMapReduce
with map-side
join (MR2)
Join Map-side Reduce-side Map-side
Shuffling Occurs Occurs Avoided for static data
Synchronization Standard Standard Asynchronous

utilized in the following MapReduce iteration. To make the merge
possible, the key-value pairs representing the graph structure must
be partitioned into as many files as the number of reducers, and
they remain split, similarly as in the MapReduce shuffle phase. Af-
terwards, every reducer locates and reads (possibly remotely) a file
with the range of keys suitable for it.

Instead of a reduce-side join (which actually happens in
Schimmy), a better design pattern would be to perform a map-side
join. In most graph algorithms, the only time in the MapReduce
graph processing when vertices must be aware of the graph struc-
ture is in the map phase, when they need to know to which vertices
send messages. The reduce phase usually computes new values for
vertices and does not require knowledge about the vertex neigh-
bourhoods.

In the map-side join design pattern, the input is partitioned into
two groups of files containing either the graph structure or the cur-
rent state/values of vertices. The input files must be split in the
same manner as in the case of Schimmy into a number of files equal
to the number of reducers and with the same partitioning func-
tions that route messages from mappers to reducers. Two types
of files are merged in the map phase, i.e. the mapper reads record
by record from two files. However, unlike in Schimmy, there is no
need to go beyond the standard API. Hadoop offers a special input
format that allows the input to consist of more than one file. Map-
pers emit only the messages exchanged between vertices, likewise
Schimmy. Reducers receive vertex messages, perform a computa-
tion and emit the result. Output created by reducers will be merged
in the next iteration with the graph structure in the map phase.
The drawback of this approach is that since mappers will have to
read input files, one of them usually will require a remote read.
However, the Schimmy also requires remote reads in the reduce
phase, but with the map-side join approach, the graph structure is
never written to a disk. It appears to be the greatest advantage over
Schimmy. The proposed idea of MapReduce with map-side join,
hereinafter referred to as MapReduce 2 (MR2), tends to be notice-
ably more efficient then the typical MapReduce concept.

Specificity of the tested algorithms (see Section 6) enabled the
authors to use a more efficient approach than the Schimmy solu-
tion. It should be noticed that Schimmy allows one to efficiently
use of information about the neighbourhood of the node in the re-
duce phase. However, in the tested algorithms, such information is
needed in the map phase only and the reduce phase contains recal-
culation of nodes’ labels, so that Schimmy appeared to be improper
for the graph problems analysed in the paper.

The idea of joining both static and dynamic graph data in the
map phase has already been proposed in the iMapReduce sys-
tem [8]. However, it has not been described in detail and for that
reason it can be hardly used directly for comparison. Additionally,
the iMapReduce approach eliminates the shuffling of the static data
and executes map tasks asynchronously. Since the main goal of
this paper was to compare BSP to MapReduce, which are both syn-
chronous, the authors decided not to include the iMapReduce im-
plementation in the experiments.

The general profile of various MapReduce-based concepts to
data processing is presented in Table 2.

6. Selected graph algorithms implementing parallel processing

To evaluate the efficiency and other features of different paral-
lel graph processing models, two separate problems were selected.
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Table 3
Profile of graph problems used in parallel computation.

Feature

Single Source Shortest Paths (SSSP)

Relational Influence Propagation (RIP)

Graph type (edges)

Graph structure processed independently in parallel
within a single iteration

Vertex activation (label update and further
broadcasting)

Unweighted

smaller path length

Individual vertices with their closest neighbours

Only if the message from the neighbour contains

Weighted
Individual vertices with their closest neighbours

For all vertices

Neighbour- |.g........-.......] 'nltlal
hoods, HDFS| distribution

( iped] Single iteration

- balancer
_ (Master)

i \A‘lork' integrated graph
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Fig. 3. MapReduce model for processing of graph problems.

The former is calculation of single source shortest paths (SSSP),
see Section 6.1. The latter is a collective classification algorithm
based on Relational Influence Propagation (RIP) used for collective
classification of graph vertices, see Section 6.2. Both problems, i.e.
finding single source shortest paths as well as the collective classi-
fication belong to the wide group of emerging challenges in graph
processing. They represent typical and fairly complex issues in the
computation of networks and can be the basis for solving further
extension problems, for instance graph colouring, topological sort-
ing, graph searching, minimum spanning trees or all-pairs shortest
paths. It means that the analysis of the efficiency of SSSP and RIP
solutions could also be common for other similar graph algorithms.

The general profile of both graph problems are presented in Ta-
ble 3. Their three different implementations MapReduce, MapRe-
duce with map-side join extension and Bulk Synchronous Parallel
are depicted in Figs. 3-5, respectively.

6.1. Single source shortest path

A typical graph problem that was widely studied in graph anal-
ysis is the single source shortest paths (SSSP) calculation. For
unweighed graphs, this problem can be interpreted as the com-
putation of the minimal number of edges that form a path from
an arbitrary chosen vertex to every other vertex in a graph. Imple-
mentations of the algorithm have been studied and proposed both
for MapReduce [5] and for BSP [2].

At the beginning, all vertices are initiated with the maximum
possible value and the source vertex with value 0. In the first itera-
tion, the source vertex sends an updated shortest path value equal
to one to its immediate neighbours. In the next iteration, these
neighbours may propagate the path lengths incremented by 1 to
their neighbours, and so on. Every vertex (neighbour) may receive
a message with the shortest path smaller than its currently stored
value. In such a case, the vertex becomes active and broadcasts the

77777777 Initial
\distribution,
. - A =N
Load Single iteration
- balancer ‘
Stream/file:

M ~ integrated graph
. \r\fork. (labels +
istribution neighbours) Strea

Join == Mapper » Reducer
| J
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Calculation Integration:
(update labels)  SSSP: min paths
SSSP:path=path+1 RIP: avg label
RIP: propagate
labels&weights

s Labels
(SSSP: label is path length)
HDFs

Fig. 4. MapReduce model with map-side join design patterns (MR2) in graph data
processing.

updated shortest path (increased by 1) to all its neighbours. How-
ever, if the received path length is greater than the current value for
a given vertex, it does not send any message. In this way, at every
iteration (MapReduce job/BSP superstep) a frontier of vertices with
the newly discovered shortest paths is extended by one hop. The
entire algorithm can be simply translated from the MapReduce to
BSP model and vice versa. The MapReduce processing is expressed
in two functions and the map functions emit the vertex itself to
preserve the graph structure.

6.2. Collective classification of graph vertices based on Relational
Influence Propagation

Overall, the term collective classification refers to the specific
classification task of a set of interlinked objects. The common rep-
resentation used in such problems are graphs, where each object
is represented by a vertex and relationships between objects are
graph edges. In collective classification, each vertex can be classi-
fied according to the generalized knowledge derived from correla-
tions between the labels and attributes of vertices or correlations
between the labels and observed attributes supplemented by la-
bels of neighbouring vertices. Unlike standard classification, the
collective approach utilizes information about relationships be-
tween vertices. For example, it is very likely that a given web page
x is related to sport (label sport), if page x is linked by many other
web pages about sport.

Collective classification can be accomplished by two distinct
inference approaches: within-network classification or across-
network classification. Whereas the former tries to recover par-
tially unknown labels in the network based on information of
known ones, the latter applies the recovered label distribution
from one network to another.
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Algorithm 1 MapReduce approach to Single Source Shortest Path

1: function mMaP(vertexId n, vertex V)

2 if V.active==TRUE then

3 for outgoingEdge E € V.adjacencyList do

4: emit(E.neighborId, V.currentDistance+1)

5: end for

6: V.active=FALSE

7 end if

8 emit(vertexId n, vertex V)

9: end function

1: function REDUCE(vertexId n, messages[mj, my,...])

2: integer minimalDistanceFoundInMessages = Inf

3: originalVertex V = null

4: for m € messages do

5: if m isTypeOf Vertex then

6: V<«<mn

7: else

8: if m < minimalDistanceFoundInMessages then

9: minimalDistanceFoundInMessages = m

10: end if

11: end if

12: end for

13: if V is null OR V.minimalDistance >
minimalDistanceFoundInMessages then

14: V.minimalDistance=minimalDistanceFoundInMessages

15: V.active=TRUE

16: else

17: V.active=FALSE

18: end if

19: emit(vertexId n, Vertex V)

20: end function

The within-network collective classification algorithm based on
Relational Influence Propagation (RIP) has been examined in this pa-
per. The general idea of this approach is based on the iterative prop-
agation of the known labels assigned to some known vertices to the
non-labelled vertices in the same network. The method was origi-
nally derived from the enhanced hypertext categorization [27].

The RIP algorithms for MapReduce and BSP have already been
considered in [28,29]. The pseudo-codes of implementations for

Algorithm 2 Bulk Synchronous Parallel approach to Single Source
Shortest Path

1: function compuTE(vertex V, messages[mq,my,...])
minimalDistanceFoundInMessages = Inf

2: for m in messages do

3: if m < minimalDistanceFoundInMessages then

4: minimalDistanceFoundInMessages = m

5: end if

6: end for

7: if V.minimalDistance>minimalDistanceFoundInMessages then
8: V.minimalDistance=minimalDistanceFoundInMessages
9: for E € V.adjacencylList do

10: sendMsg(E.neighborId, V.minimalDistance+1)
11: end for

12: end if

13: voteToHalt ()

14: end function

MapReduce and BSP are presented in Algorithms 1 and 2, re-
spectively, in order to demonstrate the differences between these
two programming models. The implementation in the MapReduce
paradigm consists of two separate functions: map() and reduce().
Each map() reads and processes vertex by vertex. For every ver-
tex with a known label, it propagates its label to its all immediate
neighbours (lines 2-3 in Algorithm 1). Since MapReduce is a state-
less model, it must also send its own representation to itself (line
4). Messages transmitted by the map functions are consumed by
the reduce functions, which are usually executed on different ma-
chines. When the reduce function receives all the messages, it must
distinguish messages from two types: a message sent by itself,
which contains the vertex adjacency list (lines 4-5), and messages
sent by its direct neighbours, having their labels already assigned.
Next, it aggregates all received external labels along weights of
graph edges linking the vertex to its neighbours (lines 7-8). Finally,
the updated likelihood expressed by means of the weighted mean
of neighbourhood likelihood is computed for a given vertex (line
11). As a result, the vertex obtains its own new label. At the end,
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the vertex propagates its own representation, containing its up-
dated label. The output will serve as the input for the map function
in the next iteration (MapReduce job).

Unlike MapReduce, in the BSP implementation, the whole pro-
cessing for a vertex is expressed with only one function compute(),
which is executed on a single machine, see Algorithm 2. Function
compute() is triggered once in each superstep (iteration) separately
for every vertex that has received a message sent in the previous
superstep. The logic of the RIP algorithm is expressed similarly as
in MapReduce: vertices receive and aggregate messages from their
neighbours (lines 2-5), calculate the new likelihood (line 6) and
send their updated likelihood to all their neighbours. The main dif-
ference between the MapReduce model is that the vertices do not
have to propagate themselves. This is guaranteed by the stateful
nature of processing in BSP—all the computation for one vertex
is always executed on the same machine, and the vertex state in-
cluding information about its neighbours (in particular weights of
edges) can be stored in-memory or another local storage.

Algorithm 3 MapReduce approach to Relational Influence Propa-
gation

1: function MAP(vertexId n, vertex V)

2 for outgoingEdge E € V.adjacencylList do

3: emit(E.neighborId, <V.label, E.edgeWeight>)
4: end for

5: emit(vertexId n, vertex V)

6: end function

function REDUCE(vertexId n, messages[mq,my,...])
originalVertex V = null
for m € messages do
if m.isVertex() then
V<nmnm
else
sumLabels += m.label*m.weight
sumWeights += m.weight
end if
10: end for
11: V.label <« sumLabels/sumWeights
12: emit(vertexId n, Vertex V)
13: end function

OO ~NO®U P WN =

Algorithm 4 Bulk Synchronous Parallel approach to Relational
Influence Propagation

1: function coMPUTE(vertex V, messages[my,my,...])
2: for m in messages do
: sumLabels += m.label*m.weight

sumWeights += m.weight

end for

V.label <« sumLabels/sumWeights

for E € V.adjacencylList do
sendMsg(E.neighborId, [V.label, E.edgeWeight])

9: end for

10: voteToHalt ()

11: end function

3
4
5:
6:
7
8

7. Experimental environment

The main goal of experiments was to validate and compare
the open source parallel programming models: (1) MapReduce
(MR), (2) MapReduce with map-side join (MR2) and (3) Bulk Syn-
chronous Parallel (BSP), see Section 4. These three approaches: MR,
MR?2 and BSP were evaluated in terms of computational complex-
ity for distinct settings of a distributed environment. The efficiency
measures were recorded for clusters with various numbers of com-
putational nodes (from 10 to 85 machines). The analysis was per-
formed for distinct real world datasets and for two graph analysis
problems: SSSP and RIP, see Section 6. Since all implementations
required the same number of algorithm iterations (equal to 10) to
reach satisfactory stability of results, the mean execution time of
a single iteration was used as the evaluation measure in order to
compare all approaches.

Table 4
Description of datasets used in experiments.
tele_small tele youtube twitter

Domain telecom telecom multim. microblog
No. of nodes 5,098,639 13,914,680 16,416,516 43,718,466
No. of edges 21,285,803 67,184,654 66,068,329 688,352,467
Avg deg. 4.17 4.83 4.02 15.75
Max indegree 40,126 294,690 4104 1,228,086
Directed (y/n) y y y y
No. of classes 2 2 15 -

7.1. Environment setup

The experiments were carried out using a cluster environment
provided by the Wroclaw Networking and Supercomputing Center.
The distributed system consisted of 85 identical machines with 4
CPUs, 16 GBRAM and 750 GB of storage each. Computers were con-
nected through 1 Gb/s Ethernet. The experiments were deployed
on Hadoop (version 0.20.205.0) and Apache Giraph (version 0.2).
Apache Giraph [15] is an immature, open-source implementation
of the BSP model for graph processing in the cloud environment.
All programs for Giraph were written as a Hadoop jobs because Gi-
raph launches BSP workers within mappers and then uses Hadoop
RPC to enable workers communicate with each other.

7.2. Datasets

To compare the MapReduce and BSP approaches four separate
datasets were used: tele, tele_small, youtube and twitter. The tele
dataset is a network of telecommunication clients built over three
months history of phone calls from one of the leading European
telecommunication company. The raw dataset used to construct
the network consisted of about 500 000 000 phone calls and more
than 16 million unique users. Extracted network was built using
the activities of clients performing calls in the two most popular
from 38 tariffs. Another dataset, tele_small, was composed based
on the next two most common tariffs. In both datasets users were
marked with the empirical probability of the tariffs they used,
namely, the sum of outcoming phone call durations in a particular
tariff was divided by summarized duration of all outcoming calls.

The YouTube dataset [30] was crawled using the YouTubeAPI in
2008. A subset of all attributes was used to create a weighted graph
structure and labels: video_id, age, category, related_IDs. Using re-
lated_IDs the connection strengths were calculated as a fraction of
the number of related adjacent videos, i.e. if there were 20 related
videos each of them was linked by an edge with the weight of 0.05.

The Twitter dataset was the largest dataset utilized in the ex-
periments. It contained a list of two users’ identifiers, implying a
link from the first to the second user (the first user follows the sec-
ond one). As there were no available labels for a user, to enable RIP
validation a binary class was assigned randomly to each of the net-
work vertices using the uniform distribution. Some other details
about the datasets are presented in Table 4.

8. Results of experiments

8.1. Time of computation for various graph problems

First of all, MR, MR2 and BSP approaches were examined against
the type of graph processing problems using a fixed number
of computational nodes (60 machines). The Relational Influence
Propagation (RIP) as well as Single Source Shortest Paths (SSSP)
problems were executed in order to test the execution time. The
results for three parallel approaches separately for the RIP and SSSP
problems are presented in Figs. 6 and 7, respectively. In general,
BSP outperformed the regular MapReduce (MR) by 70%-90% (3-10
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Fig. 6. Performance of Relational Influence Propagation problem on 60 machines
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Fig. 7. Performance of Single Source Shortest Paths on 60 machines (with the
percentage drop of mean iteration time in comparison to MR).

times better) and the improved MapReduce (MR2) by 50%-90%
(2-10 times better), and more for the SSSP problem than for RIP.
Note also that the efficiency gain obtained by MR2 is slightly higher
for the SSSP problem than for RIP.

8.2. Scalability in relation to the graph size

The next research focused on the question, how the processing
time of MR, MR2 and BSP solutions depends on the sizes of graphs
for the fixed configuration (60 machines). Again, the experiment
was performed on three datasets with significantly different num-
bers of nodes (tele_small, tele and twitter). According to Figs. 8 and 9
all three approaches shown their nearly linear scalability for both
graph problems. Once again, MR2 and BSP outperformed the MR
implementation, especially for the largest graph, even though the
gain is quite stable. Similar characteristics were observed in rela-
tion to the increasing number of edges.

8.3. Horizontal scalability in relation to the number of parallel
machines

The influence of the computer cluster (cloud) size on efficiency
(processing time) was also examined. Three parallel models (MR,
MR2 and BSP) were compared against each other for different
numbers of machines, starting from 5 to 85. The results are
depicted in Fig. 10(a-h).

For the smaller datasets like tele_small, tele, youtube all three
solutions, MR, MR2 and BSP, converge to a limit of the best mean
computation time of iteration with about 30 computational nodes
(hosts) in the cloud. Adding more machines eliminates the bene-
fit of additional computing power due to the overhead related to
network communication. The mean execution time of a single iter-
ation can be decreased by 2 to 4 times by increasing the number of
computational nodes from 5 to 30. This benefit is relatively higher
for the RIP problem than for SSSP, and in most cases it is higher for
BSP than for MapReduce approaches. The 17 times increase of the
number of machines (from 5 to 85) speeds up the processing by 14
times (2900-205 s) for MR, the RIP problem and twitter (Fig. 10(d))
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Fig. 8. Scalability with respect to the size of graph for the Relational Influence
Propagation algorithm with a fixed number of machines (60).
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Fig. 9. Scalability with respect to the size of graph for the Single Source Shortest
Path algorithm with a fixed number of machines (60).

and even 16 times for MR2 (2400-146 s). Due to the in-memory
calculation limit of the BSP approach, it was able to execute the
twitter dataset on an environment starting only from 50 machines
(Fig. 10(d)). Adding more machines improves the performance only
slightly.

On the other hand, the mean time of one iteration depends only
to a moderate degree on the number of computational nodes; it
refers to computing for the SSSP problem (Fig. 10(e-h)). The biggest
observed improvement for MR and MR2 was only 2.7 and 4.6 times
faster, respectively.

Similarly to the RIP algorithm for the twitter dataset, the BSP
implementation of SSSP was not able to be executed until 30 or
more machines were in the cluster (Fig. 10(h)). Once more it was
observed, that in case of BSP approach, increasing the number
of computational nodes reveals only a slight improvement of the
processing time.

The worst scalability can be observed for the tele_small dataset,
less than 2 times for MR and MR2, while increasing the number of
hosts from 5 to 10, and about 3 times for BSP, but not until 20-30
nodes (Fig. 10a,e).

For some cases, the extension of the computer cluster over
30 machines even decreases efficiency—average processing time
slightly rises (Fig. 10(a,e,f,g)), but it is valid only for MapReduce
solutions (MR and MR2). In these cases, the efficiency stabilizes at
the certain level for BSP.

8.4. Scalability in relation to the number of algorithm iterations

The total processing time for RIP and SSSP algorithms is shown
in Figs. 11 and 12. The values presented additionally aggregate
the initiation time attributed to each iteration for BSP and MapRe-
duce models (MR and MR2). In all approaches, regardless of the
calculated problem, the processing time increases linearly with
the number of iterations. The coefficient of determination (R?) be-
tween real values and their linear equivalence for MR and MR2 is
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at the level of 0.9998-0.9999 and for BSP is R> = 0.9747-0.9976.
A slightly lower correlation between real values and the linear
approximation for BSP compared to MR/MR2 was caused by the
slightly longer duration of the first iteration (superstep) of BSP,
which contained the graph data distribution among parallel ma-
chines.

Additionally, MapReduce approach iterations are significantly
slower and their total processing time rises more rapidly.

It can be also noticed that the time required to complete the
first iteration is approximately three times longer for BSP than for
the MR/MR2 implementation for the SSSP problem. It is caused by
the initialization procedure required for loading the graph struc-
ture into the distributed memory before the first superstep of BSP.
It is valid for the SSSP problem; however, for RIP, the first iteration
lasts the same time for both approaches. It means that the time
consumed for loading the structure of the graph may vary on many
factors and it is strongly implementation dependent.

8.5. Resource usage over time

The detailed charts with the consumption of the main resources
include data about: CPU usage of processing machines (cluster),
CPU usage for the master host, network traffic (communication be-
tween hosts), memory occupation for processing hosts and sepa-
rately for the master host, see Figs. 13 and 14. They were monitored
for the MapReduce approach and BSP separately for RIP (Fig. 13)
and SSSP graph algorithms (Fig. 14). Obviously, BSP processing
lasted shorter than MR regardless of the graph problem, see X
scales for both approaches.

The iterative nature of the algorithm is clearly visible in almost
all the charts, especially for CPU cluster usage and memory usage.
In the case of MapReduce, the highest consumption of CPU is ob-
servable for both mapper processing (B and F steps), lower for shuf-
fling (especially steps C and lower for steps G), even lower for the
reduce phase (steps D and H) and processors are least used for stor-
ing results (steps E and I). Similarly, for BSP and the RIP problem,
the lowest CPU demand is at the synchronization stage between
supersteps (steps 6). In the BSP + SSSP, the synchronization is very
short and actually invisible in the chart (Fig. 14, top-right).

It can be noticed that one of the crucial problems in graph pro-
cessing are diverse distributions of the sizes of node’s neighbour-
hoods. For that reason, some computing hosts have to wait until all
graph nodes are processed, see orange spaces in CPU usage, espe-
cially before synchronization (stages E, I and 6).

In general, BSP transfers much less data than MR, please note
the different Y axis scales. The data exchange for BSP is much
greater for the RIP problem than for SSSP, except for graph loading
stage at the beginning. For RIP 4+ BSP, data exchange is lower at
the beginning, when there are only a few graph nodes with labels
assigned at the first iterations. After the 2-3 first iterations, all
nodes have their labels and the algorithm only re-assigns them. It
means that more data needs to be transferred.

For the BSP + SSSP, after initial graph structure loading, the
CPU usage and network traffic grows for every iteration since the
shortest paths grow to their maximum. Then, some of them are al-
ready completed: CPU usage drops and network transfer keeps ris-
ing. Also, longer paths need to be stored leading to greater usage of
memory.

BSP solutions (both for RIP and SSSP) utilize much more mem-
ory space, which comes from its general concept.

9. Discussion

In general, the results presented in Section 8 revealed that the
MapReduce approach (MR) is outperformed by Bulk Synchronous

Parallel (BSP) as well as by application of the map-side join design
pattern (MR2). Nevertheless, the efficiency gain differs for distinct
computational problems. It is exposed that usage of MR2 or BSP
instead of raw MR provides greater performance improvement for
Single Source Shortest Paths (SSSP) calculation than for Relational
Influence Propagation (RIP) computation. This can be explained
by the time required for communication between computational
nodes (hosts). In RIP, the communication was very dense, as 70% of
all graph vertices used as a source for propagation were propagat-
ing their labels to almost all other vertices. In the SSSP problem, in
turn, the number of propagating vertices was changeable and de-
pended on the iteration, but in general, was much smaller than in
RIP.

The general concept of the BSP model facilitates in-memory
computation for the entire graph. This is the main reason why the
BSP implementation outperforms MapReduce for all considered
graph-based problems. In case of MapReduce, the messages ex-
changed between vertices as well as intermediate data transferred
in-between iterations must be written to the disk. However, in-
memory processing requires that the whole graph structure and
all intermediate data produced during processing (e.g. messages
exchanged between vertices) must fit in the memory. Otherwise,
a spilling mechanism should be provided in order to manage the
data in the memory and external storage. Unfortunately, to the
best of our knowledge, none of the recent open-source BSP systems
provides any equivalent mechanism. Hence, for very large net-
works, MapReduce remains the only alternative. As was shown in
Section 8.3, the risk of not fitting in memory is higher for more
communication intensive problems such as Relational Influence
Propagation.

Overall, in-memory processing allows graph’s vertices to re-
main in the same physical location throughout the computation,
see Fig. 5. On the other hand, additional overhead is required at
the beginning of computation in order to partition the network and
load it into the memory of workers. The overhead may be compen-
sated after a few iterations (as was discussed in Section 8.4, see
Fig. 12). Notwithstanding, the BSP model may be a very good solu-
tion for non-iterative graph algorithms.

The necessity of data exchange and access to distributed file
systems (HDFS) grows with a higher number of parallel machines.
It especially refers to MapReduce approaches, both original (MR)
and improved (MR2), since the graph vertex may be re-allocated at
every iteration of MapReduce-based algorithms. As a result, adding
new machines does not need to decrease the average processing of
a single algorithm iteration. For the datasets and graph problems
analysed in the experiments, the reasonable upper limit of
computational nodes is about 20-30, see Section 8 and Fig. 10.

10. Conclusions and further work

Three main approaches to parallel processing of graph data,
namely: (i) MapReduce (MR), along with (ii) its extension based on
map-side joins (MR2) as well as (iii) the Bulk Synchronous Parallel
(BSP) were examined in the paper. Two graph problems that can
be solved by means of iterative algorithms were implemented and
tested separately for the above three approaches: calculation of the
lengths of single source shortest paths (SSSP) as well as Relational
Influence Propagation (RIP) used for collective classification of
graph nodes.

The experimental studies on four large graph datasets with
different profiles revealed that the Bulk Synchronous Parallel ap-
proach outperforms other solutions (MR and MR2) for all datasets
and all tested iterative graph problems. The BSP model, despite its
relatively young implementation, worked even up to one order of
magnitude faster than the MapReduce-based approaches. The su-
periority of BSP was greater for telecom data rather than for twitter
data (compare Fig. 10(a,e) with Fig. 10(d,h)).
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Fig. 13. Resource usage for the Relational Influence Propagation (RIP) problem; MR step letters and BSP step numbers correspond to stages in Figs. 3 and 5, respectively;

results for the tele dataset.

Simultaneously, it was discovered that the map-side join design
pattern (MR2) may improve the original MapReduce performance
up to two times. It is caused by replacement of one Map-Reduce
job by single join at every iteration (compare, Figs. 3 and 4).

Parallel processing of graph data also has some limitations.
The gain in increasing the number of parallel hosts is visible only
up to certain quantity. Based on experiments from Section 8, see
Fig. 10, we can state that about 20-30 hosts is the upper limit.

The increase above this threshold does not result in faster pro-
cessing. It is visible especially for MapReduce solutions (MR and
MR?2). This phenomena was caused by the necessity of more ex-
tensive data exchange in the case of a larger number of parallel
machines.

Nevertheless, MapReduce can still remain the only mature
enough alternative for parallel processing of graph algorithms on
huge datasets. It results from the main BSP limitation: the very high
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Fig. 14. Resource usage for the SSSP problem and tele dataset.

memory requirements—all the data used for local processing in BSP
must fit in the local memory.

However, it should be noticed that recently some implemen-
tations of the BSP processing model are also becoming more and
more mature, e.g. Apache Giraph has just been featured with disk
storage support for large (larger than RAM memory) graphs. Also
a new framework for MapReduce in-memory computations has
just been developed (Spark project at Berkeley University). The
comparison of both in-memory frameworks for BSP (Giraph) and

MapReduce (Spark) could be a very interesting direction for future
work.
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